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You sit with a deck of fifty-two cards in front of you, face down.  
You flip the first card: a 10 of diamonds.  
What are the odds of that? One out of fifty-two.   
Remarkable.  
You flip the next card: a queen of hearts. 
Unbelievable!  The odds of this sequence were 1/52 * 1/51 (less than 1 in 2000).   
You continue flipping cards: a 4 of clubs follows, then an 8 of diamonds, then an 8 of 

hearts. Once you have flipped them all over you stare in disbelief; the particular sequence of 
cards you just observed happens one out of every 8*1067 (52 factorial) times.  Every person in 
the world could shuffle a deck of cards and flip through it every minute of their entire lives, and 
even then, the odds of the world seeing your particular sequence of cards will be less than 1/1050!  

Extraordinary.  
 
Something is very wrong here.  The conclusion is absurd. Yet similar logic is prevalent in 

both lay and scientific reasoning.  Some have used variants of this argument to account for the 
origins of humans on earth: Proteins could be randomly shuffled for eons before humans 
emerged in all their glory. Since the likelihood of human existence by pure chance is so slim, 
surely intelligent design is the most parsimonious explanation.  The card example was introduced 
to illustrate just how preposterous this objection to evolution is.  Unfortunately, this logical 
fallacy, which we will call here the “non-independence” error, is not restricted to arguments from 
the scientifically unsophisticated. It is prevalent in cognitive neuroscience as well.  For instance, 
of the eight papers in a recent special issue of Neuroimage, five contained variants of this error1.   
The prevalence of this error is troubling because it can produce apparently significant effects out 
of pure noise (Figure 1).  In this chapter we will describe the error formally, consider why it 
appears to be more common in fMRI than other fields, provide examples of this error in its most 
common guises, and propose a few heuristics that may help lay people and scientists alike avoid 
the error. 
 
1. Formal description of the non-independence error 
 
 What exactly is the error that leads to the absurd conclusion in the card example? 
We can describe it in different theoretical frameworks: statistical hypothesis testing, 
propositional logic, probability theory, and information theory.  These frameworks are rarely 
discussed together, and never connected in the context of the non-independence error. In this 
section we describe the error in the context of statistical hypothesis testing; in the Appendix we 
consider it from the three other perspectives.  

In statistical hypothesis testing, the most common non-independence error is referred to 
as ‘selection bias’.  Essentially all statistical models used for hypothesis testing assume that the 
sampling (selection) process is independent of the relevant measure.  ‘Selection bias’ is a 
violation of this independence assumption. 

                                                 
1 (den Ouden, Frith, Frith, & Blakemore, 2005; Gillath, Bunge, Shaver, Wendelken, & Mikulincer, 2005; Harris, 
Todorov, & Fiske, 2005; Mitchell, Banaji, & Macrae, 2005; Sander et al., 2005) 



If we assume that our deck of cards is a random sample from the population of all decks 
of cards, and we are evaluating the likelihood that such a deck of cards will have a particular 
order specified in advance, we would be surprised to find such a coincidence (indeed, p<10-67).  
However, our sampling process is very different.  Our sample was not drawn from the population 
of all random decks; instead, it was a sample from all decks that we just observed to have the 
particular order in question.  

Statistics textbooks often describe “selection bias” via simplistic examples of samples 
that are not representative of the population (e.g., drawing data exclusively from the NBA when 
assessing the height of Americans). Obviously, in such cases, the sample will clearly be different 
from the population, and generalizations to the population would be unjustified because they rely 
on the assumption that the sampling process is independent of the measure.  This classical form 
of selection bias effectively conveys the intuition that a sample ought to be representative of the 
population.  However, ‘representative of the population’ is loosely defined. If we seek to test 
whether a particular group (say, people who are taller than 6’ 5”) somehow differs from the 
population (say, have higher salaries), then, if such an effect truly exists, the process of 
‘selecting’ our population of interest necessarily gives us a sample different from the global 
population, and there is nothing wrong in this case. 

We can define ‘selection bias’ more formally than ‘not representative of the population’ 
as follows: if our selection criteria are applied to a sample from the null hypothesis distribution, 
the selected subset of that sample must also be a sample from the null hypothesis.  For example, 
if we seek to evaluate whether a sociology class is more difficult than a psychology class, we 
might find a sample of students who have taken both, and evaluate the difference in this group’s 
average score in the two classes.  Let’s imagine that the average grades for sociology and 
psychology are identical in this sample (thus, we have a sample from the null hypothesis 
distribution --  there is no effect in the sample).  Now imagine that from this sample, we choose 
only students who had a better grade in sociology than psychology.  This newly selected 
subsample will have a higher average grade in sociology than psychology.  So our analysis 
procedure “(1) select all students with a higher grade in sociology than psychology, (2) evaluate 
average scores for sociology and psychology in this sample” violates the requirement that the 
selection criteria not alter the null hypothesis distribution when applied to it. Thus our selection 
is biased. 

This definition of selection bias can be expressed in terms of independence in probability 
theory: if X is a random variable representing our data, and P(X) reflects the probability 
distribution assumed by the null hypothesis, then P(X|C) where C is the selection criteria, must 
be equal to P(X), the null hypothesis distribution.  Thus, ‘selection bias’ is a violation of 
independence between selection and the subsequent statistical measure.  Though this point may 
appear obvious or trivial, it is crucial when considering examples further removed from our 
intuitions about circular reasoning or population representativeness. 
  
2. Examples of the non-independence error in fMRI 

 
The non-independence error arises in fMRI when a subset of voxels is selected for a 

subsequent analysis, but the null-hypothesis of the analysis is not independent of the selection 
criteria used to choose the voxels in the first place. Take the simplest practical case: If one 
selects only voxels in which condition A produces a greater signal change than condition B, and 
then evaluates whether the signal change for conditions A and B differ in those voxels using the 



same data, the second analysis is not independent of the selection criteria.  The outcome of this 
non-independent second analysis is statistically guaranteed and thus uninformative: A will be 
greater than B, since this conclusion is presumed by the selection criterion (Culham, 2006). 
Furthermore, this outcome will be biased: given that the data will be perturbed by random noise, 
selecting voxels in which A>B preferentially selects voxels in which the random noise is positive 
for A and negative for B.  

