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You sit with a deck of fifty-two cards in front gbu, face down.

You flip the first card: a 10 of diamonds.

What are the odds of that? One out of fifty-two.

Remarkable.

You flip the next card: a queen of hearts.

Unbelievable! The odds of this sequence were 1/681 (less than 1 in 2000).

You continue flipping cards: a 4 of clubs followlsen an 8 of diamonds, then an 8 of
hearts. Once you have flipped them all over yotestadisbelief; the particular sequence of
cards you just observed happens one out of evelr§f 8(52 factorial) times. Every person in
the world could shuffle a deck of cards and flipotigh it every minute of their entire lives, and
even then, the odds of the world seeing your paeicsequence of cards will be less than 2110

Extraordinary.

Something is very wrong here. The conclusion suath Yet similar logic is prevalent in
both lay and scientific reasoning. Some have waednts of this argument to account for the
origins of humans on earth: Proteins could be rarigshuffled for eons before humans
emerged in all their glory. Since the likelihoodnofman existence by pure chance is so slim,
surely intelligent design is the most parsimoniexpglanation. The card example was introduced
to illustrate just how preposterous this objectimevolution is. Unfortunately, this logical
fallacy, which we will call here the “non-indepemae” error, is not restricted to arguments from
the scientifically unsophisticated. It is prevaleantognitive neuroscience as well. For instance,
of the eight papers in a recent special issusenfoimage, five contained variants of this erfor
The prevalence of this error is troubling becatisam produce apparently significant effects out
of pure noise (Figure 1). In this chapter we wékcribe the error formally, consider why it
appears to be more common in fMRI than other fighlsvide examples of this error in its most
common guises, and propose a few heuristics thgtraip lay people and scientists alike avoid
the error.

1. Formal description of the non-independence error

What exactly is the error that leads to the absorttlusion in the card example?

We can describe it in different theoretical framekgo statistical hypothesis testing,
propositional logic, probability theory, and infaatiron theory. These frameworks are rarely
discussed together, and never connected in thexdooitthe non-independence error. In this
section we describe the error in the context dfstteal hypothesis testing; in the Appendix we
consider it from the three other perspectives.

In statistical hypothesis testing, the most commomn-independence error is referred to
as ‘selection bias’. Essentially all statisticadaels used for hypothesis testing assume that the
sampling (selection) process is independent ofélevant measure. ‘Selection bias’ is a
violation of this independence assumption.

! (den Ouden, Frith, Frith, & Blakemore, 2005; GliaBunge, Shaver, Wendelken, & Mikulincer, 200%iriik,
Todorov, & Fiske, 2005; Mitchell, Banaji, & Macra2Q05; Sander et al., 2005)



If we assume that our deck of cards is a randonpkafrom the population of all decks
of cards, and we are evaluating the likelihood shath a deck of cards will have a particular
order specified in advance, we would be surprisdiht such a coincidence (indeed, p£10
However, our sampling process is very differentir €ample was not drawn from the population
of all random decks; instead, it was a sample fatidecks that we just observed to have the
particular order in question.

Statistics textbooks often describe “selection’bi@s simplistic examples of samples
that are not representative of the population (drgawing data exclusively from the NBA when
assessing the height of Americans). Obviouslyurchscases, the sample will clearly be different
from the population, and generalizations to theuteipon would be unjustified because they rely
on the assumption that the sampling process igartent of the measure. This classical form
of selection bias effectively conveys the intuitibiat a sample ought to be representative of the
population. However, ‘representative of the popafd is loosely defined. If we seek to test
whether a particular group (say, people who atertian 6’ 5”) somehow differs from the
population (say, have higher salaries), then,dhsan effect truly exists, the process of
‘selecting’ our population of interest necessagilyes us a sample different from the global
population, and there is nothing wrong in this case

We can define ‘selection bias’ more formally thaot representative of the population’
as follows: if our selection criteria are appliedat sample from the null hypothesis distribution,
the selected subset of that sample must also ampls from the null hypothesis. For example,
if we seek to evaluate whether a sociology classase difficult than a psychology class, we
might find a sample of students who have taken,leott evaluate the difference in this group’s
average score in the two classes. Let's imagiaettte average grades for sociology and
psychology are identical in this sample (thus, weeha sample from the null hypothesis
distribution -- there is no effect in the sampl&low imagine that from this sample, we choose
only students who had a better grade in sociolbgy psychology. This newly selected
subsample will have a higher average grade in kmgydhan psychology. So our analysis
procedure “(1) select all students with a highexdgrin sociology than psychology, (2) evaluate
average scores for sociology and psychology ingample” violates the requirement that the
selection criteria not alter the null hypotheswstiilbbution when applied to it. Thus our selection
is biased.

This definition of selection bias can be expresadgdrms of independence in probability
theory: if X is a random variable representing data, and P(X) reflects the probability
distribution assumed by the null hypothesis, theX|®) where C is the selection criteria, must
be equal to P(X), the null hypothesis distributidrhus, ‘selection bias’ is a violation of
independence between selection and the subsedatstical measure. Though this point may
appear obvious or trivial, it is crucial when catesing examples further removed from our
intuitions about circular reasoning or populatiepresentativeness.

2. Examples of the non-independenceerror in fMRI

The non-independence error arises in fMRI whenbaeiuof voxels is selected for a
subsequent analysis, but the null-hypothesis oattaysis is not independent of the selection
criteria used to choose the voxels in the firstpld ake the simplest practical case: If one
selects only voxels in which condition A producagreater signal change than condition B, and
then evaluates whether the signal change for dongitA and B differ in those voxels using the



same data, the second analysis is not indepentidre selection criteria. The outcome of this
non-independent second analysistasistically guaranteed and thusuninformative: A will be
greater than B, since this conclusion is presunyeithd® selection criterion (Culham, 2006).
Furthermore, this outcome will liéased: given that the data will be perturbed by randmise,
selecting voxels in which A>B preferentially sekegbxels in which the random noise is positive
for A and negative for B.

