

Functional Connectivity in MEG

Rik Henson

MRC CBU, Cambridge

Functional Connectivity Background

- Much interest in functional connectivity in fMRI
- And yet many neural interactions (e.g, coupled oscillations) occur at a timescale faster than visible by fMRI
- Beyond localization: the same set of brain regions could perform different functions depending on how they interact
- So, real promise of MEG/EEG is functional connectivity?

Talk Overview

- 1. Problem of Field Spread (Volume Conduction)
- 2. Linear vs Nonlinear measures
- 3. Directed vs Undirected measures
- 4. Direct vs Indirect measures
- 5. Generative Models

Field Spread Problem

MRC Cognition and Brain Sciences Unit

Many (zero-lag) measures of functional connectivity between sensors can be spurious, i.e, reflect activity from single source

No true source connectivity

True source connectivity

Source reconstruction reduces field spread problem...

...and allows easier comparison with fMRI connectivity

BUT spurious connections between sources can remain ("point-spread") Hillebrand et al (2012) Neuroimage

...and field-spread is instantaneous (zero-lag), so some measures of connectivity between sensors are immune to field spread (e.g, time- or phase-lagged measures)

Cross-Correlation

MRC Cognition and Brain Sciences Unit

Sensitive to Field-spread (when l=0), Undirected, Indirect, Linear

$$c_{xy}(l) = \left\langle \left(x_t - \overline{x} \right) \left(y_{t+l} - \overline{y} \right) \right\rangle_t$$

Cross-covariance

l="lag"

$$\rho_{xy}(l) = \frac{c_{xy}(l)}{\sigma_x \sigma_y}$$

Cross-correlation

Coherency (Fourier transform of cross-covariance)

MRC Cognition and Brain Sciences Unit

Sensitive to Field-spread, Undirected, Indirect, Linear

$$c_{xy}(l) = \left\langle \left(x_t - \overline{x} \right) \left(y_{t+l} - \overline{y} \right) \right\rangle_t$$

Cross-covariance

$$C_{xy}(f) = \sum_{l} c_{xy}(l) e^{-2\pi i \cdot l \cdot f}$$

$$\Upsilon_{xy}(f) = \frac{\left|C_{xy}(f)\right|^2}{\left|C_{xx}(f)\right|\left|C_{yy}(f)\right|}$$

(Magnitude-squared) Coherence

0

Digression on Complex Numbers

An oscillation of frequency *f* can be represented in terms of amplitude and phase (polar coordinates), which can also be represented by a complex number

Coherence

Sensitive to Field-spread, Undirected, Indirect, Linear

$$c_{xy}(l) = \left\langle \left(x_t - \overline{x} \right) \left(y_{t+l} - \overline{y} \right) \right\rangle_t$$

Cross-covariance

$$C_{xy}(f) = \sum_{l} c_{xy}(l) e^{-2\pi i \cdot l \cdot f}$$

(Magnitude-squared) Coherence

Immune to Field-spread, Undirected, Indirect, Linear

$$c_{xy}(l) = \left\langle \left(x_t - \overline{x} \right) \left(y_{t+l} - \overline{y} \right) \right\rangle_t$$

$$C_{xy}(f) = \sum_{l} c_{xy}(l) e^{-2\pi i \cdot l \cdot f}$$

10

f(Hz)

0

0

 $\Psi_{xy}(f) = imag(C_{xy}(f))$

Imaginary Coherency

A zero imaginary component implies a phase of the coherency of either 0° or 180°, which could be caused by field-spread...

A zero imaginary component implies a phase of the coherency of either 0° or 180°, which could be caused by field-spread...

...whereas a NON-zero imaginary component implies a phase of the coherency other than 0° or 180°, which can NOT be caused by field-spread

Cognition and

Brain Sciences Unit

MRC

Digression on Analytic Signals

A signal can be represented analytically in terms of its amplitude and phase over time (within a narrow frequency band) (e.g, using Hilbert transform)