There are many ways for the combination of voxel selection and subsequent analysis to 
produce a non-independence error and thus biased results. However, neither a particular selection 
method nor a particular analysis method is alone sufficient for a violation of independence; the 
violation results from the relationship between the two.  We will describe a few situations in 
which the particular combination of selection method and subsequent analysis results in non-
independence. We start with the simplest cases, where the error will be most obvious and go on 
to more elaborate cases where non-independence is harder to spot.  

fMRI analyses that contain the non-independence error often jeopardize the conclusions 
of the study for two reasons.  First, the non-independent analysis will be statistically biased, 
rendering its conclusions limited (at best) and completely invalid (at worst).  Second, because 
researchers often rely on the secondary analysis to support their claims, the initial analysis used 
to select voxels is often not statistically sound because it is not properly corrected for multiple-
comparisons.  Insufficient correction for multiple-comparisons guarantees that some number of 
voxels will pass the statistical threshold, and offers no guarantee that they did so because of 
some true underlying effect rather than fortuitous noise.  In cases when both a lax multiple-
comparisons correction is employed and a non-independent secondary test is used, all of the 
conclusions of the experiment are questionable: the lax selection threshold may have only 
selected random fluctuations, and a seemingly significant result may have been produced 
literally out of noise (Figure 1, reprinted from (Baker, Hutchison, & Kanwisher, 2007)). 
 

 
Figure 1. A portion of the graph from Baker et al (2007). (d) A  non-independent analysis and (e) 
the suggested independent analysis were performed on non-brain fMRI data (the nose).  With a 
non-independent analysis, even the nose may be shown to contain face-, animal-, car-, and 
sculpture- selective voxels. A sound, independent analysis does not produce such spurious 
results. 
 
2.1 Testing the signal change in voxels selected for signal change 
 



 The most damaging non-independence errors arise when researchers perform statistical 
tests on non-independent data.  In these cases, the non-independent tests are explicitly used in 
support of a conclusion, while the non-independence renders the test biased, uninformative, and 
invalid. 
 One such example can be seen in a recent paper by Summerfield and colleagues 
(Summerfield et al., 2006).  The authors sought to identify category-specific predictive codes.  
Subjects were exposed to “face set” blocks in which they had to identify faces, and “house set” 
blocks in which, for identical stimuli, subjects had to identify houses.  In Figure 3a Summerfield 
et al show the voxels that are more active for face set blocks than house set blocks (selected at a 
low, uncorrected threshold: p<0.01).  The authors then take the maximally significant voxel in 
this contrast and run “post hoc ANOVAs”.  The ANOVAs are defined with two factors: one 
factor is face set versus house set, and the second factor is stimulus (which is independent of face 
or house set because different stimuli types were equally distributed in the two set conditions).  
The result of this ANOVA is a significant main effect of face set, with remarkably high F 
statistics reported. 
 However, these ANOVAs were run only on the maximally active voxel in the face-set 
minus house-set contrast, defined by the same data.  This means that the voxels are guaranteed to 
have a significant main effect of face-set greater than house-set.  The statistics reported for the 
main effect in the ANOVA add no new information, and do not bolster the authors’ claims in the 
slightest.  The ANOVA results were presupposed by the selection criteria.   

 



Figure 2. Voxels selected for having a main effect of set (at a low, uncorrected threshold) are 
reported as having a very significant main effect of set.  Reprinted from (Summerfield et al., 
2006).  
 

These statistics are misleading. The ANOVA results are used to bolster the whole brain 
analysis that identified the regions.  The whole brain analysis itself used a particularly low 
threshold (p<0.01, without multiple comparisons correction), and as such could not stand on its 
own.  However, it effectively imposes a bias on the subsequent ANOVA. It is quite possible that 
the results displayed in Figure 3 may be entirely spurious: the results of the whole-brain analysis 
may be due to chance (false positives), and the results of the ANOVA are guaranteed given the 
selection criteria.  This is exactly the sort of analysis that has motivated us to write this chapter: 
the numbers reported (F values greater than 20) appear convincing, but they are meaningless.  

Non-independent statistical tests appear in numerous other high-profile articles, e.g. 
(Cantlon, Brannon, Carter, & Pelphrey, 2006; Grill-Spector, Sayres, & Ress, 2006; Piazza, Pinel, 
Le Bihan, & Dehaene, 2007; Ruff et al., 2006; Todd & Marois, 2004). Although non-
independent tests are prevalent in the literature, the conclusions of an entire paper do not always 
depend on that biased analysis.  However, in some cases (Summerfield et al., 2006) the 
researchers may have produced their main significant result out of nothing.   
 
2.2 Plotting the signal change in voxels selected for signal change. 
 
 The most common, most simple, and most innocuous instance of non-independence 
occurs when researchers simply plot (rather than test) the signal change in a set of voxels that 
were selected based on that same signal change.   
 
2.2.1 Selecting an interaction 
 
 Take for instance a classic article about the effect of load on motion processing (Rees, 
Frith, & Lavie, 1997).  In this study, the researchers sought to test Lavie’s load theory of 
attention – that ignored stimuli will be processed to a greater degree under low-load compared to 
high-load attended tasks.  Subjects performed either a difficult or an easy linguistic task at 
fixation (to make load high or low, respectively), while an ignored dot field either moved or did 
not move in the background.  The authors predicted a greater difference in activation between 
motion and no motion conditions during low load compared to high load. Thus, Rees et al. found 
the peak voxel within some distance of area MT in which this interaction was greatest, and 
plotted the signal change in that voxel. 
 
