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The present study aims at finding the optimal inverse solution for the

bioelectromagnetic inverse problem in the absence of reliable a priori

information about the generating sources. Three approaches to tackle

this problem are compared theoretically: the maximum-likelihood

approach, the minimum norm approach, and the resolution optimiza-

tion approach. It is shown that in all three of these frameworks, it is

possible to make use of the same kind of a priori information if available,

and the same solutions are obtained if the same a priori information is

implemented. In particular, they all yield the minimum norm

pseudoinverse (MNP) in the complete absence of such information. This

indicates that the properties of theMNP, and in particular, its limitations

like the inability to localize sources in depth, are not specific to this

method but are fundamental limitations of the recordingmodalities. The

minimum norm solution provides the amount of information that is

actually present in the data themselves, and is therefore optimally suited

to investigate the general resolution and accuracy limits of EEG and

MEGmeasurement configurations. Furthermore, this strongly suggests

that the classical minimumnorm solution is a valuablemethodwhenever

no reliable a priori information about source generators is available, that

is, when complex cognitive tasks are employed or when very noisy data

(e.g., single-trial data) are analyzed. For that purpose, an efficient and

practical implementation of thismethodwill be suggested and illustrated

with simulations using a realistic head geometry.
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Introduction

In recent years, considerable effort has been spent on improving

the spatial resolution of source estimation procedures in the analysis

of electroencephalographic (EEG) and magnetoencephalographic

(MEG) data. One of the ambitious goals in this endeavor is to make

the interpretation of the results comparable to metabolic imaging

methods such as positron emission tomography (PET) and func-

tional magnetic resonance imaging (fMRI), which in turn lack the

temporal resolution to track fast perceptual and cognitive processes
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in the human brain on the millisecond scale. Distributed inverse

solutions, mostly of the linear type, are widely used to estimate the

neuronal current distributions underlying the measured EEG and

MEG signals, especially in studies on higher cognitive brain

function (Dhond et al., 2003; Haan et al., 2000; Halgren et al.,

2002; Hauk et al., 2001; Pulvermüller and Shtyrov, in press; Rinne

et al., 2000). In some cases, descriptions of methods to estimate the

neuronal sources from EEG and MEG signal suggest that tomog-

raphy-like procedures exist, if only the right mathematical assump-

tions are implemented into the corresponding algorithms (Ioannides

et al., 1995; Pascual-Marqui et al., 2002; Singh et al., 2002).

However, it is usually implicitly or explicitly acknowledged that

according to the Helmholtz principle, the bioelectromagnetic in-

verse problem has no unique solution (von Helmholtz, 1853).

Whatever result is obtained with one method, there are still

infinitely many other possible solutions equally compatible with

the recorded signal.

This alone implies that the question ‘‘Which method yields the

correct solution to the bioelectromagnetic inverse problem?’’ with-

out further specifications is futile. EEG or MEG signals alone do

not carry sufficient information to determine the precise spatial

distribution of the underlying neuronal sources. This problem can

be compared to the reconstruction of a three-dimensional object

from its shadow: Only the shape of the object along a two-

dimensional plane is given by the data, making it impossible to

infer anything about its 3D structure by these data alone.

Source estimation from EEG and MEG data therefore requires

reformulating the question. Two general strategies can be distin-

guished: (1) focusing on those solution parameters that can be

estimated reliably from the data alone; (2) including a priori

knowledge from other sources than the data under analysis, thus

reducing the amount of parameters to be estimated to a tractable

number. Applied to the example of object reconstruction from a

shadow, an example for strategy 1 would be to ask ‘‘What are the

maximum extensions of the object in the plane parallel to the

projection screen?’’ An example for strategy 2 would be ‘‘I know

that the shadow represents the profile of a face, and it’s either

Gérard Depardieu or Michael Jackson. So does the profile have a

big nose?’’ Obviously, the information we get following strategy 1

is rather limited, but might be enough for a given purpose (e.g., if

we want to push the object through our front door). Following

strategy 2, we get very specific information, but if we overlooked

the possibility that another big-nosed person might have been in

front of the screen, our conclusion could be completely wrong.
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The same logic applies to source estimation procedures: Either

questions must be asked that explicitly take into account the

limitations of the technique, or restrictive modeling assumptions

must be introduced. The problem, however, is that this can still be

done in various ways, leading to a large number of procedures

among which the experimenter has to choose (see Baillet et al.,

2001; Dale and Halgren, 2001; Fuchs et al., 1999; Grave de Peralta

Menendez et al., 1997a; Ilmoniemi, 1993; Pascual-Marqui, 1999;

Vrba and Robinson, 2001 for comparisons or overviews of meth-

ods). It is therefore essential to investigate what features of an

estimated current distribution are determined by the data, and how

much depends on the specific method and corresponding modeling

assumptions.

