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Magneto- and electroencephalography (MEG/EEG) and functional

magnetic resonance imaging (fMRI) provide complementary informa-

tion about the functional organization of the human brain. An

important advantage of MEG/EEG is the millisecond time resolution

in detecting electrical activity in the cerebral cortex. The interpretation

of MEG/EEG signals, however, is limited by the difficulty of

determining the spatial distribution of the neural activity. Functional

MRI can help in the MEG/EEG source analysis by suggesting likely

locations of activity. We present a geometric interpretation of fMRI-

guided inverse solutions in which the MEG/EEG source estimate

minimizes a distance to a subspace defined by the fMRI data. In this

subspace regularization (SSR) approach, the fMRI bias does not

assume preferred amplitudes for MEG/EEG sources, only locations.

Characteristic dependence of the source estimates on the regularization

parameters is illustrated with simulations. When the fMRI locations

match the true MEG/EEG source locations, they serve to bias the

underdetermined MEG/EEG inverse solution toward the fMRI loci.

Importantly, when the fMRI loci do not match the true MEG/EEG loci,

the solution is insensitive to those fMRI loci.
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Introduction

The functional organization of the human brain can be readily

studied with a variety of noninvasive imaging tools. Magneto- and

electroencephalography (MEG/EEG) are techniques of recording

extracranial magnetic field or scalp potential, respectively, gener-

ated by electrophysiologic events in the brain (Cohen and Halgren,

2003; Gevins et al., 1995; Hämäläinen et al., 1993). MEG and

EEG can detect activity in the time scale characteristic of commu-

nication between neurons, thus providing an important benefit over

measures of secondary phenomena such as hemodynamics
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recorded using functional magnetic resonance imaging (fMRI),

positron emission tomography (PET), or near infrared imaging

(NIR). The interpretation of MEG/EEG data, however, is limited

by the difficulty of determining the spatial distribution of source

currents in the brain. There is no unique solution for this bioelec-

tromagnetic inverse problem (Helmholtz, 1853): To any given

solution that is compatible with the measured data, it is always

possible to add a ‘‘silent’’ source distribution that does not produce

any signal in the sensors.

A reasonably accurate localization of MEG/EEG brain sources,

however, can be obtained by incorporating additional information

and model assumptions. Often, the brain current sources are

modeled with a small number (typically less than 10) of equivalent

current dipoles (Scherg and Von Cramon, 1986) or with distributed

sources with minimum norm properties (Ahlfors et al., 1992; Dale

and Sereno, 1993; Grave de Peralta Menendez et al., 1997;

Greenblatt, 1993; Hämäläinen and Ilmoniemi, 1984, 1994; Ioan-

nides, 1993; Jeffs et al., 1987; Pascual-Marqui et al., 1994;

Sekihara and Scholz, 1996; Smith et al., 1990). Realistic anatomic

information from MRI can be used to constrain the sources to the

cortical gray matter (Dale and Sereno, 1993; Fuchs et al., 1999;

George et al., 1991; Phillips et al., 2002a; Wang et al., 1992). Many

types of data can be used as additional information in the inverse

estimation procedures, such as intracranial electrophysiologic data

from humans and nonhuman primates, lesion data, and functional

imaging data from fMRI, PET, and NIR. For example, hemody-

namic data (fMRI and PET) have been used to suggest likely

locations for MEG sources (Ahlfors et al., 1999; Dale et al., 2000;

George et al., 1995; Heinze et al., 1994; Korvenoja et al., 1999; Liu

et al., 1998, 2002; Menon et al., 1997; Simpson et al., 1993, 1995;

Snyder et al., 1995; Woldorff et al., 1999; Worden et al., 1996).

It is reasonable to expect a large degree of correspondence

between MEG/EEG and fMRI/PET, and a number of good

correlations have been found (Beisteiner et al., 1997; FitzGerald

et al., 1997; Malonek and Grinvald, 1996; Morioka et al., 1995;

Puce, 1995; Sanders et al., 1996). However, the relation between

the physiology measured with fMRI/PET and the electrophysiol-

ogy measured with MEG/EEG is complex (Devor et al., 2003;

Logothetis, 2003), and there are reasons to expect mismatches

between these measures. Therefore, it is important to allow for the

possibility that some of the MEG/EEG sources may be missing in
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the fMRI/PET data and vice versa (Ahlfors et al., 1999; Liu et al.,

1998). For distributed source models, Liu et al. (1998) presented a

method in which fMRI information is incorporated in the a priori

source covariance matrix. Their method contained an adjustable

parameter that determines the degree of fMRI weighting. The fMRI

locations are preferred in the MEG/EEG inverse solutions, without

completely excluding the possibility of non-fMRI sources.