 



 
Figure 3. Time course from the peak voxel selected for an interaction is biased towards 

implausible activation patterns (no motion > motion in MT; under high load).  Reprinted from 
(Rees et al., 1997) 

 
 This graph appears informative of the hypothesis under investigation, but it is not: the 
presence of the predicted interaction was a pre-requisite for data to be included in this graph.  Of 
all voxels that could be processing motion, only the one with the most significant interaction is 
displayed.  So, of course an interaction will be apparent in this plot.  It is, however, the case that 
this graph may be used to evaluate other, orthogonal aspects of the data.  We will discuss this in 
section 2.2.3.  For now, it is important to note that the average activity of voxels that were 
selected under some hypothesis is not diagnostic of the hypothesis, and should never be used as 
implicit evidence. 

This graph of signal change in the peak voxel selected for an interaction is also an 
excellent example of how non-independence introduces bias.  The hypothesis used for selection 
was that the difference (Motion - No Motion) will be greater under low load than high load.  
Imagine that the ground-truth about V5 (the area being tested in this experiment) is what is 
predicted by Lavie’s theory: under low load, motion produces greater activation than no motion, 
but under high load, there is no difference.  The measured activity in each voxel will be 
perturbed by noise around this ground truth.  If we then select only the voxels for which 
LowLoad(Motion-NoMotion) is much greater than HighLoad(Motion-NoMotion), we will be 
preferentially selecting voxels in which the noise that corrupts ground truth causes Motion-
NoMotion to be negative under high load conditions (as this will maximize the interaction).  This 
is precisely what we see in the data that were selected by this interaction test – under high-load, 
MT, a motion-processing region, is more active under the No Motion condition than the Motion 
condition.  This otherwise unintelligible result perfectly illustrates the effects of noise selection, 
that is, how the selection criteria favor certain patterns of noise over others.  

 
2.2.2 Selecting an effect 

Although plotting data that were chosen because they contained an interaction provides 
an excellent example of noise selection, it is much more common for main effects to be selected. 
Take for instance a recent article by (Thompson, Hardee, Panayiotou, Crewther, & Puce, 2007). 



In this study the researchers sought to identify regions that respond to perceived hand motion, 
and perceived face motion.  Subjects were scanned as they viewed blocks of fixation (baseline), 
hand motion, face motion, and radial grating motion.  Regions of interest (ROIs) were selected 
based on the following two criteria: (a) the average response in these regions to stimulus blocks 
was greater than the average response to baseline (fixation) blocks; and (b) these regions showed 
greater activation for hand or face motion compared to radial grating motion.  Figure 2 (p. 969) 
shows the ROIs that were selected as exhibiting face-motion preference, hand-motion 
preference, and both hand and face motion preference.  Below each ROI, the authors plot the 
percent signal change within that ROI for each of the three conditions (face, hand, and radial 
motion) relative to fixation.   

 
Figure 4. The percent signal change in areas selected for each of those percent signal change 

profiles.  Despite the error bars, these bar-graphs do not contain any information about the main 
claims of the paper.  Reprinted from (Thompson et al., 2007). 

 
What exactly could one learn from these plots and what aspects of the plots can not be 

trusted?  We are guaranteed to find that the percent signal change will be greater than zero (since 
regions would be selected only if the average response to the three motion conditions was greater 
than fixation).  For regions that were selected for responding more to face than radial motion, we 
are sure to find such an effect.  For regions that were selected for responding more to hand rather 
than radial motion, we are sure to find that as well. We are also guaranteed to find that these 
differences will be greater than the noise fluctuations in the data – such is the definition of 
statistical significance. Furthermore, the magnitude of the guaranteed effects cannot be trusted, 
because the selection process is also likely to select voxels with random noise favoring these 
effects.  



Nevertheless, this practice is very common – it is rare to find an issue of a neuroimaging 
journal in which none of the articles have plotted non-independent data.  Indeed, even one of the 
authors of this chapter has done this previously (Culham et al., 1998; Kanwisher, McDermott, & 
Chun, 1997).  This leaves us with several questions: What can plots of this sort contribute?  Just 
how damaging is the practice of plotting the data that were used for selection?  
  
2.2.3 What information may one glean from non-independent data? 
 In general, plotting non-independent data is misleading, because the selection criteria 
conflate any effects that may be present in the data from those effects that could be produced by 
selecting noise with particular characteristics.  On the other hand, plots of non-independent data 
sometimes contain useful information orthogonal to the selection criteria. When data are selected 
for an interaction, non-independent plots of the data reveal which of many possible forms the 
interaction takes.  In the case of selected main effects, readers may be able to compare the 
activations to baseline and assess selectivity.  In either case, there may be valuable, independent 
and orthogonal information that could be gleaned from the time-courses.  In short, there is often 
information lurking in graphs of non-independent data; however, it is usually not the information 
that the authors of such graphs draw readers’ attention to.  Thus, we are not arguing against 
displaying graphs that contain redundant (and perhaps biased) information, we are arguing 
against the implicit use of these graphs to convince readers by use of non-independent data. 
 
2.2.4 How damaging are plots of non-independent data? 

In cases where no inferential statistics are computed on the selected data2, conclusions are 
explicitly based on the voxel selection process itself, and not the displayed ROI analyses.  In 
such cases plotting these graphs is a problem only because they may mislead readers.  The reader 
is presented with graphs that appear informative (in so far as they show data exhibiting effects 
that the paper is describing), but the graphs are not informative of the primary claims, and are 
distorted by selection bias. Authors that show such graphs must usually recognize that it would 
be inappropriate to draw explicit conclusions from statistical tests on these data (as these tests are 
less common), but the graphs are presented regardless. Unfortunately, the non-independence of 
these graphs is usually not explicitly noted, and often not noticed, so the reader is often not 
warned that the graphs should carry little inferential weight.   