In this work, three approaches often employed in the literature to

tackle the inverse problem will be compared: (1) the statistical

approach, which aims at finding the ‘‘most likely’’ solution com-

patible with the data and possibly further constraints; (2) the

minimum norm approach, which aims at finding a solution that is

compatible with the data and fulfills further constraints on the

amplitudes and/or covariances between source strengths; (3) the

resolution optimization approach, which aims at estimating the

source components as independently as possible from each other.

It will be shown that all of these approaches are able to implement

the same amount of a priori information, and that if this information

is the same, their solutions are also the same. Most important is the

case where no a priori knowledge is available at all, and the question

‘‘What is determined by the data alone?’’ is asked. Obviously, the

amount of information present in the data cannot vary with the

procedure employed to extract it, and therefore one may hope that a

clear result for this case can be found. Indeed, all three approaches

converge on the same method in this specific case, namely the

classical minimum norm solution. This is of particular importance

because even though the amount of a priori knowledge from

metabolic imaging techniques or neuropsychology is continuously

growing, in many experiments, the number, extension, or approx-

imate locations of the generators are not reliably known. Obvious

examples for this case are data obtained with complex cognitive

paradigms, noisy data from individual subjects, with a low number

of trials or on a single-trial level.

Based on these findings, an implementation for the classical

minimum norm method is introduced that takes into account its

limitations as well as its strengths. It is suggested for standardized

routine analysis of large and complex data sets, such as in EEG and

MEG studies on higher cognitive function, or for analyzing data on

a single-trial level.
Theory

General

In the following, bold capital letters (like G) represent matrices,

and bold small letters (like s) refer to column vectors. Gi. and G.i

represent the ith row and column of the matrix G, respectively. The

superscript ‘‘T’’ denotes the transposition of a vector or a matrix

(e.g., GT or sT).

The relationship between a given source distribution inside the

head and the electric potential or magnetic field measured at

discrete points on or above the scalp surface is linear (Geselowitz,

1967; Sarvas, 1987). The naturally continuous current distribution

can be approximated by covering those brain areas that must be
assumed to be activated by a large number of narrowly spaced

dipole sources. This can be formulated in matrix notation as

d ¼ Ls ð1Þ

where d is a (m*1)-vector of potentials at m electrode locations, s is

a (n*1)-vector containing the amplitudes of n current sources with

fixed locations and orientations, and L is the so-called (m*n)-

‘‘leadfield matrix’’ that takes into account the flow of volume

currents due to volume conduction, and contains information about

the geometry and conductivity distribution within the head. Each

column of L contains the forward solution for one of the current

sources contained in the model, that is, the signal at all sensors

produced by this source alone with unit strength.

The data d are given by the recordings, and the leadfield matrix

L is determined by the head geometry. The bioelectromagnetic

inverse problem then consists of solving Eq. (1) for the unknown

source distribution s. If the source distribution s contains more

independent parameters than there is independent information in the

recording d (e.g., if n > m), then the source amplitudes represented

by s cannot be estimated independently of each other (Bertero et al.,

1985). In other words, Eq. (1) is underdetermined and the

corresponding inverse problem is ill-posed.

Another way to state this under-determinacy is to say that there

are sources s0 p 0 for which Ls0 = 0, that is, these sources are

orthogonal to the rows of the leadfield matrix. If the number of

sources is much bigger than the number of sensors, so is the

dimension of the null-space compared with the space spanned by

the rows of the leadfield.

One interesting consequence of this is that whenever one has

found a solution s to Eq. (1), one can add an arbitrary solution s0
such that s + s0 is another solution of Eq. (1). In fact, every source

distribution s can be separated into parts s1 and s2 such that

s ¼ s1 þ s2; p ¼ Ls

Ls1 ¼ p; Ls2 ¼ 0 ð2Þ

that is, into one part that is orthogonal to the columns of the

leadfield matrix, and another part that is not (Bertero et al., 1985;

Menke, 1989).