We present an alternative formulation based on the perspective

provided by the concept of subspace regularization (SSR). Previ-

ously, SSR has been applied to electrical impedance tomography

(Vauhkonen et al., 1998) and single-trial analysis of event-related

potentials (Karjalainen et al., 1999). We propose an SSR approach

in which the MEG/EEG source estimate is chosen from the set of

those source distributions compatible with the MEG/EEG data

such that it minimizes the distance to a subspace defined by the

fMRI/PET data. The aim of the present work is to provide insight

to the problem of fMRI-guided MEG/EEG inverse estimation by

presenting a geometric interpretation of how the prior information

influences the solution and to illustrate qualitatively the properties

of the solutions as a function of the regularization parameters. For

brevity, we talk below about MEG and fMRI, but the approach is

applicable to EEG and PET/NIR in place of, or in addition to,

MEG and fMRI, respectively.
Fig. 1. Geometrical interpretation of subspace regularization in the MEG/

EEG source space. (A) The cerebral cortex is divided into source elements

q1, q2, . . ., qn, each representing a current dipole with a fixed orientation.

These elements correspond to the coordinate axes of an n-dimensional

source space. Only three of the n axes are depicted. All source distributions

q are vectors in this space. (B) The source distribution q is divided into two

components: qa is a vector in the subspace Sa defined by the sensor lead

fields, and q0 belongs to the complement S0 producing no signal in the

sensors. M is the set of all vectors whose projection to Sa equals qa, thus

generating the same MEG/EEG signals. (C) The fMRI activations define

another subspace SfMRI. In this example, the fMRI activity occurred at the

volume element corresponding to source dipole q3. (D) The subspace

regularized fMRI-guided solution qSSR is obtained by choosing the point in

M that is closest to SfMRI, minimizing the distance NPqSSRN.
Methods

Our geometric description of the sub-space-regularized MEG

inverse estimation is based on four central concepts: (1) the source

space, the elements of which are current distributions in the brain;

(2) the lead field subspace Sa, which is determined by the

sensitivity patterns of the MEG sensors; (3) the set M of all source

distributions that are compatible with the actual recorded MEG

data at a given time point; and (4) the subspace SfMRI, which is

determined by the fMRI data. The fMRI-guided estimate is

obtained by selecting from the set M the source distribution that

minimizes a measure of distance to SfMRI.

The source space

The generators of MEG signals are modeled as a distribution of

active source currents (primary currents) within the brain. The set

of all possible source current distributions is determined by

anatomic and physiologic a priori information. This set determines

the source space (also known as the current space or the model

space).

For continuous current distributions, the source space is infinite

dimensional. In the discretized model, the brain volume is divided

into a relatively large number (typically hundreds or thousands) of

elements, and the net source current within each volume element is

represented by an equivalent current dipole (Fig. 1A). If the source

orientations are determined by anatomic information, for example,

by requiring the current to be perpendicular to the cortical surface

segmented from each individual subject’s anatomic MRI, one

dipole with a fixed orientation is adequate for each volume element

(Dale and Sereno, 1993; Fuchs et al., 1999); in general, three

orthogonal dipole components are required. If the total number of

dipole elements is n (which may be three times the number of

volume elements), the source space is n-dimensional and the

source distributions, denoted by q, are vectors with n elements.

Solving the discretized inverse problem refers to determining the
amplitude (as a function of time) of each dipole element on the

basis of the measured MEG data.

Note the difference between the ‘‘source space’’ and the ‘‘signal

space’’: the axes of the signal space represent the sensors (a ‘‘signal

vector’’ b has the measured signals bi as elements) (Glaser and

Ruchkin, 1976; Tesche et al., 1995; Uusitalo and Ilmoniemi, 1997)

or a linear combination of them corresponding to the highest

singular values of the measured data (Greenblatt, 1993; Mosher

et al., 1992). The source space involves assumptions about the

possible brain sources, whereas the signal space does not.

The lead field subspace

The lead field ai describes the sensitivity pattern of the ith MEG

sensor (Cuffin and Cohen, 1979). For a source vector q, the

measured signal is bi = ai
Tq + ni, where T denotes the transpose

and ni is noise. In matrix notation,

b ¼ Aq þ n; ð1Þ
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where b = (b1, b2, . . ., bm)
T, n = (n1, n2, . . ., nm)

T, and A = (a1, a2,

. . ., am)
T; m is the number of sensors. The matrix A is often called

the forward matrix or the gain matrix.

The lead fields ai can also be considered as vectors in the source

space, spanning a subspace Sa. Any source distribution q can be

expressed as the sum of two components, one belonging to Sa and

one to its orthogonal complement S0 (Fig. 1B):

q ¼ qa þ q0 ð2Þ

The ‘‘visible’’ component qa is the orthogonal projection of q

into the lead field subspace Sa (Hämäläinen and Ilmoniemi, 1994).

The ‘‘silent’’ component q0 is orthogonal to all lead fields, and thus

does not produce any signal in the sensors.