Just as in the case of testing for a selected effect, a particularly troublesome situation 
arises when voxels are selected at a low threshold – a threshold too low to effectively correct for 
multiple comparisons.  In these cases, the displayed graphs falsely bolster the reader’s 
confidence in the reliability of the effects, while in such cases, the reader’s confidence in the 
result should be based only on the threshold used to initially select the voxels.  

Because the most damaging consequence of plotting non-independent data is misled 
readers, a good antidote is full disclosure.  Authors should explicitly state whether the plot 
corresponds to the same (non-independent) data used for the selection criteria, or different, 
independent data.  Furthermore, if non-independent data are plotted, this should be accompanied 
by a description of which effects are biased and statistically expected due to the selection criteria.  
Ideally, any such graph would also feature an illustration of these biases (Baker, Simmons, 
Bellgowan, & Kriegeskorte, 2007). 
 

                                                 
2 Although see page 970 of Thompson et al., there is an implication that statistical tests were run on the extracted 
signal change. The presumed inferential weight of the plots is further suggested by the presence of error bars. 



2.3 Reporting correlations in voxels selected for correlations 
 
 A recent methodological trend, especially in social cognitive neuroscience, is the 
correlation of evoked activity with some traits of the individual.  One such example is 
(Eisenberger, Lieberman, & Williams, 2003).  In this study, participants played ‘Cyberball’, a 
video game in which subjects tossed a virtual ball with other agents in the game.  Subjects were 
told that the agents were other human participants, while in reality they were simulated computer 
characters.  On some runs subjects watched the other agents play the game, in another run 
subjects watched the other agents play the game while apparently intentionally excluding the 
subject.  The researchers identified regions in the anterior cingulated cortex (ACC) that were 
more active during trials when subjects were excluded from the game than trials when they were 
included (excluded-included contrast).  Within this contrast, the researchers then found brain 
regions where activity was correlated with ratings of distress elicited from each subject after the 
experiment.  The authors report two sets of coordinates in the ACC that correspond to a positive 
correlation between BOLD and self-reported distress.  They also report impressively high 
correlations at each of these coordinates: r=0.88 and 0.75.   
 What do these correlations mean?  They are the correlations of voxels selected for having 
correlations significant at the p<0.0053 level.  The significance of a correlation may be assessed 
by a t-test with a t-value of r^2/(1-r^2)/N-2. Given that there were 13 subjects in the experiment, 
we can compute the minimum correlation necessary for voxels to be selected.  This minimum 
possible r value is 0.74, so we know we will see an average r value greater than 0.7 in any voxels 
that were selected, even if the null-hypothesis holds true for those voxels (these would be voxels 
selected due to noise that aligned with the selection criteria). 
 Surely, you might suppose, since some number of voxels were above the critical 
correlation values necessary to reach significance, activity in the ACC must truly be correlated 
with self assessed distress.  We do not aim to question this finding – if the assumptions of the 
minimum cluster size method for multiple-comparison correction were met in the multi-voxel 
analysis undertaken in this paper, there may indeed be a true correlation.  We object, however, to 
the prominent display of average correlations from voxels that were selected for having 
significant correlations.   

Imagine that ACC activity is correlated with subjective distress.  This means that all 
voxels in the ACC (as identified by the excluded-included contrast) have some greater than zero 
correlation with subjective distress.  The correlations in each of these voxels will be perturbed by 
noise: by chance, some voxels will cease to have detectable correlations, while other voxels, by 
chance, will become more correlated.  All of the voxels in the ACC will follow some distribution 
of correlation values.  An independent analysis of these correlations could have averaged the 
correlations across all voxels in the ACC, and computed statistics on this quantity.  However, 
instead, the authors found regions within the ACC that were significantly correlate with 
subjective distress. Thus, from the distribution of all voxels and their respective correlations, the 
authors chose only those that had correlations greater than 0.7, then averaged them.  Such a 
procedure is guaranteed to find an average correlation greater than 0.7, even if the true 

                                                 
3 This was the threshold used in conjunction with a minimum cluster-size constraint.  The assumptions and validity 
of this particular correction for multiple comparisons may be disputed, but here we are concerned with how the 
selection criteria this method imposes on the data affects the subsequent analyses. 
4 If one computes the inverse of the Fisher Z-transform method for ascertaining significance of a correlation, the 
numbers work out even less favorably. 



correlation between evoked ACC activity and subjective distress is substantially lower.  Again, if 
the multiple comparisons selection was done appropriately, it is still likely that the ACC does 
contain such a correlation; however, the magnitudes of the average correlations the authors 
report are spuriously elevated. 

We have dwelt on this example because, unlike the post-hoc displays of signal change 
described previously, biased post-hoc displays of correlations seem to be substantially more 
convincing to audiences and readers, and appear to appeal to high profile journals (Dapretto et 
al., 2006; Kennedy, Redcay, & Courchesne, 2006; Mobbs, Hagan, Azim, Menon, & Reiss, 2005; 
Yoo, Hu, Gujar, Jolesz, & Walker, 2007). Since biased analyses and results such as these have a 
greater impact on audiences, it is more important to be aware of them, and to curb their use.  
 