There are many ways for the combination of voxia®n and subsequent analysis to
produce a non-independence error and thus biasatls.eHowever, neither a particular selection
method nor a particular analysis method is aloffiecgnt for a violation of independence; the
violation results from the relationship betweentive. We will describe a few situations in
which the particular combination of selection metlamd subsequent analysis results in non-
independence. We start with the simplest cases;enthe error will be most obvious and go on
to more elaborate cases where non-independeneedsrito spot.

fMRI analyses that contain the non-independenaw efften jeopardize the conclusions
of the study for two reasons. First, the non-iredeent analysis will be statistically biased,
rendering its conclusions limited (at best) and plately invalid (at worst). Second, because
researchers often rely on the secondary analysisgport their claims, the initial analysis used
to select voxels is often not statistically soueddwse it is not properly corrected for multiple-
comparisons. Insufficient correction for multiglemparisons guarantees that some number of
voxels will pass the statistical threshold, aneédfno guarantee that they did so because of
some true underlying effect rather than fortuitoose. In cases when both a lax multiple-
comparisons correction is employed and a non-inuigra secondary test is used, all of the
conclusions of the experiment are questionabletathselection threshold may have only
selected random fluctuations, and a seemingly fsognit result may have been produced
literally out of noise (Figure 1, reprinted fromg&er, Hutchison, & Kanwisher, 2007)).
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Figure 1. A portion of the graph from Baker et20Q7). (d) A non-independent analysis and (e)
the suggested independent analysis were performedm-brain fMRI data (the nose). With a
non-independent analysis, even the nose may berstweontain face-, animal-, car-, and
sculpture- selective voxels. A sound, independeatyais does not produce such spurious
results.

2.1 Testing the signal change in voxels selected for signal change



The most damaging non-independence errors arise vdsearchers perform statistical
tests on non-independent data. In these casespthmdependent tests are explicitly used in
support of a conclusion, while the non-independeanéers the test biased, uninformative, and
invalid.

One such example can be seen in a recent pag@rhgnerfield and colleagues
(Summerfield et al., 2006). The authors sougldéntify category-specific predictive codes.
Subjects were exposed to “face set” blocks in whingy had to identify faces, and “house set”
blocks in which, for identical stimuli, subjectschim identify houses. In Figure 3a Summerfield
et al show the voxels that are more active for tateblocks than house set blocks (selected at a
low, uncorrected threshold: p<0.01). The authbesnttake the maximally significant voxel in
this contrast and run “post hoc ANOVAs”. The ANOVAre defined with two factors: one
factor is face set versus house set, and the sdaotut is stimulus (whicks independent of face
or house set because different stimuli types waualey distributed in the two set conditions).
The result of this ANOVA is a significant main effeof face set, with remarkably high F
statistics reported.

However, these ANOVAs were run only on the maxiynattive voxel in the face-set
minus house-set contrast, defined by the same ddtis. means that the voxels are guaranteed to
have a significant main effect of face-set gretttan house-set. The statistics reported for the
main effect in the ANOVA add no new informationdasho not bolster the authors’ claims in the
slightest. The ANOVA results were presupposedieyselection criteria.
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Fig. 3. dMFC and vMFC respond to face set. (A) Statistic parametric maps showing dMFC (top) and
vMFC (bottom) voxels responding to face set blocks = house set blocks, rendered at a statistical
threshold of # < 0.01. (B) Evoked hemodynamic responses, as in Fig. 2. Continuous lines are face
set trials; dashed lines are house set trials. (C) Post hoc ANOVAs at the peak voxel in each cluster
revealed a significant main effect of set [dMFC: 4, 56, 22; Fiz14 = 22.1, P < 0.0004; vMFC: -6, 56,
—16; Fiz14) = 20.4, P = 0.0005]. No effect of stimulus was observed at either dorsal (P = 0.70) or
ventral (P = 0.75) sites,



Figure 2. Voxels selected for having a main eftéctet (at a low, uncorrected threshold) are
reported as having a very significant main effédei. Reprinted from (Summerfield et al.,
2006).

These statistics are misleading. The ANOVA resailesused to bolster the whole brain
analysis that identified the regions. The whokahanalysis itself used a particularly low
threshold (p<0.01, without multiple comparisonsreotion), and as such could not stand on its
own. However, it effectively imposes a bias onghbsequent ANOVA. It is quite possible that
the results displayed in Figure 3 may be entirplyri®us: the results of the whole-brain analysis
may be due to chance (false positives), and thétsesf the ANOVA are guaranteed given the
selection criteria. This is exactly the sort oélysis that has motivated us to write this chapter:
the numbers reported (F values greater than 2@amonvincing, but they are meaningless.

Non-independent statistical tests appear in nunseother high-profile articles, e.g.
(Cantlon, Brannon, Carter, & Pelphrey, 2006; Gaiiector, Sayres, & Ress, 2006; Piazza, Pinel,
Le Bihan, & Dehaene, 2007; Ruff et al., 2006; T&dMarois, 2004). Although non-
independent tests are prevalent in the literatbeeconclusions of an entire paper do not always
depend on that biased analysis. However, in s@sesc(Summerfield et al., 2006) the
researchers may have produced their main signifresult out of nothing.

2.2 Plotting the signal change in voxels selected for signal change.

The most common, most simple, and most innocuwatamnce of non-independence
occurs when researchers simply plot (rather thsi) tee signal change in a set of voxels that
were selected based on that same signal change.