The set of sources that match the measured MEG

The nonuniqueness of the inverse problem is manifested by the

fact that any vector belonging to the silent subspace S0 can be

added to a given solution without changing the signals measured

by the sensors. We denote by M the set of all source distributions

that generate a given MEG signal within the limits of noise:

M ¼ fqA Nb � AqN2Vg2g; ð3Þ

where g2 is proportional to the noise level (e.g., g2 = TrC, the sum

of the diagonal elements of the sensor noise covariance matrix C).

M is a cylindrical set (Backus, 1971) such that for any q a M, the

orthogonal projection to the lead field subspace belongs to a

hyperellipsoid in Sa. If there is no noise in the measurements,

the hyperellipsoid reduces to one point (qa), which equals the L2
minimum norm estimate (MNE) (Hämäläinen and Ilmoniemi,

1994), and M is obtained by translation of S0 by qa (see Fig. 1B).

Regularization can be used to set preferences to solutions

within the set M. For example, the solution with minimum L2
norm is found by minimizing the cost function (Tikhonov and

Arsenin, 1977):

arg minq½ðb � AqÞTC�1ðb � AqÞ þ kqTq	; ð4Þ

where the regularization parameter k controls the trade-off between

the discrepancy between the measured and modeled signal values

and the length of the source vector. The larger the regularization

parameter k, the smaller will be the length of the regularized source

estimate.

The fMRI-defined subspace and the fMRI-guided source estimate

On the basis of the measured MEG data only, all distributions

belonging to M are equally good. One way to set preferences

within M is to use fMRI data for additional information about the

brain activation. The fMRI-guided estimate is obtained by finding

a vector in M that best matches with the fMRI data.

Assuming that the discretization of the MEG source space

corresponds to the fMRI voxel size, each voxel containing signif-

icant fMRI activity corresponds to one axis (or three axes if no

orientation constraint is imposed) of the MEG source space. Each

source element corresponding to an fMRI voxel defines a basis

vector ek
fMRI. These vectors span a subspace S fMRI of the source

space (Fig. 1C). Any combination of MEG sources (of arbitrary

amplitudes) at these locations belongs to S fMRI.
In the SSR approach, a term proportional to the square of the

distance NPqN to the fMRI subspace (Fig. 1D) is added to the cost

function. The sub-space-regularized solution qSSR minimizes the

expression:

arg minq½ðb � AqÞTC�1ðb � AqÞ þ k1qTq þ k2qTPq	: ð5Þ

The matrix

P ¼ I � RkefMRI
k ðefMRI

k ÞT ð6Þ

is the projection matrix into the orthogonal complement of SfMRI;

the index k goes over all source elements corresponding to active

fMRI voxels; I is an identity matrix. Note that P2 = PT = P. The

two regularization parameters, k1 and k2, determine the relative

weight assigned to the norm of the source vector and the discrep-

ancy from fMRI. Since ek
fMRI corresponds to axes of the source

space, P is a diagonal matrix with elements being either one or

zero:

P ¼ diagð1��lÞ; ð7Þ

where dl = 1 for source elements corresponding to active fMRI

voxels, and dl = 0 otherwise.

The cost function in Eq. (5) can be rearranged as

arg minq½ðb � AqÞTC�1ðb � AqÞ þ qTR�1q	; ð8Þ

where

R�1 ¼ k1I þ k2P ¼ diag½k1 þ k2ð1� dlÞ	: ð9Þ

The solution is (Tarantola, 1987)

qSSR ¼ RAT ðARAT þ CÞ�1b: ð10Þ

Explicit minimization of the distance to the fMRI subspace

To further illuminate the geometric interpretation of the fMRI-

guided estimate, we derive a formula for the noiseless case for

solving explicitly the vector belonging to the set of possible

solutions M that minimize the distance to SfMRI. The estimate is

constructed by adding to qa, a vector q0 = Dc that belongs to the

silent subspace S0:

qSSR ¼ qa þ Dc: ð11Þ

The columns of the matrix D contain a set of orthonormal basis

vectors of S0. The coefficients c = (c1, c2, . . .) are chosen so that the
new estimate is either in the fMRI subspace SfMRI or as close to it

as possible (Fig. 1C). The squared distance from qSSR to SfMRI to

be minimized is

NPqSSRN2 ¼ ððqaÞT þ cTDTÞPðqa þ DcÞ ð12Þ

Solving c by requiring that the derivative with respect to all ci to

be zero and inserting it in Eq. (11), we obtain the fMRI-guided

estimate

qSSR ¼ ½I � DðDTPDÞyDTP	qa; ð13Þ

where y indicates pseudoinverse. In Appendix B, we present an

example with only three sources and two sensors to visualize the



S.P. Ahlfors, G.V. Simpson / NeuroImage 22 (2004) 323–332326
geometric interpretation of Eq. (13). There are three special cases

where the fMRI does not affect the solution (qSSR = qa). (1) If Sa

o S fMRI, that is, the fMRI subspace includes the whole MEG-

visible subspace, then qa matches the fMRI data and there is no

benefit from an added silent component; in this case, Pqa = 0 in

Eqs. (12) and (13). (2) If SfMRI o Sa, then the fMRI subspace is

always orthogonal to S 0 and an additional MEG-invisible compo-

nent does not affect the distance to S fMRI; in this case, DTPqa = 0.