2.4 Multivariate correlations 
 
 Another newly popular class of analyses are even more conducive to hidden non-
independence errors: multivariate analyses.  In these analyses (e.g., (Haxby et al., 2001)), 
researchers assess the multivariate pattern of voxel activation for any given condition. That is, to 
what extent is the pattern of increased and decreased BOLD signal across voxels in a particular 
region (a measure independent of the mean signal in that region) diagnostic of a particular 
condition?  In Haxby’s analysis, this was measured as the correlation of voxel activations across 
two sets of identical conditions compared to two sets of different conditions.  When correlations 
between identical conditions are greater than correlations between different conditions those 
conditions may be distinguished by the pattern.  This intuition has been extended into more 
elaborate machine learning methods that explicitly classify conditions based on the evoked 
patterns of activation. 
 Just as in standard analyses, researchers typically select some subset of voxels on which 
to perform a multivariate analysis (to characterize a particular cortical region, gain power or 
remove uninformative voxels).  Unfortunately, in the original Haxby paper, the method used to 
select voxels was not fully independent from the subsequent analysis.  While this is not likely to 
have strongly affected the main results of that study, it is worth explaining the problem as an 
illustrative case. 
 Haxby et al. selected voxels based on significance in an omnibus ANOVA across all 
stimulus conditions, which was computed on all data (to be split into odd and even runs for the 
pattern analysis later).  An omnibus ANOVA is significant insofar as one or more of the group 
means is different from the others.  Effectively, this selection criterion biases the final 
correlations one might obtain: voxels will be selected if their mean activation is significantly 
different in one condition than another (and this would have to be reliable, across both datasets).  
If one condition is reliably different from others within this voxel, this means that activation 
across split halves will be better correlated for identical than different conditions. 

Of course, the strength of this bias depends on how much the conditions differ from 
fixation. In the Haxby et al. paper, most of the reported effect is likely driven by true underlying 
effects.  However, the fact that the analysis  could be biased is a nontrivial problem that can 
produce spurious results (Simmons et al., 2006). 
 
2.5 Summary 
 



 We have described four classes of analysis that are tainted by the non-independence 
error.  In some of the case studies, the error undermined the main claims of the paper, in other 
cases, it simply resulted in the display of redundant information. Our goal in this section was not 
to single out these particular papers – many other examples are available.  Our goal was to 
illustrate the many faces of the non-independence error in fMRI research. We hope that in 
describing these cases, we have provided a broad enough spectrum such that readers may be able 
to generalize to new instances, and spot these errors when planning experiments, writing papers, 
and reviewing for journals.  
 
3. Why the non-independence error is prevalent in fMRI 
 
 The non-independence error we have outlined is not novel and has been committed in 
many other disciplines; however, it seems to be especially prevalent in fMRI.  For example, five 
of the eight fMRI studies in a recent special issue on “Social Cognitive Neuroscience” included 
non-independent analyses (Neuroimage, 2005, 38; (den Ouden, Frith, Frith, & Blakemore, 2005; 
Gillath, Bunge, Shaver, Wendelken, & Mikulincer, 2005; Harris, Todorov, & Fiske, 2005; 
Mitchell, Banaji, & Macrae, 2005; Sander et al., 2005)).  There are three circumstances of 
neuroimaging that put the field at high risk. First, fMRI researchers work with massively 
multidimensional datasets, in which only a subset of dimensions contain information that may be 
relevant to the experiment. This situation encourages researchers to select some subset of their 
data for analysis, thus to use non-independent selection criteria.  Second, fMRI analyses are 
complicated, involving many steps and transformations before the final statistics may be 
computed, resulting in confusion (and thus a diminished ability to identify such errors) not only 
on the part of the researchers themselves, but also on the part of reviewers. Finally, fMRI 
research usually asks binary qualitative, not quantitative, questions – data are presented as binary 
values (significant or not significant) further veiling any biases that may lie behind the analysis. 
 
3.1 fMRI data are massively multidimensional. 

 
A typical ‘low resolution’ scan on a low-field magnet will produce an imaging volume 

every 3 seconds. The imaging volume will contain 20 3mm slices, each of which is divided into 
a 64x64 (3mm x 3mm) grid, producing 81,920 measurements every 3 seconds.  A ‘high 
resolution’ scan on state-of-the-art scanners might produce an image volume every 2 seconds, 
and this volume may contain 30 1.5mm slices, each of which is divided into a 128x128 (1mm x 
1mm) grid, producing a staggering 491,520 measurements every 2 seconds.  Thus, a single scan 
session could easily produce more than 1 billion measurements, and often multiple sessions are 
combined in the analysis. 

Statisticians are not known to complain about an overabundance of data, and the problem 
here is not the raw number of measurements, but rather the fact that usually only a small 
proportion of the measurements are informative about the experimental question.  In a fortuitous 
and skillfully executed experiment, one may find 5% of voxels to be of experimental interest.  
This poses a difficult multiple comparisons problem for ‘whole-brain’ analyses.  In this chapter, 
we have only indirectly discussed this problem, because the applications (and misapplications) of 
the many technical methods used to correct for multiple-comparisons are a considerable topic on 
their own.  Instead, we have discussed a consequence of this problem: selection. 



When experimenters ask subtler questions than ‘which area lights up under condition 
X?’, they invariably select some subset of the enormous fMRI dataset to avoid correcting for 
multiple comparisons and losing statistical power. Therefore, most modern fMRI analyses 
proceed in two stages: (1) identifying a subset of voxels that play an interesting role in the 
experiment (a region of interest -- ROI)5, then (2) assessing some additional measure in those 
voxels.  Obviously, the criteria used for selection in step 1 are a condition one puts on the 
measure in step 2 – in this chapter, we have discussed whether the conditions from step 1 satisfy 
the assumption of independence necessary for the statistical analyses in step 2. 

The non-independence error arises from the relationship between the ROI selection 
method and the statistical test.  If the conditions imposed by the selection process alter the 
distribution assumed by the null hypothesis of the subsequent statistical test, then this secondary 
test is non-independent. Naturally, this will mean that some combinations of ROI selection 
methods and analyses do satisfy the independence assumption (and are hence legitimate), and 
different combinations of the same techniques may not (and are not).  

Selecting small subsets of large datasets is an integral part of most fMRI analyses to a 
much greater degree than in behavioral studies.  Since ‘selection’ (biased or not) is more 
common in fMRI, then, even if selection biases are inadvertently introduced equally often in 
analyses in other fields, we would expect to see a greater proportion of reported results tinged by 
selection bias in fMRI. 
 
3.2 fMRI analyses are complicated (both to do and to review). 
 