2.2.1 Sdecting an interaction

Take for instance a classic article about thecefiéload on motion processing (Rees,
Frith, & Lavie, 1997). In this study, the reseahsought to test Lavie’s load theory of
attention — that ignored stimuli will be processe@ greater degree under low-load compared to
high-load attended tasks. Subjects performed regtluifficult or an easy linguistic task at
fixation (to make load high or low, respectivelyhile an ignored dot field either moved or did
not move in the background. The authors prediatgckater difference in activation between
motion and no motion conditions during low load gared to high load. Thus, Rees et al. found
the peak voxel within some distance of area MT Inmclv this interaction was greatest, and
plotted the signal change in that voxel.



No motion

Figure 3. Time course from the peak voxel selefiiedn interaction is biased towards
implausible activation patterns (no motion > motioMT; under high load). Reprinted from
(Rees et al., 1997)

This graph appears informative of the hypothesdeu investigation, but it is not: the
presence of the predicted interaction was a preisdq for data to be included in this graph. Of
all voxels that could be processing motion, onky dime with the most significant interaction is
displayed. So, of course an interaction will bpapnt in this plot. It is, however, the case that
this graph may be used to evaluate other, orthdgmmeects of the data. We will discuss this in
section 2.2.3. For now, it is important to notattthe average activity of voxels that were
selected under some hypothesis is not diagnostitedfiypothesis, and should never be used as
implicit evidence.

This graph of signal change in the peak voxel setefor an interaction is also an
excellent example of how non-independence introslbbes. The hypothesis used for selection
was that the difference (Motion - No Motion) wik lgreater under low load than high load.
Imagine that the ground-truth about V5 (the araadgtested in this experiment) is what is
predicted by Lavie’s theory: under low load, motfmoeduces greater activation than no motion,
but under high load, there is no difference. Tteasured activity in each voxel will be
perturbed by noise around this ground truth. Iftihaen select only the voxels for which
LowLoad(Motion-NoMotion) is much greater than Highdd(Motion-NoMotion), we will be
preferentially selecting voxels in which the ndisat corrupts ground truth causes Motion-
NoMotion to benegative under high load conditions (as this will maximthe interaction). This
is precisely what we see in the data that werectsleby this interaction test — under high-load,
MT, a motion-processing region, is more active uride No Motion condition than the Motion
condition. This otherwise unintelligible resultrfeetly illustrates the effects of noise selection,
that is, how the selection criteria favor certaatterns of noise over others.

2.2.2 Sdecting an effect

Although plotting data that were chosen becausgdbatained an interaction provides
an excellent example of noise selection, it is mmciie common for main effects to be selected.
Take for instance a recent article by (Thompsongdek, Panayiotou, Crewther, & Puce, 2007).



In this study the researchers sought to identifyames that respond to perceived hand motion,
and perceived face motion. Subjects were scannéteg viewed blocks of fixation (baseline),
hand motion, face motion, and radial grating mati&®egions of interest (ROIs) were selected
based on the following two criteria: (a) the averagsponse in these regions to stimulus blocks
was greater than the average response to basketaiof) blocks; and (b) these regions showed
greater activation for hand or face motion compaoechdial grating motion. Figure 2 (p. 969)
shows the ROIs that were selected as exhibiting-faction preference, hand-motion
preference, and both hand and face motion prefereBelow each ROI, the authors plot the
percent signal change within that ROI for eachhefthree conditions (face, hand, and radial
motion) relative to fixation.

Figure 4. The percent signal change in areas seldéat each of those percent signal change
profiles. Despite the error bars, these bar-graghsot contain any information about the main
claims of the paper. Reprinted from (Thompson.e2807).

What exactly could one learn from these plots ahdtvaspects of the plots can not be
trusted? We are guaranteed to find that the pesignal change will be greater than zero (since
regions would be selected only if the average nespdo the three motion conditions was greater
than fixation). For regions that were selectedrésponding more to face than radial motion, we
are sure to find such an effect. For regionsweat selected for responding more to hand rather
than radial motion, we are sure to find that ad.Wée are also guaranteed to find that these
differences will be greater than the noise fluatuat in the data — such is the definition of
statistical significance. Furthermore, the magretofithe guaranteed effects cannot be trusted,
because the selection process is also likely trsgbxels with random noise favoring these
effects.



Nevertheless, this practice is very common —iarg to find an issue of a neuroimaging
journal in which none of the articles have plottesh-independent data. Indeed, even one of the
authors of this chapter has done this previousiyl{&n et al., 1998; Kanwisher, McDermott, &
Chun, 1997). This leaves us with several questifisat can plots of this sort contribute? Just
how damaging is the practice of plotting the dat tvere used for selection?

2.2.3 What information may one glean from non-independent data?

In general, plotting non-independent data is raidileg, because the selection criteria
conflate any effects that may be present in tha ffatn those effects that could be produced by
selecting noise with particular characteristics1 tBe other hand, plots of non-independent data
sometimes contain useful information orthogonahtselection criteria. When data are selected
for an interaction, non-independent plots of theadaveal which of many possible forms the
interaction takes. In the case of selected mdettd, readers may be able to compare the
activations to baseline and assess selectivitither case, there may be valuable, independent
and orthogonal information that could be gleanedfthe time-courses. In short, there is often
information lurking in graphs of non-independentad&owever, it is usuallyot the information
that the authors of such graphs draw readers’taiteto. Thus, we are not arguing against
displaying graphs that contain redundant (and perb#ased) information, we are arguing
against the implicit use of these graphs to corevie@aders by use of non-independent data.