(3) In the unlikely case of S fMRI ? Sa, all fMRI voxels would be

invisible to MEG and fMRI cannot provide bias to the MEG

solution; again, DTPqa = 0.

Here, it was assumed that there is no noise in the measured

signals. Eq. (13), however, can also be applied for noisy data, but

taking qa to be the MNE. Thus, instead of minimizing the distance

to S fMRI within the full cylinder set M (as in Eq. (5)), the MNE

within the hyperellipsoid in Sa is computed first, and then a silent

component is added such that NPqN2 is minimized.

Simulations

The performance of the proposed method was examined with

numerical simulations. Extensive quantitative simulations of the

cross-talk and point-spread functions of fMRI-guided MEG inverse

estimates in a realistic head model have been presented by Liu et

al. (1998). Since the SSR approach is closely related to their

method (see Appendix A), we do not reproduce those types of
Fig. 2. Source estimates for simulated MEG data. (A) Simulated source configurati

magnitude and orientation of the source elements. The blue diamonds indicate the

Bz as measured by a 12 � 12 grid of sensors is shown in the upper right corner. (B

arrows represent the estimated source distribution. The field pattern generated by

space-regularized source estimate qSSR. The red squares depict the locations of fM

guided estimate qSSR in the presence of simultaneous false-positive and false-negat

displaced sideways with respect to (E), or along (F) the direction of the dipole m
simulations here. Instead, we illustrate qualitatively the effect of

regularization in a simplified geometry for matching and non-

matching fMRI and MEG locations.

To illustrate the lateral spread of activity in the estimates, a

planar source configuration was chosen, consisting a grid of 11 �
11 source locations on the xy-plane, separated by 10 mm. At each

location, there were two tangential, mutually orthogonal current

dipoles. Thus, the dimension of the source space (the total number

of source elements) was 2 � 11 � 11 = 242. The sensor

configuration consisted either 12 � 12 = 144 or 7 � 7 = 49

pointlike magnetometers, measuring the normal component Bz of

the magnetic field. The sensors were located on a plane zs = 30 mm

above the sources. Distance between adjacent sensors was either 10

mm (the 12 � 12 sensor grid) or 20 mm (7 � 7 grid). The volume

conductor was assumed to be horizontally layered; thus, the

simulated magnetic signal in a sensor at (xs,ys,zs)
T generated by a

source (Qx,Qy,0)
T at (xQ,yQ,0)

T was (4):

Bz ¼ ½Qxðys�yQÞ�Qyðxs�xQÞ	=½ðxs�xQÞ2 þ ðys � yQÞ2 þ z2s 	
3=2

ð14Þ
The lead field vectors ai were calculated by applying unit

sources to this formula.

Simulated measurements were created using the source distri-

bution shown in Fig. 2A, with two dipoles located at (xQ,yQ) =

(4,5) and (9,6) [cm] and with dipole moments (Qx,Qy) = (0,4) and

(�4,0), respectively. Properties of the MEG inverse estimate in the
on q consisting two active elements on the xy-plane. The arrows indicate the

locations of the true sources. Isocontour map of the simulated magnetic field

) The minimum norm estimate qMNE (without fMRI information). The small

this source distribution is shown at upper right. (C) The fMRI-guided sub-

RI activity, which in this case match the MEG locations. (D–F) The fMRI-

ive (missing) fMRI. The fMRI loci are either far from the MEG sources (D),

oment.
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presence of matching and nonmatching fMRI locations were

demonstrated qualitatively using four different sets of fMRI

locations. First, the fMRI activity was assumed to be at the

locations of the MEG sources (4,5) and (9,6) (Fig. 2C). In the

second case, the fMRI was in two (false-positive) locations (2,3)
Fig. 3. Effect of the regularization parameters k1 and k2 on the fMRI-guided ME

MEG signals originated from random dipoles within the source space. Top left: th

the field pattern generated by the two MEG dipoles, without noise (b), with addit

source estimates for different values of k1 (1e � 6, 1, 100) and k2 (0, 0.9 k1, 9 k1,
respectively. The magnitude of the estimated dipole moment at each location is indi

as in Fig. 2 (indicated here by blue squares). Bottom left: relative error between the

the relative error in the modeled signal values (‘‘signal error’’) for the different

independent sensor noise only.
and (10,2) far from the MEG sources (shaded squares in Fig. 2D).

In the third and fourth sets, the fMRI were close to the MEG

locations but displaced either laterally (3,5) and (9,5) (Fig. 2D) or

in the direction of the dipole moment vector (4,6) and (10,6) (Fig.