 There are many steps between the acquisition of fMRI data and the reported results.  
Before the final analysis, a staggering variety of pre-processing techniques are applied to the 
data.  The four-dimensional image (volume by time) obtained from the scanner may be motion-
corrected, co-registered, transformed to match a prototypical brain, resampled, detrended, 
normalized, smoothed, trimmed (temporally or spatially), or any subset of these, with only a few 
constraints on the order in which these are done.  Furthermore, each of these steps can be done in 
a number of different ways, each with many free parameters that experimenters set, often 
arbitrarily.  The decisions an experimenter makes about preprocessing are less likely to be 
crucial for the issue of non-independence6. However, these steps play an important role in the 
final results, and must be specified when describing an experiment.  

After pre-processing, the main analysis begins.  In a standard analysis sequence, 
experimenters define temporal regressors based on one or more aspects of the experiment 
sequence, choose a hemodynamic response function, and compute the regression parameters that 
connect the BOLD signal to these regressors in each voxel.  This is a whole brain analysis (step 1 
described in section 3.1), and it is usually subjected to one of a number of methods to correct for 
multiple comparisons (False detection rates, minimum cluster size thresholds, Bonferroni, etc.).  
Because it is difficult to gain enough power for a fully corrected whole brain analysis, such 
analyses are rarely done in isolation.  Instead, in conjunction with anatomical assumptions, the 

                                                 
5 Note that defining a region of interest need not be done with a priori functional localizers (for a discussion of this 
controversy, see (Friston, Rotshtein, Geng, Sterzer, & Henson, 2006; Saxe, Brett, & Kanwisher, 2006)) – this may 
be done with orthogonal contrasts from the present experimental manipulation, or even anatomy. 
6 However, an often ignored fact is the key role played by voxel size and smoothing parameters in the assumptions 
behind minimum cluster-size methods for multiple-comparisons correction – thus, smoothing, at least, alters the 
conditions imposed by the ROI selection analysis. 



whole brain analysis is often the first step defining a region of interest in which more fine-
grained, technically sophisticated, and interesting analyses may be carried out (step 2 in section 
3.1).  

The analyses within selected ROIs may include exploration of timecourses, voxel-wise 
correlations, classification using support vector machines or other machine learning methods, 
across-subject correlations, etc.  Any one of these analyses requires crucial decisions that 
determine the soundness of the conclusions.  Importantly, it is the interaction between a few of 
these decisions that determines whether or not a statistical analysis is tarnished by non-
independent selection criteria. 

The complexity of the fMRI analysis has two consequences, each of which can only 
increase the likelihood that experimenters will inadvertently use non-independent selection 
criteria. First, with so many potential variables, it is difficult to keep track of possible 
interactions that could compromise independence.  Second, and perhaps more important, to fully 
specify the analysis in a publication requires quite a lot of text – text that high profile journals 
prefer not to use on Methods sections.   So editors (and publication policies) encourage authors 
to exclude details of the analysis on the assumption that they may be trivial or unimportant. The 
result is a hamstrung review process in which reviewers are not given the full information 
necessary to evaluate an analysis.  The complexity of fMRI analyses is not inherently bad; 
however, the complexity offers opportunities for researchers to make mistakes and diminishes 
opportunities for reviewers to spot the errors.  
 
3.3 fMRI analyses are usually qualitative 
 
 The qualitative nature of the questions asked and results obtained in fMRI also 
contributes to the prevalence of the non-independence error. An area is said to respond 
differently, or not; to contain some information, or not; to predict behavior, or not. Of course, the 
brain states underlying the effects observed are quantitatively different, and we draw arbitrary 
lines to produce qualitative answers.  Why does this matter?   

As our examples have shown, the non-independence error in fMRI analyses usually does 
not guarantee a particular result. Instead, the results are biased to favor a particular outcome.  
The extent to which results are biased is usually unclear.  Since results are displayed as binary 
outcomes (significant or not), it is substantially more difficult to evaluate whether the 
significance of an effect is due to the bias.  One might ask what proportion of an effect is 
suspect, but such a question arises less naturally for results with binary outcomes.  By drawing 
hard thresholds, the practice of significance testing further muddies the results of an analysis, and 
complicates evaluation. 
 
3.4 Summary 
 
 fMRI is not the only field to contain biased results and non-independent selection criteria, 
and it is also not the only field to suffer from the conditions previously described.  Gene-
sequencing involves massively multidimensional data. Electrophysiology experiments require 
complicated time-series analysis.  Most behavioral experiments in psychology evaluate results 
via a statistical test with a binary outcome.  Although these factors are shared by other fields (and 
result in non-independence errors in those fields), fMRI data and analyses are subject to all of 
these factors, thus increasing the odds that any one analysis may be tainted. 



 
4. Heuristics for avoiding non-independence errors 
 
 How might one avoid committing variants of the non-independence error when 
conducting fMRI analyses?  For independence of selection and analysis, we require that selection 
criteria, if applied to a distribution from the null hypothesis, will produce another distribution 
drawn from the null hypothesis.  Three classes of solutions seem intuitively reasonable.  The best 
option is to safeguard against non-independence by using different datasets for the selection and 
analysis. Another possibility is to determine a priori whether the analysis and selection criteria 
are independent.  Rather than deducing this independence analytically, a third option is to assess 
such independence by simulation 

Each of these strategies has advantages and disadvantages and none can be guaranteed to 
be effective.  Although we advocate the use of independent data, it is important to note that even 
then, some degree of the other two approaches may be required of the researcher. 
 
4.1 Ensuring independence by separating datasets. 

 
Perhaps the most intuitive precaution against non-independent selection criteria and 

analysis is the use of completely different data sets.  Voxel selection would be based on a subset 
of the data (specific trials, blocks, runs, experiment halves, etc.) while the analysis would be 
performed on the remaining data.  If the data are truly independent, selection bias cannot be 
introduced when selection and analyses are executed on different subsets of the data. 