2.2.4 How damaging are plots of non-independent data?

In cases where no inferential statistics are coegon the selected dataonclusions are
explicitly based on the voxel selection procesdfitand not the displayed ROI analyses. In
such cases plotting these graphs is a problembmdgsiuse they may mislead readers. The reader
is presented with graphs that appear informativedi far as they show data exhibiting effects
that the paper is describing), but the graphs arénformative of the primary claims, and are
distorted by selection bias. Authors that show syreiphs must usually recognize that it would
be inappropriate to draw explicit conclusions fretatistical tests on these data (as these tests are
less common), but the graphs are presented regardlafortunately, the non-independence of
these graphs is usually not explicitly noted, aftdronot noticed, so the reader is often not
warned that the graphs should carry little infeisnweight.

Just as in the case of testing for a selectedtetigmarticularly troublesome situation
arises when voxels are selected at a low threshalthreshold too low to effectively correct for
multiple comparisons. In these cases, the displgyaphs falsely bolster the reader’s
confidence in the reliability of the effects, whitesuch cases, the reader’s confidence in the
result should be based only on the threshold usedtially select the voxels.

Because the most damaging consequence of plotingniependent data is misled
readers, a good antidote is full disclosure. Argtshould explicitly state whether the plot
corresponds to the same (non-independent) datafois#te selection criteria, or different,
independent data. Furthermore, if non-independatat are plotted, this should be accompanied
by a description of which effects are biased aatisdically expected due to the selection criteria.
Ideally, any such graph would also feature antitaigon of these biases (Baker, Simmons,
Bellgowan, & Kriegeskorte, 2007).

2 Although see page 970 of Thompson et al., theam isnplication that statistical tests were rurttem extracted
signal change. The presumed inferential weighhefflots is further suggested by the presencerof bars.



2.3 Reporting correlations in voxels selected for correlations

A recent methodological trend, especially in sbctgnitive neuroscience, is the
correlation of evoked activity with some traitstbé individual. One such example is
(Eisenberger, Lieberman, & Williams, 2003). Inststudy, participants played ‘Cyberball’, a
video game in which subjects tossed a virtual wah other agents in the game. Subjects were
told that the agents were other human participavtide in reality they were simulated computer
characters. On some runs subjects watched the agbats play the game, in another run
subjects watched the other agents play the game efparently intentionally excluding the
subject. The researchers identified regions iratiterior cingulated cortex (ACC) that were
more active during trials when subjects were exaiLilom the game than trials when they were
included (excluded-included contrast). Within tbistrast, the researchers then found brain
regions where activity was correlated with ratingislistress elicited from each subject after the
experiment. The authors report two sets of coattésin the ACC that correspond to a positive
correlation between BOLD and self-reported distréBsey also report impressively high
correlations at each of these coordinates: r=0m880a75.

What do these correlations mean? They are threlabons of voxels selected for having
correlations significant at the p<0.0UBvel. The significance of a correlation may beessed
by a t-test with a t-value of r2/(1-r"2)/N-2. Givéhat there were 13 subjects in the experiment,
we can compute the minimum correlation necessarydrels to be selected. This minimum
possible r value is 0%7so we know we will see an average r value grehter 0.7 in any voxels
that were selected, even if the null-hypothesisifitdue for those voxels (these would be voxels
selected due to noise that aligned with the seledriteria).

Surely, you might suppose, since some number xélgavere above the critical
correlation values necessary to reach significaaciyity in the ACC must truly be correlated
with self assessed distress. We do not aim totigmethis finding — if the assumptions of the
minimum cluster size method for multiple-comparisonrection were met in the multi-voxel
analysis undertaken in this paper, there may intbeealtrue correlation. We object, however, to
the prominent display of average correlations fraxels that were selected for having
significant correlations.

Imagine that ACC activity is correlated with sultjee distress. This means that all
voxels in the ACC (as identified by the excludedhinled contrast) have some greater than zero
correlation with subjective distress. The coriiela in each of these voxels will be perturbed by
noise: by chance, some voxels will cease to hatectible correlations, while other voxels, by
chance, will become more correlated. All of theels in the ACC will follow some distribution
of correlation values. An independent analysigheke correlations could have averaged the
correlations across all voxels in the ACC, and coteg statistics on this quantity. However,
instead, the authors found regions within the AG& tvere significantly correlate with
subjective distress. Thus, from the distributioralbfvoxels and their respective correlations, the
authors chose only those that had correlationdgrézan 0.7, then averaged them. Such a
procedure is guaranteed to find an average caoelgteater than 0.7, even if the true

% This was the threshold used in conjunction withinimum cluster-size constraint. The assumptiows\alidity
of this particular correction for multiple companis may be disputed, but here we are concernecdhaiththe
selection criteria this method imposes on the d#&xts the subsequent analyses.

* If one computes the inverse of the Fisher Z-tramsfmethod for ascertaining significance of a datien, the
numbers work out even less favorably.



correlation between evoked ACC activity and sulbjeatlistress is substantially lower. Again, if
the multiple comparisons selection was done appatgby, it is still likely that the ACC does
contain such a correlation; however, the magnitwdélse average correlations the authors
report are spuriously elevated.

We have dwelt on this example because, unlike tis¢-lpoc displays of signal change
described previously, biased post-hoc displaysoafetations seem to be substantially more
convincing to audiences and readers, and appegpeal to high profile journals (Dapretto et
al., 2006; Kennedy, Redcay, & Courchesne, 2006;ddpblagan, Azim, Menon, & Reiss, 2005;
Yoo, Hu, Gujar, Jolesz, & Walker, 2007). Since bdhanalyses and results such as these have a
greater impact on audiences, it is more importaitet aware of them, and to curb their use.

2.4 Multivariate correlations

Another newly popular class of analyses are evereroonducive to hidden non-
independence errors: multivariate analyses. Iselamalyses (e.g., (Haxby et al., 2001)),
researchers assess the multivariate pattern of askeation for any given condition. That is, to
what extent is the pattern of increased and deedeBOLD signal across voxels in a particular
region (a measure independent of the mean sigriahtrregion) diagnostic of a particular
condition? In Haxby’'s analysis, this was meas@a®the correlation of voxel activations across
two sets of identical conditions compared to tws 8¢ different conditions. When correlations
between identical conditions are greater than tatroms between different conditions those
conditions may be distinguished by the patternis Trituition has been extended into more
elaborate machine learning methods that explicidgsify conditions based on the evoked
patterns of activation.