2F). For this simulation, Gaussian noise with zero mean and
G source estimate. (A) Simulation with MEG source noise; all noise in the

e simulated pattern of (true) MEG sources and fMRI locations. Middle left:

ive noise (b + n), and their difference (n). Top right: sub-space-regularized

99 k1). The rows and columns correspond to different values of k1 and k2,
cated by color coding. The locations of the true MEG sources were the same

true and the estimated MEG source distribution (‘‘source error’’), as well as

combinations of the regularization parameter values. (B) Simulation with
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standard deviation of 5% of the maximum measured signal was

added; the explicit formula for qSSR (Eq. (13)) was used, with the

regularization parameter k = 0.05 for computing the MNE.

To illustrate the effect of the choice of the regularization

parameters on the estimates, a set of solutions was computed using

Eqs. (9) and (10), in which k1 and k2 were systematically varied (k1
= 1e� 6, 1, 100 and k2 = 0.9 k1, 0.9 k1, 9 k1, 99 k1). Note that k1 and
and k2 have physical units (inverse square of source current),

whereas the ratio k2/k1 is dimensionless. The source configuration

was the same as above, but here the sparse sensor grid (7 � 7) was

used; four fMRI locations were assumed: one correct (5,4), one

slightly displaced (5,0), and two faraway false-positives (3,2) and

(2,10). For these simulations, two types of noise were used: (a)

random normally distributed (SD rq) source current added to each

source dipole element (‘‘brain noise,’’ representing electrical

‘‘background’’ activity in the brain, which often dominates in

MEG data) and (b) random normally distributed (SD rn) additive

noise in the measured signals (‘‘sensor noise,’’ representative of

instrumentation noise, for example, SQUID noise or amplifier

noise). The sensor noise was assumed independent between

sensors, the source covariance matrix being C1 = rn
2I. For source

noise, the noise covariance matrix was C2 = rq
2AAT. The sensor

noise was equated with the source noise by requiring that Tr(C1) =

Tr(C2), resulting in rn
2 = rq

2Tr(AAT) / m; Tr indicates the sum of the

diagonal elements of a matrix, and m is the number of sensors. In

our simulations, we used rq = 0.1, which is 2.5% of the amplitude

of the two dipoles of interest. The corresponding sensor noise was

rn = 0.026, and the mean signal-to-ratio SNR = bTb / (m rn
2) f14.
Results

In the simulations, the location and spread of estimated source

currents given by the SSR method were compared with those of the

MNE. The MNE was a referent, which did not take fMRI

information into account (Fig. 2B). The maximum source ampli-

tudes in the MNE occurred at the locations of the true sources;

however, the estimated source distribution is dispersed. This spread

is characteristic to MNE, in general. The degree of smoothing in

the spatial distribution in the MNE depends on the regularization;

for examples, see Ahlfors et al. (1992).

We first evaluated the fMRI-guided inverse solution (Eq. (13))

in the favorable case in which the fMRI locations matched the true

MEG source locations (Fig. 2C). The fMRI-guided solution is

more confined to the correct source location compared with the

MNE. Note that the modeled field pattern is identical for the MNE

and qSSR (insets at upper right in Figs. 2B and C) because qSSR was

defined in this case as a sum of the MNE and a source that does not

generate a signal in the sensor array. In the second case, when the

fMRI locations were far from the true MEG sources, they had little

effect on the estimate, which resembled the MNE (Fig. 2D). In the

third and fourth cases, we examined the effect of a simultaneous

false-positive close to (10 mm) a false-negative fMRI (Figs. 2E and

F). Even in this ‘‘worst case’’ scenario, the fMRI-guided solution

was found to perform well, being able to ‘‘ignore’’ the incorrect

fMRI prior. The solution was more biased towards the incorrect

location when that location was in the direction parallel to the

dipole moment (Fig. 2F) compared with a laterally displaced fMRI

location (Fig. 2E).

The effect of varying the values of the two regularization

parameters, k1 and k2, on the inverse solution is depicted in Fig.
3. Fig. 3A shows a case with simulated ‘‘brain noise’’—all the noise

originated from random sources in the source space. Source

estimates as a function of k1 and k2 are shown, as well as the

corresponding relative source estimation errorNqSSR� qN2 /NqN2

and the error in the modeled signals NbSSR � bN2 / NbN2, where

bSSR = AqSSR. The first regularization parameter k1 affects the

smoothness of the estimates; for k1 = 100, most details disappeared.

When k2 increased, the estimate became more concentrated to

the locations of the fMRI activity. Of the examples shown in Fig.

3A, the intermediate values k1 = 1 and k2 / k1 = 9 resulted in the

smallest error in the source distribution (dark blue in ‘‘source

errors’’ in Fig. 3A). Qualitatively, this solution gave a good

estimate for the MEG source that matched the fMRI, although

the false-positive fMRI locations showed activity as well. On the

other hand, for the smaller value of k2 / k1 = 0.9, although less

focal, the estimate was more concentrated on the correct location.