However, certain divisions of the data and physiological factors may render superficially 
independent data actually non-independent.  Imagine that we decide to separate our data into 
odd- and even-numbered columns of the fMRI image.  We will select a subset of even numbered 
columns for further analysis based on what would be otherwise a non-independent criterion 
imposed on paired odd-numbered voxels.  The data-set used to define a region of interest and 
that used for the subsequent analysis are nominally independent.  However, in this case the data 
are not really independent due to the spatial correlation intrinsic to fMRI (as should be expected 
from either explicit spatial smoothing, or the correlation induced by vasculature, blood flow, and 
MR image construction).  

One could imagine a different example, in which alternating image acquisitions (TRs) are 
used to select voxels, and the interceding images are used for the subsequent analysis.  Explicit 
temporal smoothing of the data is quite rare in fMRI, so non-independence is not likely to be 
introduced from pre-processing.  However, again physiology introduces bias: due to the temporal 
delay and extent of the hemodynamic response function, temporally contiguous images are far 
from independent.7 

These two examples demonstrate that the use of distinct datasets for selection and test 
does not guarantee independence.  There are myriad ways in which data may be rendered more 
or less independent by preprocessing, non-random experimental sequence, etc.  
 
4.2 Evaluating independence by analytical deduction. 

 

                                                 
7 See (Carlson, Schrater, & He, 2003) for an example of such an analysis, as well as some discussion about the 
magnitude of the presumed bias. 



One might attempt to deduce, a priori, whether the conditions one imposes on the sample 
of voxels selected for further analysis are orthogonal to the analysis itself.  Since analytical 
solutions to this problem will often be intractable, and assumptions about the joint probability 
distribution of all of the data will be unjustified, we do not consider the possibility of attempting 
to derive independence via pure mathematics.  That said, the only method we know for 
determining independence a priori is to try very hard to find reasons why the selection criteria 
might not meet this criterion, and fail to find any.  It seems perilous to advocate such a subjective 
use of statistics (after all, some people may not find failures of orthogonality where others 
succeed).  Indeed, the cases we have described, more likely than not, reflect a failure to come up 
with a reason why the orthogonality condition is not met.  
 
4.3 Assessing independence by numerical simulation.  

 
Rather than producing arm-chair arguments about the independence of selection from the 

subsequent analysis, one may run numerical simulations to measure mutual information between 
the conditions and the null hypothesis distribution (described in section 1.4).  This approach 
occurs in the literature most frequently as a post hoc illustration of a failure to meet the non-
independence criterion (Baker, Hutchison, & Kanwisher, 2007; Simmons et al., 2006).  Such 
post hoc refutations of biased analyses are useful in weeding out spurious results from the 
literature and advancing science. However, we hope that authors will take it upon themselves to 
use such approaches to determine the soundness of their own analyses before they are published.  
Permutation tests are one particularly effective method when analyses are particularly 
complicated.  Researchers can randomly permute the condition labels for their data and 
undertake the same analysis.  If this is done enough times, it is possible to empirically estimate 
the probability of the outcome observed with the true data labels.  Unlike simpler (and faster) 
white-noise simulations, this permutation analysis includes the non-gaussian structure of the 
BOLD signal noise, and is thus more accurate. 
 
4.4 Summary 
 
 All in all, we would advocate using one dataset for voxel selection and a different, 
independent dataset for subsequent analysis to decrease the likelihood of the non-independence 
error.  However, due to spatiotemporal correlations in fMRI data, even in these cases, 
independence is not guaranteed, and researchers ought to use caution to make sure the two 
datasets are in fact independent. 
 It is worth noting that we are explicitly advocating the use of independent data, not 
necessarily alternative stimulus sequences for use in localizers.  This advice is orthogonal to the 
“ROI debate” (Friston, Rotshtein, Geng, Sterzer, & Henson, 2006; Saxe, Brett, & Kanwisher, 
2006) about the role, and meaning, of functionally defined regions.  However, we do depart from 
Friston et al. in advising that independent data be used.  Friston advocated the use of a ‘factorial 
design’ such that voxel selection and a subsequent analysis are achieved with the same dataset 
(with the condition that voxel selection and the analysis are orthogonal).  In principle, if these 
analyses are truly orthogonal then they are independent, and we agree.  Unfortunately, 
orthogonality of selection methods and analyses seems to be often wrongly assumed8.  While it is 

                                                 
8 Consider the case of selecting voxels based on two main effects and testing for the interaction.  Although the two 
main effects and the interaction appear orthogonal, they are not.  If we select random noise in which two main 



more economical to use one dataset for selection and analysis, it seems much safer to use 
independent datasets (indeed, if spurious results are published due to failures of orthogonality, 
the entire research enterprise ends up substantially more costly).  
 
5. Closing 
 

We have described a common error in fMRI research: the use of non-independent 
selection criteria and statistical analyses.  This error takes many forms, from seemingly 
innocuous graphs that merely illustrate the selection criteria rather than contribute additional 
information, to serious errors where significant results may be produced from pure noise.  In its 
many forms, this error is undermining cognitive neuroscience.  Public broadcast of tainted 
experiments jeopardizes the reputation of cognitive neuroscience.  Acceptance of spurious results 
wastes researchers’ time and government funds while people chase unsubstantiated claims.  
Publication of faulty methods spreads the error to new scientists. We hope that this chapter finds 
itself in the hands of the authors, reviewers, editors, and readers of cognitive neuroscience 
research and arms them with the formalism and intuition necessary to curtail the use of invalid, 
non-independent analyses. 
 

                                                                                                                                                             
effects are significant ([A1+A2] > [B1+B2], and [A1+B1] > [A2+B2]), the mutual constraint of both main effects 
will preferentially select positive noise in the A1 cell and negative noise in the B2 cell, thus biasing results toward 
an interaction. 