Just as in standard analyses, researchers typsedict some subset of voxels on which
to perform a multivariate analysis (to characteazgarticular cortical region, gain power or
remove uninformative voxels). Unfortunately, ir thriginal Haxby paper, the method used to
select voxels was not fully independent from thieseguent analysis. While this is not likely to
have strongly affected the main results of thad\stit is worth explaining the problem as an
illustrative case.

Haxby et al. selected voxels based on significamesm omnibus ANOVA across all
stimulus conditions, which was computed on all dadde split into odd and even runs for the
pattern analysis later). An omnibus ANOVA is sigrant insofar as one or more of the group
means is different from the others. Effectivelystselection criterion biases the final
correlations one might obtain: voxels will be sé&elif their mean activation is significantly
different in one condition than another (and thauld have to be reliable, across both datasets).
If one condition is reliably different from othensthin this voxel, this means that activation
across split halves will be better correlated ftantical than different conditions.

Of course, the strength of this bias depends onrhaeh the conditions differ from
fixation. In the Haxby et al. paper, most of thpared effect is likely driven by true underlying
effects. However, the fact that the analysis @dod biased is a nontrivial problem that can
produce spurious results (Simmons et al., 2006).

2.5 Summary



We have described four classes of analysis tleataamted by the non-independence
error. In some of the case studies, the errormided the main claims of the paper, in other
cases, it simply resulted in the display of redumidiaformation. Our goal in this section was not
to single out these particular papers — many agRamples are available. Our goal was to
illustrate the many faces of the non-independenwe &n fMRI research. We hope that in
describing these cases, we have provided a braadyarspectrum such that readers may be able
to generalize to new instances, and spot thesesestoen planning experiments, writing papers,
and reviewing for journals.

3. Why the non-independenceerror isprevalent in fMRI

The non-independence error we have outlined isioeeél and has been committed in
many other disciplines; however, it seems to be@safly prevalent in fMRI. For example, five
of the eight fMRI studies in a recent special issnéSocial Cognitive Neuroscience” included
non-independent analyses (Neuroimage, 2005, 38;Qdelen, Frith, Frith, & Blakemore, 2005;
Gillath, Bunge, Shaver, Wendelken, & Mikulincer 080 Harris, Todorov, & Fiske, 2005;
Mitchell, Banaji, & Macrae, 2005; Sander et al.02]). There are three circumstances of
neuroimaging that put the field at high risk. FifMMRI researchers work with massively
multidimensional datasets, in which only a sub$elimensions contain information that may be
relevant to the experiment. This situation encoesagsearchers to select some subset of their
data for analysis, thus to use non-independenttsatecriteria. Second, fMRI analyses are
complicated, involving many steps and transfornmatibefore the final statistics may be
computed, resulting in confusion (and thus a disfiad ability to identify such errors) not only
on the part of the researchers themselves, bubalsie part of reviewers. Finally, fMRI
research usually asks binary qualitative, not gtetive, questions — data are presented as binary
values (significant or not significant) further Meg any biases that may lie behind the analysis.

3.1 fMRI data are massively multidimensional.

A typical ‘low resolution’ scan on a low-field magtwill produce an imaging volume
every 3 seconds. The imaging volume will contairB&tm slices, each of which is divided into
a 64x64 (3mm x 3mm) grid, producing 81,920 measergmevery 3 seconds. A ‘high
resolution’ scan on state-of-the-art scanners npghdluce an image volume every 2 seconds,
and this volume may contain 30 1.5mm slices, e&evhah is divided into a 128x128 (1mm x
1mm) grid, producing a staggering 491,520 measun&sreyvery 2 seconds. Thus, a single scan
session could easily produce more than 1 billioasaeements, and often multiple sessions are
combined in the analysis.

Statisticians are not known to complain about agrabvundance of data, and the problem
here is not the raw number of measurements, bueréhe fact that usually only a small
proportion of the measurements are informative attmiexperimental question. In a fortuitous
and skillfully executed experiment, one may find 6840xels to be of experimental interest.
This poses a difficult multiple comparisons problEm‘whole-brain’ analyses. In this chapter,
we have only indirectly discussed this problem dose the applications (and misapplications) of
the many technical methods used to correct foriplelcomparisons are a considerable topic on
their own. Instead, we have discussed a consequrthis problem: selection.



When experimenters ask subtler questions than wéiea lights up under condition
X?’, they invariably select some subset of the sroars fMRI dataset to avoid correcting for
multiple comparisons and losing statistical powérerefore, most modern fMRI analyses
proceed in two stages: (1) identifying a subsetaxfels that play an interesting role in the
experiment (a region of interest -- ROKhen (2) assessing some additional measure getho
voxels. Obviously, the criteria used for seleciiostep 1 are a condition one puts on the
measure in step 2 — in this chapter, we have discbhether the conditions from step 1 satisfy
the assumption of independence necessary for akist&tal analyses in step 2.

The non-independence error arises from the relstiprbetween the ROI selection
method and the statistical test. If the conditimngosed by the selection process alter the
distribution assumed by the null hypothesis ofghlesequent statistical test, then this secondary
test is non-independent. Naturally, this will melaat some combinations of ROI selection
methods and analyses do satisfy the independesueption (and are hence legitimate), and
different combinations of the same techniques nwy{and are not).