Fig. 3B shows a simulation in which random sensor noise was

added to the measured signals (‘‘sensor noise’’). In this case, the

spatial pattern of noise in the measured signals was less smooth

than that in Fig. 3A. The MNE became unstable with very small

values of k1. The inverse estimates for k2 = 0 were without fMRI

bias. The three values of k1 illustrate the main effect of regular-

ization. For the very small value of k1 = 10�6 (i.e., practically not

regularized at all), the solution became unstable as it modeled also

the random sensor noise; the corresponding estimation error in

source space became very large, whereas the signal error was

small. Again, the smallest estimation error in the source distribu-

tion occurred at intermediate values of k1 and k2.
Discussion

We presented a novel interpretation of fMRI-guided MEG

source estimation in terms of SSR. Simulated examples illustrated

source estimates displaying reasonable and relevant patterns.

Several factors, however, affect the results, including the properties

of noise, the choice of the regularization parameters, and the match

between fMRI locations and the MEG sources. It may be difficult

to find optimal values that would work well for all simultaneous

sources with this or any other method. However, the SSR formu-

lation provides a principled way to approach the problem of

incorporating fMRI priors into MEG source estimates.

Subspace regularization: fMRI-based bias on locations but not on

amplitudes

In the subspace formulation, the fMRI prior does not assume

preferred amplitudes for the MEG sources. This property of having

bias on spatial locations only is well suited for the MEG inverse

problem since there appears to be no simple relation between the

hemodynamic response and electrophysiologic activity. The dis-

tance to the fMRI-defined subspace provides a measure for the

compatibility of MEG source distributions and fMRI data. This

provides an alternative interpretation of the fMRI-weighting pa-

rameter incorporated in the source covariance matrix (Liu et al.,

1998) (see Appendix A) and complements probabilistic approaches

to the problem (Baillet and Garnero, 1997; Clarke, 1989; Phillips et

al., 2002a; Schmidt et al., 1999).

Further terms can be included in the cost function (Eq. (5)) to

provide different preferences upon the set of solutions that other-

wise are equally good from the point of view of the measured
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MEG data; in depth-weighted MNE, deep sources are preferred to

superficial ones using a weighting function (Ioannides, 1993); in

LORETA, maximally smooth source distributions are preferred

(Pascual-Marqui et al., 1994); and in FOCUSS, focal solutions are

selected (Gorodnitsky et al., 1995). Other types of additional

information that may turn out to be useful in the MEG source

modeling include the expected (or maximum) magnitude of source

current density, correlation in activity across multiple regions, and

temporal patterns of activity (Baillet and Garnero, 1997) derived,

for example, from intracranial human or animal data. Unlike the

spatial bias, however, most of these other priors do not allow the

subspace formulation. These types of data will become increas-

ingly available and significant through ongoing neurodatabase

projects. These databases will serve as a resource for deriving

relevant information, including probability distributions, for guid-

ing inverse solutions.

The regularization parameter k1 in the cost function of Eq. (5)

prevents the norm of the solution from becoming excessively large.

Importantly, this restricts the amplification of noise in the inverse

solution for those source distributions to which the sensor lead

fields (rows of A) are only weakly sensitive. Fig. 3B illustrated

how, without proper regularization, random sensor noise could

render the inverse solution meaningless. Because the lead fields are

relatively smooth and widely overlapping, it is often impossible to

find spatial patterns of sources with physiologically reasonable

amplitudes that would explain the measurement noise. On the other

hand, when the measurement noise consisted patterns generated by

noise sources in the brain, the measurement noise could be

explained by ‘‘reasonable’’ source current patterns, and there was

less need of regularization (Fig. 3A).

In principle, the regularization parameters should be adjusted

such that the error in the explanation of the measured signals Nb �
AqN2 matches the estimated noise level. Various techniques have

been suggested to determine the optimal value of the regularization

parameter, including cross validation (Golub et al., 1979) and the

L-curve method (Hansen, 1992). In an iterative restricted maxi-

mum likelihood (ReML) method, the conditional expectation of the

source distribution and the regularization parameters are estimated

jointly (Phillips et al., 2002b). It is important to avoid overfitting

the data (too small k); otherwise, noise may dominate the results.

Typically, the results are less sensitive to too large values of the

regularization parameter; however, spatial details in the source

estimates can be lost, and the center of distributed estimates may

shift towards deeper locations (Fuchs et al., 1999).

The second regularization parameter, k2, controls the amount of

bias towards the fMRI subspace. A high value of k2/k1 would force
the solution to be close to the fMRI subspace. In the simulations, a

‘‘medium’’ value of k2 resulted in the desired effect of more

focused solutions at the site of fMRI. However, if k2 is too large,

the inverse solution tries to explain the measured data by putting

large amplitudes in the fMRI locations, also those that do not

correspond to true MEG sources. Ideally, a proper balance with k1
and k2 should be found such that the inverse solution is focused

only at the sites of matching fMRI and MEG activity.