Phase-related Measures

MRC Cognition and Brain Sciences Unit

Immune to Field-spread, Undirected, Indirect, Linear

$$x(t) = A_x(t)e^{i\Phi_x(t)}$$
$$y(t) = A_y(t)e^{i\Phi_y(t)}$$

$$\Delta \Phi(t) = \Phi_x(t) - \Phi_y(t)$$

$$PLV = \left\langle e^{i\Delta\Phi(t)} \right\rangle_t$$

Phase-Locking Value

 $PLI = \langle sign(\Delta \Phi(t)) \rangle_t$ Phase-Lag Index

PLV=0

PLV=0.5

PLV=0.75

Stam et al (2007) Human Brain Mapp

Jenson & Colgin (2007) TICS

Talk Overview

1. Problem of Field Spread (Volume Conduction)

2. Linear vs Nonlinear measures

3. Directed vs Undirected measures

4. Direct vs Indirect measures

5. Generative Models

Nonlinear Measures

Nonlinear Measures

Cross-correlation/coherence insensitive to nonlinear dependencies

Mutual Information

Sensitive to Field-spread, Undirected, Indirect, Nonlinear

$$MI(x, y) = \sum_{x, y} p(x, y) \log\left(\frac{p(x, y)}{p(x)p(y)}\right)$$

0

Mutual Information

Sensitive to Field-spread, Undirected, Indirect, Nonlinear

$$MI(x, y) = \sum_{x, y} p(x, y) \log\left(\frac{p(x, y)}{p(x)p(y)}\right)$$

Talk Overview

1. Problem of Field Spread (Volume Conduction)

2. Linear vs Nonlinear measures

3. Directed vs Undirected measures

- 4. Direct vs Indirect measures
- 5. Generative Models

Directed Measures

(bivariate) Granger Causality Immune to Field-spread, Directed, Indirect, Linear

Auto-regressive model to order *p* (assuming mean-corrected, with residuals *e*)

$$y_y(t) = a_1 y(t-1) + \ldots + a_p y(t-p) + e(t)$$

$$=\sum_{l=1}^{p}a_{l}y(t-l)+e(t)$$

Augmented model including past values of x (to order q)

$$y_{y \leftarrow x}(t) = \sum_{l=1}^{p} a_{l} y(t-l) + \sum_{l=1}^{q} b_{l} x(t-l) + e(t)$$

If classical F-test shows *b* parameters are non-zero, then *x* "Granger-causes" *y* (special case of MVAR; see later)

Directed, Nonlinear Measures

MRC Cognition and Brain Sciences Unit

Transfer Entropy (lagged generalisation of mutual information) Immune to Field-spread, Directed, Indirect, Nonlinear

$$TE_{y \to x}(l) = \sum_{x_{n+l}, x_n, y_n} p(x_{n+l}, x_n, y_n) \log\left(\frac{p(x_{n+l} \mid x_n, y_n)}{p(x_{n+l} \mid x_n)}\right)$$
$$TE_{x \to y}(l) = \sum_{y_{n+l}, y_n, x_n} p(y_{n+l}, x_n, y_n) \log\left(\frac{p(y_{n+l} \mid x_n, y_n)}{p(y_{n+l} \mid y_n)}\right)$$

Schreiber (2000) Phys Rev Letters

Generalised Synchronisation

Sensitive to Field-spread, Directed, Indirect, Nonlinear

$$x_{t} = [x_{t}, x_{t+l}, ..., x_{t+(m-1)l}]$$
$$y_{t} = [y_{t}, y_{t+l}, ..., y_{t+(m-1)l}]$$
$$S(x \mid y) = \frac{1}{N} \sum_{t=1}^{N} \frac{D_{t}(x)}{D_{t}(x \mid y)}$$

m is the embedding dimension and *I* lag

D is the Euclidean distance between x_t and embedded neighbours

Quian Quiroga et al (2000) Phys Rev E

Talk Overview

- 1. Problem of Field Spread (Volume Conduction)
- 2. Linear vs Nonlinear measures
- 3. Directed vs Undirected measures
- 4. Direct vs Indirect measures
- 5. Generative Models

MRC Cognition and Brain Sciences Unit

Multivariate Autoregressive Modelling (MVAR) Immune to Field-spread, Directed, Direct, Linear

$$X_{i}(t) = \sum_{j=1}^{N} \sum_{l=1}^{p} a_{ij}(l) X_{j}(t-l) + u_{i}(t)$$

Various summary measures, eg, Partial Directed Coherence (PDC):

$$PDC_{ij}(f) = \frac{A_{ij}(f)}{\sqrt{\sum_{k=1}^{M} |A_{kj}(f)|^2}}$$

Baccala & Sameshima (2001) Biol Cybernet

$$A_{ij}(f) = F(a_{ij}(l))$$

Generalised form of Granger Causality

Though insensitive to true zero-lag dependencies (occur in reality?)

Talk Overview

1. Problem of Field Spread (Volume Conduction)

2. Linear vs Nonlinear measures

3. Directed vs Undirected measures

4. Direct vs Indirect measures

5. Generative Models

Generative Models

Immune to Field-spread, Directed, Direct, Nonlinear, model-driven

Connectivity modelled between sources

Projected to sensors via headmodel

Typically a handful of sources, and a range of networks fit to data

Bayesian methods for comparing which network model is best

Dynamic Causal Modelling (DCM) is one approach

Chen et al, 2009, Neuroimage

Measure	Immume to Field Spread	Directed	Nonlinear	Direct
Cross-Correlation	Y (I>0)	Ν	Ν	Ν
Coherence	Y (imaginary)	Ν	Ν	Ν
PLV/PLI	Y	Ν	Ν	Ν
Granger (bivariate)	Y	Y	Ν	Ν
Mutual Information	Ν	Ν	Y	Ν
Transfer Entropy	Y	Y	Y	Ν
Generalised Synchrony	Ν	Y	Y	Ν
MVAR (eg, PDC)	Y	Y	Y	Ν
Generative (eg, DCM)	Y	Y	Y	Y

The End