This script will epoch and average your MEG data. Filtering is optional.
The "chanfile" is a Matlab mat-file containing an array "label" that contains labels for each channel in the data file, i.e. e.g. label{1} = 'MEG0113', label{2} = 'MEG0112', ..., label{307} = 'EEG001', ..., label{380} = 'STI101'.
% Root OUTPUT DIRECTORY (e.g. '/imaging/meg.ryan/data') bwd = '/MyDataDir/' % File Containing CHANNEL INFORMATION for MEG and EEG (e.g. % '/imaging/meg.ryan/Batch/chan_select_MEG_EEG_STI101.mat') chanfile = 'MyChanFile'; % Specify (multiple) SUBJECTs) cnt = 0; cnt = cnt + 1; subjects{cnt} = {'meg10_1000', '101224'}; % IDs e.g. as in /megdata/cbu/... blocksin{cnt} = {'block1_raw_sss', 'block2_raw_sss'}; % as named after Maxfilter cnt = cnt+1; subjects{cnt} = {'meg10_1001', '101231'}; % IDs e.g. as in /megdata/cbu/... blocksin{cnt} = {'block1_raw_sss', 'block2_raw_sss'}; % as named after Maxfilter eog_thr = [100e-6]; % EOG artefact THRESHOLD (in Volts) epoch = [-100 300]; % EPOCH for averaging (milliseconds) % Define EVENT INFORMATION con_values = [1:3]; % Trigger codes of interest (integers) con_labels = {'CondA', 'CondB', 'Control'}; % Labels of conditions corresponding to trigger codes offset = 0; % OFFSET between trigger and stimulus presentation, e.g. projector delay (milliseconds) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The rest should run smoothly... % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cd(bwd) % change to working directory nr_sbjs = length(subjects); % number of subjects Ncons = length(con_values); for c=1:Ncons con_trigs{c} = 'STI101_up'; % look for rising signal in trigger channel for event times end efile = {}; for ss = 1:nr_sbjs, nr_sess = length( blocksin{ss} ); clear S D; swd = fullfile(bwd,subjects{ss}{1},subjects{ss}{2}); fprintf(1, 'Subject: %s\n', swd); try eval(sprintf('!mkdir %s',swd)) end cd(swd) for ses = 1:nr_sess rawfile = fullfile(bwd,subjects{ss}{1},subjects{ss}{2},sprintf('%s.fif',blocksin{ss}{ses})); fprintf(1, 'Processing %s\n', rawfile); S = []; S.dataset = rawfile; S.outfile = sprintf('spm8_%s',spm_str_manip(rawfile,'rt')); %_%s',filestem,maxflag) tmp = load(chanfile); S.channels = tmp.label; D = spm_eeg_convert(S); % spm_eeg_convert_ui(S); % if want to use GUI % Below are other defaults % S.blocksize = 3276800; % S.datatype = 'float32-le'; % S.timewindow = [1 5]; % S.inputformat = []; % S.eventpadding = 0; % S.saveorigheader = 0; % S.continuous = 1; % S.checkboundary = 1; % S.usetrials = 1; % SPM will define trials from datafile ch = find(strcmp(D.chanlabels,'STI101')); D(ch,:,:) = D(ch,:,:)/10^7; % Downscale trigger channel so easier to see EOG when display "Other" channels % If you want to filter data in SPM8: % S = []; % S.D = D.fname; % S.filter.type = 'butterworth'; % S.filter.order = 5; % S.filter.band = 'bandpass'; % S.filter.PHz = [0.1 40]; % D = spm_eeg_filter(S); S = []; S.dataset = D.fname; S.pretrig = epoch(1); S.posttrig = epoch(2); S.save = 0; % saved anyway (if S.save=1, then prompts for new filename!) % S.reviewtrials = 1; % enable if you want to check before converting S.reviewtrials = 0; for c = 1:length(con_values) S.trialdef(c).conditionlabel = con_labels{c}; S.trialdef(c).eventtype = 'STI101_up'; S.trialdef(c).eventvalue = con_values(c); S.trialdef(c).trlshift = offset(c); % If used binary coding (1,2,4,8...) then could read STI001, STI002, etc % S.trialdef(c).eventtype = sprintf('STI00%d_up',c); % S.trialdef(c).eventvalue = 5; end [trl, con, S] = spm_eeg_definetrial(S); S = []; S.D = D.fname; S.epochinfo.trl = trl; S.epochinfo.conditionlabels = con; S.bc = 1; D = spm_eeg_epochs(S); efile{ses} = D.fname; end % of ses loop %%% Concatenation of sessions S=[]; S.D = strvcat(efile); S.recode = 'same'; D = spm_eeg_merge(S); %%% Artifact rejection S = []; S.D = D.fname; S.methods(1).fun = 'flat'; S.methods(1).channels = 'MEG'; S.methods(1).settings.threshold = 0; S.methods(1).settings.seqlength = 4; S.methods(end+1).fun = 'flat'; S.methods(end).channels = 'EEG'; S.methods(end).settings.threshold = 0; S.methods(end).settings.seqlength = 4; % S.methods(end+1).fun = 'peak2peak'; S.methods(end+1).fun = 'threshchan'; S.methods(end).channels = 'EOG'; S.methods(end).settings.threshold = eog_thr(ss); % S.methods(end+1).fun = 'threshchan'; % S.methods(end).channels = 'MEG'; % S.methods(end).settings.threshold = meg_thr(ss); % % S.methods(end+1).fun = 'threshchan'; % S.methods(end).channels = 'EEG'; % S.methods(end).settings.threshold = eeg_thr(ss); D = spm_eeg_artefact(S); nbadchan(ss) = length(D.badchannels); nrejects(ss) = sum(D.reject); %%% Average D = condlist(D,con_labels); % redefine condition order for weight epochs below D.save; preavg = D.fname; S=[]; S.D = preavg; S.robust = 0; D = spm_eeg_average(S); nevents(ss,:) = D.repl; S=[]; S.D = D.fname; S.refchan = 'average'; D = spm_eeg_reref_eeg(S); save batch_params rawfile efile nbadchan nrejects nevents end % of subjects loop return