

Preprocessing MEG Data for Analysis of Event-Related Fields (ERFs)

Jason Taylor

MRC Cognition and Brain Sciences Unit (CBU)
Cambridge Centre for Ageing and Neuroscience (CamCAN)
Cambridge, UK

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

INDIVIDUAL SUBJECT

GRAND AVG, CONTRAST

DI SPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

GROUP (or individual)

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY

GFP / Butterfly / ERF / ERFimage / Topography / 3D Volume

STATISTICS (Talk later in session)

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

[MaxFilter]

= 'Maxwell' Filtering (Neuromag only)

Remove noise from external sources or from within sensor array (Signal Space Separation, SSS)

Identify and remove (reconstruct) bad sensors Remove high-frequency HPI signal

Transform head position

- Correct for motion (within a session)
- Align head position across sessions
- Align head position across subjects

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

[Downsample]

= Reduce sampling rate (number of points)

Reduces file size

- Useful if memory-intensive processes planned
- Usually only interested in <50 Hz anyway

NOTE: Low-pass filter should be applied first to prevent aliasing (i.e., high-frequency signal expressed as low-frequency modulation)

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY

GFP / Butterfly / ERF / ERFimage / Topography / 3D Volume

STATISTICS (Talk later in session)

[Identify Artefacts]

= Identify noise related to physiological signals

Physiological artefacts w/ regular topographies

- blink, eye movement, pulse, ...

Preempt if possible!

- Ask subjects to be still, fixate, not blink
- Can't do much about the pulse, though!

Record physiological signals

- Compare against MEG channels

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY

GFP / Butterfly / ERF / ERFimage / Topography / 3D Volume

STATISTICS (Talk later in session)

[Compensate for Artefacts]

= Adjust data to 'remove' artefact signal

Why not just reject?

- Difficult to get clean recordings in some populations
- May have limited number of stimuli/trials

Different approaches exist:

- Regression method
 - -> MEG(clean) = MEG(dirty) EOG x propagation factor
- Subtract activity of source dipole @ eyes
- Project out blink-correlated independent component

Issues:

- Brain signal in EOG?
- Brain signal in blink IC?
- Head movement relative to MEG sensors
 - ** MUST apply motion correction **
- Variability in blinks, eye movements
- 'Splitting' of artefact across components

MAXFILTER Remove Bad

Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY
GFP / Butterfly / ERF /

ERFimage / Topography /

STATISTICS (Talk later in session)

[Artefact Compensation with ICA]

ICA = Independent Component Analysis

- Separates multi-channel data into independent components (minimised mutual information).
 - data = A*sources A is the 'mixing matrix' sources = W*data where 'unmixing matrix' W=A-1
- Assumes stationary sources with differing timecourses
- Data-driven ('blind' source separation)

Semi-Automated identification of 'artefact' ICs

- Correlate IC timecouse w/physiological signals
- Correlate IC topography with artefact template

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY

GFP / Butterfly / ERF / ERFimage / Topography / 3D Volume

STATISTICS (Talk later in session)

[Artefact Compensation with ICA]

ICA = Independent Component Analysis

- Separates multi-channel data into independent components (minimised mutual information).
- Assumes stationary sources with differing timecourses
- Data-driven ('blind' source separation)

Semi-Automated identification of 'artefact' ICs

- Correlate IC timecouse w/physiological signals
- Correlate IC topography with artefact template

Issues:

- How many components?
 - * rank of data < # chans
- Filter/Reject first?
 - * Works better on cleaner data (free of one-off noise events, e.g., cough, shift of position)
 - * But can use high-frequency information
 - * Continuous data easier to interpret

Limitations:

- Head position must be constant!
- Works very well for blinks (high signal), well for eye movements, well for pulse
- Effects on source localisation unexplored

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

[Filter]

= Remove high-frequency noise and/or low-frequency drift

Often used for visualisation only

high-pass 0.5Hz

band-pass 0.5 – 30Hz

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

[Epoch]

= Cut up data into stimulus- or response-locked segments

Size depends on what you are studying

- Time-Frequency: long epochs (to avoid edge effects)
- If ICA after epoching: long epochs

Baseline-period

- Should be free of stimulation, responses

Jitter ISI between critical and preceding stimuli

Avoid phase-locking induced by stim, anticipatory responses

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

[Concatenate Sessions]

= Stick multiple sessions (same subject) together into one

Note: head position must be the same across sessions!

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY

GFP / Butterfly / ERF / ERFimage / Topography / 3D Volume

STATISTICS (Talk later in session)

[Reject]

= Remove noisy epochs from further analysis

Even after artefact compensation...

- unaccounted-for physiological (or other) artefacts remain
- remove epochs with, e.g., blinks during stimulus

Decision may be based on:

- Hard thresholds (common or subject-specific)
- Statistical outliers
- Eye / expert judgement (*gasp*)

Alternative to rejection: Robust Averaging (SPM)

- weight points by similarity to mean

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY

GFP / Butterfly / ERF / ERFimage / Topography / 3D Volume

STATISTICS (Talk later in session)

[Average/Contrast]

 Compute mean timecourse over epochs of same condition, or apply contrast to compare/combine conditions (as in SPM GLM for fMRI)

Theory:

- ERF/P = 'signal'; background M/EEG = noise
- Averaging increases signal: noise
- Compute point-to-point average

Problems:

- Can't be sure this is true since it relies on averaging!
- Latency jitter flattens averages

Alternatives:

- Analyse EEG (power in different frequency bands)
- Visualise epochs

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

[Grand Average by Condition]

= Average (or contrast) of subjects' condition averages

MAXFILTER Remove Bad

Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DI SPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

[Display Data] - Timecourse

Global Field Power (GFP) = Power collapsed over space

Butterfly Plot = all sensors superimposed

Event-Related Field (ERF) = timecourse at each sensor

MAXFILTER Remove Bad

Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DI SPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

[Display Data] - Timecourse

Global Field Power (GFP) = Power collapsed over space

Butterfly Plot = all sensors superimposed

ERFimage = each trial (/subject) at 1 sensor as scaled image

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DI SPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

[Display Data] - Spatial Distribution

Topography = spatial distribution of field at points in time

Event-Related Field (ERF) = timecourse at all sensors

Remove Bad Channels, Noise / Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY
GFP / Butterfly / ERF /
ERFimage / Topography /
3D Volume

STATISTICS (Talk later in session)

[Display Data] - Timecourse AND Spatial Distribution

Topography-by-Time Images

= Image volumes formed by layering topographies from each time point (imagine a stack of poker chips)

MAXFILTER Remove Bad

Channels, Noise /
Transform Head Pos

DOWNSAMPLE (/Filter)

IDENTIFY, COMPENSATE ARTEFACTS

FILTER

EPOCH

CONCATENATE SESSIONS

REJECT

AVERAGE, CONTRAST

GRAND AVG, CONTRAST

DISPLAY

GFP / Butterfly / ERF / ERFimage / Topography / 3D Volume

STATISTICS (Talk later in session)

-- The end --

- Thanks for listening
- Acknowledgements:
 - Rik Henson (MRC CBU)
 - Vladimir, Karl, and the FIL Methods Group
- More info:
 - CBU wiki: http://imaging.mrc-cbu.cam.ac.uk/meg
 - SPM: http://www.fil.ion.ucl.ac.uk/spm
 - EEGLAB (ICA): http://sccn.ucsd.edu/eeglab
 - Book: <u>An Introduction to the Event-Related Potential</u> <u>Technique</u> by Steve Luck