Nonmatching locations of fMRI and MEG activation

The SSR method has the desirable property of giving improved

results when the prior information is compatible with the actual

source distribution while being insensitive to incompatible priors

(Vauhkonen et al., 1998). We found this in our simulations as
well—the method performed well even in situations with simulta-

neous false-positive and false-negative fMRI locations. In terms of

constrained optimization, it is the MEG data that define the

constraint; therefore, we prefer the expression ‘‘fMRI-guided’’

(as opposed to ‘‘fMRI-constrained’’) MEG inverse solution. In

particular, Eq. (13) was derived using the assumption that the

model reproduces the MEG data exactly (i.e., the solution belongs

to the set M).

It is reasonable to expect mismatches between locations of

fMRI activation and MEG sources. False-positive fMRI locations

are bound to occur in practice due to the limited spatial

sensitivity patterns of MEG sensors and the limited time resolu-

tion of fMRI. Some source activity may be located or oriented

such that there is little magnetic field outside the head. Examples

of this are radially oriented sources, deep sources, or ‘‘closed

field’’ sources for which the activity patterns are such that the

total macroscopic current cancels out. All of these could generate

significant signal in fMRI but not in MEG. Furthermore, typically

only some of the MEG sources are active at a given time instant,

whereas fMRI pools activity over time. This results in missing

MEG sources for inverse solutions that are computed indepen-

dently at each time instant (as in our simulations). Thus, fMRI

and MEG may coincide at some time points, whereas there may

be a missing MEG source at other times. In our simulations,

isolated false-positive fMRI had little effect on the fMRI-guided

source estimates.

Missing (false-negative) fMRI can occur due to artifactual lack

of fMRI activity (e.g., susceptibility artifacts or a partial-only

coverage of the brain volume) or to differences in the referent or

baseline condition, particularly with blocked designs. While event-

related fMRI can equate fMRI and MEG designs and baselines

qualitatively, the relative amounts of summation in the baseline or

referent for fMRI may be different than with MEG. Thus, weak

signals that may rise above noise in MEG may fail to be significant

in event-related fMRI. False-negatives may also arise from differ-

ences in the physiologic origin of the hemodynamic and electro-

physiologic measures. Simple false-negative fMRI appeared to

have little effect, with the inverse solution resembling the MNE

(Babiloni et al. 2003).

The occurrence of simultaneous false-positive and false-neg-

ative fMRI loci is reasonably expected. For example, an MEG

source in visual cortex may be active for the first part of a 1000-

ms period following a stimulus and then return to baseline levels

for the latter part of the period. The active and inactive periods

can be detected with the MEG; however, the fMRI counterpart

cannot differentiate between the two periods. Thus, the fMRI

activity will constitute a false-positive with respect to the latter

period. Now consider how an fMRI false-negative in a neigh-

boring area may also readily arise. A brief (e.g., 100 ms)

electrophysiologic activation could occur in a neighboring area

that would be detected by MEG but might not generate a

sufficiently large hemodynamic response to be detected with

fMRI. As a result, there would be both false-positive and false-

negative fMRI loci near each other. This and other scenarios for

simultaneous false-positive and false-negative fMRI are likely to

occur in cognitive experiments.

Here, the fMRI data were assumed to be thresholded—each

volume element was either active or not active. Typically, the results

of fMRI data analysis are statistical parametric maps, that is, a

significance value is assigned to each volume element. Further

work is required to establish how to optimize the significance



Fig. 4. An example of source estimates as vectors in the source space. (A) The source space consists three source elements. The lead fields of the two sensors

are also vectors in this space. The arrows indicate the direction and magnitude of the elements of source space vectors. (B) The minimum norm estimate (circle)

is at the intersection of M and the plane (not depicted) defined by the lead field vectors. (C) Sub-space-regularized estimate (circle) with a correct fMRI

constrained. The sites of fMRI activity are indicated with shading. (D) The effect of incorrect fMRI on the source estimates.

S.P. Ahlfors, G.V. Simpson / NeuroImage 22 (2004) 323–332330
threshold used for the selection of volume elements to define the

subspace SfMRI. A high threshold may result in missing fMRI

locations, whereas a low threshold reduces the specificity and thus

the usefulness of the fMRI information in constraining the MEG

source locations. The two extreme cases, no fMRI (SfMRI is empty

or belongs completely to S0, the subspace invisible to MEG) and all

fMRIs (SfMRI equals the whole source space or includes the MEG-

visible subspace Sa) will give the same result, that is, the MNE.

Somewhere in-between, there should be an optimal value for the

fMRI significance threshold for the MEG analysis. It may also be

possible to construct a distance measure in which the significance

values of fMRI activation are explicitly taken into account.

Our approach addresses the problem of using information

from fMRI to guide the MEG source analysis. In principle,

multimodal imaging provides the possibility of considering also

the reverse question: Can MEG data be used to guide fMRI

analysis? For example, the significance values for statistical test

of fMRI activation could be adjusted on the basis of prior

information from MEG. The Bayesian approach appears to

provide a natural framework for this type of analysis (e.g., see

Friston et al., 2002).