Selecting small subsets of large datasets is agnaltpart of most fMRI analyses to a
much greater degree than in behavioral studiesceSselection’ (biased or not) is more
common in fMRI, then, even if selection biasesiaaglvertently introduced equally often in
analyses in other fields, we would expect to sgeeater proportion of reported results tinged by
selection bias in fMRI.

3.2 fMRI analyses are complicated (both to do and to review).

There are many steps between the acquisition &fifilata and the reported results.
Before the final analysis, a staggering varietpra-processing techniques are applied to the
data. The four-dimensional image (volume by timiagained from the scanner may be motion-
corrected, co-registered, transformed to matctoefypical brain, resampled, detrended,
normalized, smoothed, trimmed (temporally or spigdieor any subset of these, with only a few
constraints on the order in which these are dénethermore, each of these steps can be done in
a number of different ways, each with many freeapeaters that experimenters set, often
arbitrarily. The decisions an experimenter makesuapreprocessing are less likely to be
crucial for the issue of non-independehdgowever, these steps play an important roleén th
final results, and must be specified when desagilim experiment.

After pre-processing, the main analysis beginsa #tandard analysis sequence,
experimenters define temporal regressors basea®omomore aspects of the experiment
sequence, choose a hemodynamic response funatidicompute the regression parameters that
connect the BOLD signal to these regressors in eagél. This is a whole brain analysis (step 1
described in section 3.1), and it is usually suiei@to one of a number of methods to correct for
multiple comparisons (False detection rates, minmneiuster size thresholds, Bonferroni, etc.).
Because it is difficult to gain enough power fduly corrected whole brain analysis, such
analyses are rarely done in isolation. Insteadpmjunction with anatomical assumptions, the

® Note that defining a region of interest need notlbee with a priori functional localizers (for asdussion of this
controversy, see (Friston, Rotshtein, Geng, Ste&étenson, 2006; Saxe, Brett, & Kanwisher, 2006)his may
be done with orthogonal contrasts from the presgperimental manipulation, or even anatomy.

® However, an often ignored fact is the key roleypthby voxel size and smoothing parameters in $saraptions
behind minimum cluster-size methods for multiplerparisons correction — thus, smoothing, at ledist;sathe
conditions imposed by the ROI selection analysis.



whole brain analysis is often the first step deftha region of interest in which more fine-
grained, technically sophisticated, and intereséinglyses may be carried out (step 2 in section
3.1).

The analyses within selected ROIs may include e&fitin of timecourses, voxel-wise
correlations, classification using support vectachines or other machine learning methods,
across-subject correlations, etc. Any one of tlaesdyses requires crucial decisions that
determine the soundness of the conclusions. Iraptbyt it is the interaction between a few of
these decisions that determines whether or nattststal analysis is tarnished by non-
independent selection criteria.

The complexity of the fMRI analysis has two consstes, each of which can only
increase the likelihood that experimenters willdnertently use non-independent selection
criteria. First, with so many potential variabliéss difficult to keep track of possible
interactions that could compromise independen@xoi&d, and perhaps more important, to fully
specify the analysis in a publication requireseaiiot of text — text that high profile journals
prefer not to use on Methods sections. So edjgord publication policies) encourage authors
to exclude details of the analysis on the assumpliat they may be trivial or unimportant. The
result is a hamstrung review process in which regrs are not given the full information
necessary to evaluate an analysis. The complekityiRI analyses is not inherently bad;
however, the complexity offers opportunities fosearchers to make mistakes and diminishes
opportunities for reviewers to spot the errors.

3.3 fMRI analyses are usually qualitative

The qualitative nature of the questions asked asdlts obtained in fMRI also
contributes to the prevalence of the non-indepecelenror. An area is said to respond
differently, or not; to contain some informatiom,ret; to predict behavior, or not. Of course, the
brain states underlying the effects observed asmtifatively different, and we draw arbitrary
lines to produce qualitative answers. Why does rimtter?

As our examples have shown, the non-independenaeiefMRI analyses usually does
not guarantee a particular result. Instead, thalteare biased to favor a particular outcome.
The extent to which results are biased is usualblaar. Since results are displayed as binary
outcomes (significant or not), it is substantiatigre difficult to evaluate whether the
significance of an effect is due to the bias. @mnght ask what proportion of an effect is
suspect, but such a question arises less natfwaligsults with binary outcomes. By drawing
hard thresholds, the practice of significance nesturther muddies the results of an analysis, and
complicates evaluation.

3.4 Summary

fMRI is not the only field to contain biased rasund non-independent selection criteria,
and it is also not the only field to suffer fronetbonditions previously described. Gene-
sequencing involves massively multidimensional datactrophysiology experiments require
complicated time-series analysis. Most behaviexgleriments in psychology evaluate results
via a statistical test with a binary outcome. Alilgh these factors are shared by other fields (and
result in non-independence errors in those fielll4lR1 data and analyses are subject to all of
these factors, thus increasing the odds that aeyaoalysis may be tainted.



4. Heuristicsfor avoiding non-independence errors

How might one avoid committing variants of the Andependence error when
conducting fMRI analyses? For independence otteleand analysis, we require that selection
criteria, if applied to a distribution from the hblypothesis, will produce another distribution
drawn from the null hypothesis. Three classe®bft®ns seem intuitively reasonable. The best
option is to safeguard against non-independenassing different datasets for the selection and
analysis. Another possibility is to determ@eriori whether the analysis and selection criteria
are independent. Rather than deducing this inadkpere analytically, a third option is to assess
such independence by simulation

Each of these strategies has advantages and digagea and none can be guaranteed to
be effective. Although we advocate the use ofpeeelent data, it is important to note that even
then, some degree of the other two approaches magduired of the researcher.

4.1 Ensuring independence by separating datasets.

Perhaps the most intuitive precaution against molependent selection criteria and
analysis is the use of completely different data.s&oxel selection would be based on a subset
of the data (specific trials, blocks, runs, expemthalves, etc.) while the analysis would be
performed on the remaining data. If the datalg tndependent, selection bias cannot be
introduced when selection and analyses are exeouatédifferent subsets of the data.