Appendix: Formal description of the non-independence error 
 What exactly is the error that leads to the absurd conclusion in the card example from the 
introduction?  Here we describe it in three additional theoretical frameworks: propositional logic, 
probability theory, and information theory. 

 
1.1 Propositional Logic 
 
 In formal logic, the non-independence error goes under many names: petitio principii, 
“begging the question”, or “circular reasoning”9.  A distilled example of begging the question 
will read as follows: 

p implies p; 
suppose p; 
therefore p. 

In practice, of course, the fallacy is usually cloaked by many logical steps and obfuscatory 
wording, such that the assumption of p is rarely obvious.  In the card (or evolution) example we 
start with the outcome (the particular arrangement of cards or genes: “suppose p”), and then 
marvel that we have found the same outcome (“therefore p”).  Thus, these cases exemplify 
‘begging the question’: a condition when the conclusion is implicitly or explicitly assumed in 
one of the premises. 

In the introduction, and throughout the paper, we concern ourselves with statistics and 
probability, so this fallacy is best fleshed out in terms of probability theory and statistics. 
However, the essence of the problem is still simple question begging: evaluating the truth of a 
statement which has been presupposed. 
 
1.2 Probability Theory 

 
We can also analyze begging the question in a probabilistic framework by evaluating the 

implicit and explicit assumptions in the deck of cards example.  It is true that a fully shuffled 
deck of cards has one of 52 factorial possible arrangements.  It is also true that a deck of cards 
randomly sampled from a distribution over all possible shufflings will be unlikely to have any 
one particular arrangement (a probability of 1/52 factorial). So if we were to choose a random 
arrangement and then shuffle a deck of cards until we found that arrangement, we would 
probably find ourselves busy for a long time. 

However, we are not evaluating the prior probability of a random deck of cards having a 
random arrangement.  Instead, we are evaluating the probability that a deck of cards will have a 
specific order: the order we just observed the deck of cards to have.  Thus, the probability 
distribution we should be evaluating is not the prior probability P(X=x), but the conditional 
probability P(X=x | X=x). Of course, this probability is 1.   

One of an enormous number of outcomes was possible, but if we condition on the 
observed outcome, that particular outcome is guaranteed.  In the formalism of probability this 
difference between prior and conditional probabilities may be described as a violated assumption 
of independence: P(X) is not equal to P(X|C), where C is our condition.   

The deck of cards case is an extreme example where the disparity between the assumed 
prior probability and the relevant conditional probability is particularly large – the prior 

                                                 
9 In our discussion, we consider these three interchangeable, but some differentiate “begging the question” as an 
error that occurs within one argument, while “circular reasoning” involves two mutually dependent arguments. 



probability is impossibly low and conditional probability is 1.  These probabilities make the 
scenario easy to describe in terms of predicate logic, but the same violation of independence 
arises if the probabilities are not 1 and (near) 0.  
 
1.3 Information Theory 

 
Finally, we can formalize the non-independence error in the framework of information 

theory to appeal to another intuition about a desirable quality of statistical analyses: how much 
information they assume of, or add to, the data.  If we specify the null hypothesis of our 
statistical test as P(X) and the selection criteria as imposing a condition on the data, producing 
P(X|C), then we can derive how much information the selection criteria (condition C) give us 
about X.   

The Shannon entropy of a random variable reflects the uncertainty present in the 
probability distribution of that random variable.   

2( ) ( ) log ( )H X P X P X= −∑  

Intuitively, this number expresses how many bits would be necessary to encode a sample from 
that distribution, thus expressing uncertainty in terms of information.  

With this measure we can describe how much information (H) a selection condition gives 
us about a random variable by evaluating how much less uncertainty there is in the conditional 
distribution compared to the prior distribution.  This is expressed as mutual information: I(X;C) 
= H(X) – H(X|C).   

To return to our example of a deck of cards, we can assess how many bits of information 
it takes to encode the order of a random deck of cards: 

52!
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And we can calculate the amount of information necessary to encode a deck of cards sampled 
from the distribution of all decks of cards which we have observed to have a particular order 
(index 1):  
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This means that given the selection criterion, we get no additional information.   
The mutual information is thus 226 bits (226-0). This is an enormous number, reflecting 

the huge disparity between P(X) and P(X|C).  It is also useful to express the information gained 
from our selection criteria as a proportion of all the information one could have gained:  

I(X;C)/H(X) = 226/226=1.   
In this extreme example, our selection criteria have given us all the information available about a 
sample from the prior distribution.  Our sampling process has thus fully constrained our data by 
giving us full information about it. Obtaining full information about the outcome from the 
starting conditions is identical to begging the question in propositional logic: starting with full 
information about the outcome means that the outcome was presupposed. 
 
1.5 Summary 
 
 We formalized the non-independence error from the introduction in terms of 
propositional logic, probability theory, statistics (in Section 1 of the main text), and information 



theory.  This allowed us to describe violations of assumed independence in probability theory as 
a generalized case of ‘begging the question’ in propositional logic.  Similarly, the error of 
‘selection bias’ in classical statistics is formally equivalent to a violation of independence in 
probability theory.  We then used information theory to quantify violations of independence as 
the mutual information between the measurement and the selection criterion.  Finally, by taking 
the limiting case wherein the mutual information between the measure and the selection criterion 
is 100% of the total information available in the measure, we again produce the case of explicitly 
begging the question in propositional logic.  By describing this error in different frameworks we 
hope that readers can apply their intuitions from any of these domains to actual fMRI examples. 

We use the term ‘non-independence error’ throughout this paper in favor of ‘begging the 
question’ to convey the idea that the selection criteria need not be so restrictive as to guarantee 
the outcome (as is the case in propositional logic).  Instead, if the selection criteria applied to a 
null hypothesis distribution alter the distribution in any way, they are introducing some degree of 
sampling bias, providing some amount of information about the outcome, and thus will produce 
biased results due to the violation of independence.  
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