In conclusion, the SSR formulation and its geometric interpre-

tation can provide useful insights to the problem of how to use

information from fMRI/PET when determining the sources of

MEG/EEG signals.
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Appendix A. Comparison with the method of Liu et al. (1998)

In this Appendix, we derive the relationship between the two

regularization parameters of the SSR method and the parameters

used by Liu et al. (1998). In their method, fMRI is taken into

account in the diagonal elements of the a priori source covariance

matrix R = b diag(rl
2) in Eq. (5); rl

2 = 1 for fMRI locations and rl
2 =

a V 1 for non-fMRI locations; b is a scaling factor related to the

square of the expected source amplitude. There is a trade-off

between strong fMRI weighting (small a), which may lead to

mislocation of source activity when fMRI and MEG do not match,

and weak weighting (large a), which lessens the impact of fMRI

information on the inverse solution. Based on extensive Monte

Carlo stimulations on a realistic head model, Liu et al. (1998)

suggested that a = 0.1, corresponding to 90% fMRI weighting,

gives good results.

Using the notation of Eq. (7), the source covariance matrix can

be written as

R ¼ b diag½ð1� dlÞa þ dl	;

where dl = 1 for fMRI loci and 0 otherwise. The SSR and the

method of Liu et al. (1998) are mathematically equivalent if

b�1diag½ð1� dlÞa þ dl	�1 ¼ diag½k1 þ k2ð1� dlÞ	:
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Solving for k1 and k2, we get

k1 ¼ b�1

k2 ¼ b�1ða�1 � 1Þ

or conversely

b ¼ k�1
1

a ¼ k1=ðk1 � k2Þ

Thus, there is a relatively simple relationship between the

regularization parameters k1 and the parameters b and a of Liu

et al. (1998). When there is no fMRI information, k1 (or b) is the
only regularization parameter (i.e., k2 = 0, a = 1). If a z 0, then

k2 zl, which corresponds to the hard fMRI constraint; that is,

only the fMRI locations are relevant to the solution. The values a =

0.1 and a = 0.01 correspond to the SSR regularization parameter

values k2 = 9 k1 and k2 = 99 k1, respectively.
Appendix B. An example with three sources and two sensors

The geometric interpretation of the fMRI-guided MEG inverse

solution is illustrated by a simple example, which can be easily

visualized and solved analytically. Assume a source space of three

elements, (q1, q2, q3)
T, and two sensors with lead fields, a1 =

(1,1,0)T and a2 = (0,1,1)T (Fig. 4A). The problem is underdeter-

mined, which is typical of the MEG inverse problem.

Minimum norm estimate (Fig. 4B): Let the true source current

distribution be q = (0,3,0)T and the measured signals b = (3,3)T.

The vector qa = (1,2,1)T is the point closest to the true source in the

plane Sa defined by the lead field vectors a1 and a2; in this

noiseless case, qa is also the MNE. The difference q0 = q � qa =

(�1,1,�1)T is orthogonal to that plane (the silent component). The

set M of all solutions compatible with the MEG is (1,2,1)T + c

(�1,1,�1)T, where c is a real number.

Source estimate guided by correct fMRI (Fig. 4C): Assuming

that fMRI showed activity in the second and third elements, thus

the subspace SfMRI is spanned by vectors (0,1,0)T [correct] and

(0,0,1)T [missing MEG source]; there are no missing fMRI. The

fMRI-guided solution is found by choosing qSSR such that it

intersects the q2 q3 plane. Thus, q
SSR = (1,2,1)T + 1 (�1,1,�1)T =

(0,3,0)T, which is exactly the source distribution. In matrix

notation, P = diag(1,0,0), D = 3�1/2(�1,1,�1)T, DTPD = 1/3,

and (DTPD)y = 3, in Eq. (13).

Missing fMRI (Fig. 4D): Next we consider the case that the

fMRI showed activity only in the third (incorrect) element and not

in the second where the MEG activity was. Thus, SfMRI is now one

dimensional, spanned by (0,0,1)T. We select the parameter c such

that qSSR is as close to SfMRI as possible: [(2 + c)2 + (1 � c)2]. The

result is qSSR = (1,2,1)T � (1/2)(�1,1,�1)T = (1.5,1.5,1.5)T. In

matrix notation, P = diag(1,1,0) and (DT P D)y = 3/2. The SSR

solution is further from the true source than is qMNE. The fMRI

information modifies the solution by adding a silent component to

make the estimate better compatible with the fMRI. In this case, no

estimate is compatible with both MEG and fMRI because SfMRI

and M do not intersect. A strict fMRI constraint would result in the

solution (0,0,3)T. The missing fMRI is identifiable because the

MEG data are not compatible with the fMRI constraint. Note that
an fMRI pattern consisting both q1 and q3, but not (the correct

MEG source) q2, would contain a nonidentifiable missing fMRI

because the solution qfMRI = (3,0,3)T is consistent with the MEG

data (not shown).
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