However, certain divisions of the data and phygmal factors may render superficially
independent data actually non-independent. Imatisiewe decide to separate our data into
odd- and even-numbered columns of the fMRI imaé will select a subset of even numbered
columns for further analysis based on what wouldtherwise a non-independent criterion
imposed on paired odd-numbered voxels. The ddtaseel to define a region of interest and
that used for the subsequent analysisnangnally independent. However, in this case the data
are not really independent due to the spatial tadros intrinsic to fMRI (as should be expected
from either explicit spatial smoothing, or the @ation induced by vasculature, blood flow, and
MR image construction).

One could imagine a different example, in whiclemdating image acquisitions (TRs) are
used to select voxels, and the interceding imagessed for the subsequent analysis. Explicit
temporal smoothing of the data is quite rare in f{M#® non-independence is not likely to be
introduced from pre-processing. However, agairspilggy introduces bias: due to the temporal
delay and extent of the hemodynamic response famdmporally contiguous images are far
from independent.

These two examples demonstrate that the use aidisiatasets for selection and test
does not guarantee independence. There are nwagslin which data may be rendered more
or less independent by preprocessing, non-randg@arigmental sequence, etc.

4.2 Evaluating independence by analytical deduction.

" See (Carlson, Schrater, & He, 2003) for an examptich an analysis, as well as some discussiontabe
magnitude of the presumed bias.



One might attempt to deduce, a priori, whethercthreditions one imposes on the sample
of voxels selected for further analysis are orthmajao the analysis itself. Since analytical
solutions to this problem will often be intractalded assumptions about the joint probability
distribution of all of the data will be unjustifiedie do not consider the possibility of attempting
to derive independence via pure mathematics. Jdudf the only method we know for
determining independence a priori is to try verydha find reasons why the selection criteria
might not meet this criterion, and fail to find anly seems perilous to advocate such a subjective
use of statistics (after all, some people may mat failures of orthogonality where others
succeed). Indeed, the cases we have described,likedy than not, reflect a failure to come up
with a reason why the orthogonality condition i$ met.

4.3 Assessing independence by numerical simulation.

Rather than producing arm-chair arguments abounttependence of selection from the
subsequent analysis, one may run numerical simuatio measure mutual information between
the conditions and the null hypothesis distribuijdescribed in section 1.4). This approach
occurs in the literature most frequently as a postillustration of a failure to meet the non-
independence criterion (Baker, Hutchison, & Kanwisl2007; Simmons et al., 2006). Such
post hoc refutations of biased analyses are usefueding out spurious results from the
literature and advancing science. However, we lilogeauthors will take it upon themselves to
use such approaches to determine the soundndssiodivn analyses before they are published.
Permutation tests are one particularly effectivéhme when analyses are particularly
complicated. Researchers can randomly permuteathéition labels for their data and
undertake the same analysis. If this is done emdintes, it is possible to empirically estimate
the probability of the outcome observed with theetdata labels. Unlike simpler (and faster)
white-noise simulations, this permutation analystdudes the non-gaussian structure of the
BOLD signal noise, and is thus more accurate.

4.4 Summary

Allin all, we would advocate using one datasetviaxel selection and a different,
independent dataset for subsequent analysis teasethe likelihood of the non-independence
error. However, due to spatiotemporal correlationf®IRI data, even in these cases,
independence is not guaranteed, and researchdrstougse caution to make sure the two
datasets are in fact independent.

It is worth noting that we are explicitly advocagithe use of independent data, not
necessarily alternative stimulus sequences forrukealizers. This advice is orthogonal to the
“ROI debate” (Friston, Rotshtein, Geng, Sterzeki&nson, 2006; Saxe, Brett, & Kanwisher,
2006) about the role, and meaning, of functiond#fined regions. However, we do depart from
Friston et al. in advising that independent datad®xl. Friston advocated the use of a ‘factorial
design’ such that voxel selection and a subsecureadysis are achieved with the same dataset
(with the condition that voxel selection and thalgsis are orthogonal). In principle, if these
analyses are truly orthogonal then they are indéget) and we agree. Unfortunately,
orthogonality of selection methods and analysemsée be often wrongly assunfedVhile it is

8 Consider the case of selecting voxels based omtaia effects and testing for the interaction. haligh the two
main effects and the interaction appear orthogdhai; are not. If we select random noise in wived main



more economical to use one dataset for selectidranalysis, it seems much safer to use
independent datasets (indeed, if spurious reswdtpwablished due to failures of orthogonality,
the entire research enterprise ends up substgnnalte costly).

5. Closing

We have described a common error in fMRI resealehuse of non-independent
selection criteria and statistical analyses. Ehisr takes many forms, from seemingly
innocuous graphs that merely illustrate the sedaatriteria rather than contribute additional
information, to serious errors where significarguiés may be produced from pure noise. In its
many forms, this error is undermining cognitive reseience. Public broadcast of tainted
experiments jeopardizes the reputation of cognitimeroscience. Acceptance of spurious results
wastes researchers’ time and government funds whoele chase unsubstantiated claims.
Publication of faulty methods spreads the errardw scientists. We hope that this chapter finds
itself in the hands of the authors, reviewers,cedjtand readers of cognitive neuroscience
research and arms them with the formalism andtinotunecessary to curtail the use of invalid,
non-independent analyses.

effects are significant (J[A1+A2] > [B1+B2], and [AB1] > [A2+B2]), the mutual constraint dbth main effects
will preferentially select positive noise in the A&ll and negative noise in the B2 cell, thus lbigsesults toward
an interaction.



