

Summary

Empirical Mode Decomposition is a data-driven algorithm which splits an oscillatory signal into as set of Intrinsic Mode Functions with minimal distortion to non-linear and non-stationary properties.

Here we apply a masked EMD analysis to MEG recordings of Occipital Alpha at rest and Sensorimotor Beta during a finger tapping task (data taken from the SAILS toolbox example data: <u>https://gitlab.com/sails-dev/sails-example-data</u>)

High resolution time-frequency plots are constructed using the Hilbert transform to compute the instantaneous frequency and amplitude of each IMF.

Software

All analyses are carried out in the python 3.7 in using the python EMD toolbox. Software installation and documentation can be found online at:

https://emd.readthedocs.io

Click on the 'Binder' link to run the tutorials in an interactive web-notebook - no install required!

EMD Tutorials 😢 launch binder Guides to help get you started with data analysis using the EMD toolbox. Download all tutorials as Python files or Jupyter notebooks. Individual tutorials can be down- Launch the tutorials as interactive notebooks running on a cloud server using the Binder link above. See the Installation Instructions for details on getting started running your analysis. To get started with these tutrials, you can download a tutorial-specific conda environment MAAAAAAA 1 15 50 15 160 165 150 175 a pies ain ain ain pie Why use EMD: Quick-Start: Running a Sifting How to use and configure the different versions of the sift algorithm Www.Www.Www. ----1 xia ion ain ain ain

References

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193

Andrew J. Quinn, Vítor Lopes-dos-Santos, Norden Huang, Wei-Kuang Liang, Chi-Hung Juan, Jia-Rong Yeh, Anna C. Nobre, David Dupret & Mark W. Woolrich (April:2021) Within-cycle instantaneous frequency profiles report oscillatory waveform dynamics bioRxiv

Andrew J. Quinn, Vitor Lopes-dos-Santos, David Dupret, Anna Nobre & Mark Woolrich (March: 2021) EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python Journal of Open Source Software

Marco S Fabus, Andrew J Quinn, Catherine E Warnaby & Mark W Woolrich (July:2021) Automatic decomposition of electrophysiological data into distinct non-sinusoidal oscillatory modes *bioRxiv*

Empirical Mode Decomposition and Instantaneous Frequency for MEG analysis.

Andrew J Quinn, Kia Nobre & Mark W. Woolrich ¹Oxford Centre for Human Brain Activity, University of Oxford, UK ²Department of Experimental Psychology, University of Oxford, UK

These single cycles can then form the basis for further analysis, in this case we look at a postmovement beta rebound response averaged over 30 trials. The participant taps their finger for 10 seconds before resting for 10 seconds.

0 50 100

Num Cycles

- A) A scatter plot indicating the timing and frequency of each identified cycle over the 30 trials. Hotter colours indicate a greater density of cycles. The top histogram indicates the average timing of cycles, showing a clear increase in number around 1 second after movement stops. The right histogram shows the distribution of cycles frequencies indicating an average of around 22Hz.
- B) The averaged Hilbert-Huang transform of the beta IMF across 30 trials.
- C) The averaged wavelet transform across the 30 trials.