Appendix: Formal description of the non-independenceerror

What exactly is the error that leads to the absorttlusion in the card example from the
introduction? Here we describe it in three addgiaheoretical frameworks: propositional logic,
probability theory, and information theory.

1.1 Propositional Logic

In formal logic, the non-independence error gagden many namegetitio principii,
“begging the question”, or “circular reasonifig’A distilled example of begging the question
will read as follows:

p implies p;

suppose p;

therefore p.

In practice, of course, the fallacy is usually &ed by many logical steps and obfuscatory
wording, such that the assumption of p is rarelyials. In the card (or evolution) example we
start with the outcome (the particular arrangenoéigards or genes: “suppose p”), and then
marvel that we have found the same outcome (“tbezgs”). Thus, these cases exemplify
‘begging the question’: a condition when the cosmu is implicitly or explicitly assumed in
one of the premises.

In the introduction, and throughout the paper, wecern ourselves with statistics and
probability, so this fallacy is best fleshed outerms of probability theory and statistics.
However, the essence of the problem is still singplestion begging: evaluating the truth of a
statement which has been presupposed.

1.2 Probability Theory

We can also analyze begging the question in a pitiétac framework by evaluating the
implicit and explicit assumptions in the deck ofdsaexample. It is true that a fully shuffled
deck of cards has one of 52 factorial possiblengeents. It is also true that a deck of cards
randomly sampled from a distribution over all pbksshufflings will be unlikely to have any
one particular arrangement (a probability of 1/a&drial). So if we were to choose a random
arrangement and then shuffle a deck of cards wetilound that arrangement, we would
probably find ourselves busy for a long time.

However, we are not evaluating the prior probabiit a random deck of cards having a
random arrangement. Instead, we are evaluatingrti®ability that a deck of cards will have a
specific order: the order we just observed the adaards to have. Thus, the probability
distribution we should be evaluating is not thepprobability P(X=x), but the conditional
probability P(X=x | X=x). Of course, this probabylis 1.

One of an enormous number of outcomes was posbiliéf, we condition on the
observed outcome, that particular outcome is gueeain In the formalism of probability this
difference between prior and conditional probaletitmay be described as a violated assumption
of independence: P(X) is not equal to P(X|C), wh&is our condition.

The deck of cards case is an extreme example whedisparity between the assumed
prior probability and the relevant conditional pabidity is particularly large — the prior

® In our discussion, we consider these three intarghable, but some differentiate “begging the due'sas an
error that occurs within one argument, while “clesureasoning” involves two mutually dependent angats.



probability is impossibly low and conditional prdiiigty is 1. These probabilities make the
scenario easy to describe in terms of predicatie,lbgt the same violation of independence
arises if the probabilities are not 1 and (near) 0.

1.3 Information Theory

Finally, we can formalize the non-independencererrthe framework of information
theory to appeal to another intuition about a @éxde quality of statistical analyses: how much
information they assume of, or add to, the datavelspecify the null hypothesis of our
statistical test as P(X) and the selection critasamposing a condition on the data, producing
P(X|C), then we can derive how much informationgakection criteria (condition C) give us
about X.

The Shannon entropy of a random variable refléeuncertainty present in the
probability distribution of that random variable.

H(X) == P(X)log, P(X)

Intuitively, this number expresses how many bitsildde necessary to encode a sample from
that distribution, thus expressing uncertaintyeimts of information.

With this measure we can describe how much infaongH) a selection condition gives
us about a random variable by evaluating how mash Uncertainty there is in the conditional
distribution compared to the prior distributionhig is expressed as mutual information: 1(X;C)
= H(X) — H(X|C).

To return to our example of a deck of cards, weassess how many bits of information
it takes to encode the order of a random deck mfsca

H (X) =—§ilog i=—Iog 1 226
521 ~? 521 ? 52!
And we can calculate the amount of information seaey to encode a deck of cards sampled
from the distribution of all decks of cards whicle Wave observed to have a particular order
(index 1):
52!
H(X|C)=~1log, 1~ > Olog 0= (
i=2
This means that given the selection criterion, @engp additional information.

The mutual information is thus 226 bits (226-0)isTis an enormous number, reflecting
the huge disparity between P(X) and P(X|C). #ls® useful to express the information gained
from our selection criteria as a proportion ofta# information one could have gained:

I(X;C)/H(X) = 226/226=1.

In this extreme example, our selection criteriachgiven us all the information available about a
sample from the prior distribution. Our samplinggess has thus fully constrained our data by
giving us full information about it. Obtaining fulformation about the outcome from the
starting conditions is identical to begging the gfign in propositional logic: starting with full
information about the outcome means that the outceas presupposed.

1.5 Summary

We formalized the non-independence error fromrbreduction in terms of
propositional logic, probability theory, statistigs Section 1 of the main text), and information



theory. This allowed us to describe violationastumed independence in probability theory as
a generalized case of ‘begging the question’ ipppsdional logic. Similarly, the error of
‘selection bias’ in classical statistics is fornyadiquivalent to a violation of independence in
probability theory. We then used information thetar quantify violations of independence as
the mutual information between the measurementlandelection criterion. Finally, by taking
the limiting case wherein the mutual informatiotvieen the measure and the selection criterion
is 100% of the total information available in theasure, we again produce the case of explicitly
begging the question in propositional logic. Bgchibing this error in different frameworks we
hope that readers can apply their intuitions fraw af these domains to actual fMRI examples.

We use the term ‘non-independence error’ througtiaatpaper in favor of ‘begging the
guestion’ to convey the idea that the selectiotega need not be so restrictive as to guarantee
the outcome (as is the case in propositional lodic$tead, if the selection criteria applied to a
null hypothesis distribution alter the distributionany way, they are introducing some degree of
sampling bias, providing some amount of informatidmout the outcome, and thus will produce
biased results due to the violation of independence
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