Resolution of linear estimation techniques

If a linear estimator G is multiplied to the data, the relationship

between the real but unknown source s and its estimate ŝ is (using

Eq. (1))

ŝ ¼ Gd ¼ GLs ¼ Rs ð3Þ

The newly defined matrix R describes the ‘‘distortion’’ or

‘‘blurring’’ of the real source by the measurement and estimation

technique, and was therefore termed ‘‘resolution matrix’’. It has

dimension (n*n) but highest possible rank m, so it is, unfortunately,

not invertible in the usual case m < n, which is another way to state

the under-determinacy of linear inverse problems (Grave de Peralta

Menendez et al., 1997a; Menke, 1989).

Alternatively, each row Gi. of the linear estimator G is the

estimator for one current source ŝi in ŝ. This way, the resolution

vector ri
T = Gi.L (i.e., the ith row of the resolution matrix R) can be

defined for each source estimate ŝi. The vector ri describes the

influence each source contained in s would have on the estimate ŝi.
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Approaches to tackle the inverse problem

Null-space approach

In the case where nothing is known about the source distribution

to be estimated, one might want to determine that part of the source

that is solely determined by the data. Formally, one would like to

find a solution ŝ for which

Lŝ ¼ d ð4Þ
that is, which produces the recorded signal, but which also cannot

be separated into parts ŝ1 and ŝ2 such that

ŝ ¼ ŝ1 þ ŝ2 and ðLŝ1 ¼ 0 or Lŝ2 ¼ 0Þ ð5Þ

In other words, ŝ shall not contain any nonvanishing part that

taken by itself would not produce any measurable signal at all

sensors. This implies that ŝ should not contain parts that are

orthogonal to the rows of the leadfield matrix L, and thus ŝ must

be a linear combination of the rows of L, that is

s ¼ LTw ð6Þ

where w stands for a weighting vector to be determined (Bertero et

al., 1985).

Since d = Ls, it follows that d = LLTw, and if the rows of L are

linearly independent (which is the case if the observations from

different sensors are independent), this can be inverted to yield

w ¼ ðLLT Þ�1
d; and thus s ¼ LTw ¼ LT ðLLT Þ�1

d ð7Þ

The resulting matrix LT(LLT)�1 is the ‘‘minimum norm pseu-

doinverse’’ (MNP) or ‘‘Moore–Penrose Inverse’’ for the linear

system in Eq. (1) (Golub and van Loan, 1996). In this section, it was

derived solely under two requirements: (1) the solution should

explain the data d; (2) it should not contain any part of the null

space, which taken by itself would not produce any measurable

signal at any of the recording sites. The second requirement is

plausible in the case where no a priori information about the sources

is available, and the solution shall only contain features predicted by

the recorded data alone. In the following, it will be shown that

several seemingly very different approaches yield the MNP if no

further a priori information is provided.

Minimum norm approach

A unique solution to the inverse problem stated in Eq. (1) can be

found by combining constraints on the solution (e.g., that it has

minimal power) and constraints on the data it predicts (e.g., that it

comes close to the measured data). A general formulation in a linear

framework is to require

ðjs� js0ÞTCsðjs� js0Þ ¼ min ð8Þ

for the solution, where sj is the estimated solution, sj0 is an a priori

approximation of the solution, and Cs is a weighting matrix,

representing the metric associated with the source space (e.g., a

priori knowledge about the approximate locations or covariances of

sources), together with

ðLjs� dÞT ðLjs� dÞ ¼ min ð9Þ

where Lsj are the predicted data, and d are the measured data.
If the matrix Cs is positive definite (and therefore invertible),

the solution to this problem is (Grave de Peralta Menendez and

Gonzalez Andino, 1998):

js ¼ js0 þ C�1
s LT ðLC�1

s LT Þ�1ðd� Ljs0Þ ð10Þ

If no a priori model sj0 is included, this equation reduces to

js ¼ C�1
s LT ðLC�1

s LT Þ�1
d ð11Þ

The matrix Cs might be used to incorporate a priori infor-

mation about brain areas in which active sources are expected,

that is, if appropriate fMRI results are available (Dale et al.,

2000). However, if sources can be expected at any location in

the source space, each location in the source space must be

given equal weight. In this case, Cs is the identity matrix, and

the MNP is obtained:

js ¼ LT ðLLT Þ�1
d ð12Þ

Regularization

So far, only the case that the data shall be explained completely

by the solution was considered. However, in realistic situations,

noise is present in the data. One approach is to substitute the

constraint on the predicted data by

ðLjs� dÞTCdðLjs� dÞ ¼ e > 0 ð13Þ

where Cd is a positive definite weighting matrix, representing the

‘‘reliability’’ of the sensors (e.g., by their standard deviations or

covariances), and e reflects the part of the data that shall remain

unexplained, that is, which is due to noise. The solution then

changes to

js ¼ js0 þ C�1
s LT ðLC�1

s LT þ kC�1
d Þ�1ðd� js0Þ ð14Þ

From this expression, weighted minimum norm solutions like

that of Dale and Sereno (1993), Pascual-Marqui et al. (2002), and

Wagner et al. (1996) can be derived. k is the ‘‘regularization

parameter’’, which needs to be determined such that e reaches an

optimal value. Without an a priori model sj0, and giving equal

weight to all channels and source locations (i.e., taking the identity

matrix for Cd and Cs), the resulting solution is

js ¼ LT ðLLT þ kIdÞ�1
d ð15Þ

which is the minimum norm solution with Tikhonov regularization

(Bertero et al., 1988; Tikhonov, 1963).

Maximum likelihood approach

If the acquired data and the assumed solution follow a known

probability distribution, it would be reasonable to determine the

‘‘most likely’’ solution to Eq. (1), that is, to maximize the

likelihood P(s,d) of a solution s given a specific measurement

d (Clarke, 1989; Tarantola, 1994). This likelihood function can

be separated into two separate parts: (1) the likelihood P(ŝ) that a

solution ŝ occurs independently of the data (i.e., a priori

knowledge about the source distribution); (2) the likelihood

P(d,ŝ) that data d are a consequence of the source ŝ (i.e., the

forward model).
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The total distribution P(ŝ,d) is then proportional to the product

of the latter two (Tarantola, 1994):

Pðŝ; dÞfPŝdðd; ŝÞPsðŝÞ

One can assume that these distributions are Gaussian, that is

P ðsÞfexpf�ðŝ� ½s�ÞTCsðŝ� ½s�Þg ð16Þ

P ðd; ŝÞfexpf�ðd� LŝÞTCd ðd� LŝÞg ð17Þ

where exp{ } denotes the exponential function and [ ] the

expectation value operator. It can be shown that a combination

of Gaussian distributions is Gaussian as well, and the solution is

(Tarantola, 1994):

ŝ ¼ ½s� þ C�1
s LT ðLC�1

s LT þ kC�1
d Þ�ðd� L½s�Þ ð18Þ

where � indicates the generalized inverse, which should be used in

this case since the expression to be inverted does not necessarily

have full rank.

The regularization parameter k was introduced to allow for

continuous weighting of the influence of Cd. This expression is

identical to the weighted minimum norm solution in Eq. (14).

The matrix Cd can be used to incorporate differential reliability

of the sensors (e.g., a metric or variance of the data). If no noise is

taken into account, it can be neglected and the regularization

parameter k set to zero. If some areas in the brain are more likely

to be activated than others, this information can be included in

matrix Cs, analogous to the weighted minimum norm approach

described above. If no such information and no a priori model [s]

exist, Cs should be chosen to be the identity matrix, and thus

ŝ ¼ LT ðLLT Þ�1
d ð19Þ

again the MNP is obtained.

Regularization

If the data contain noise, the regularization parameter k should

be larger than zero. If all sensors have the same noise level, the

matrix Cd is proportional to the identity matrix, i.e. Cd = kI. This
yields

ŝ ¼ LT ðLLT þ kIÞ�1
d ð20Þ

which is the expression for Tikhonov regularization already de-

rived in the previous section (Eq. (15)).

Backus–Gilbert approach

Each row Gi. of the linear estimator G is the estimator for one

current source ŝi in ŝ (see Resolution of linear estimation techniques

section above). Ideally, Gi. should highly correlate with the poten-

tial distribution of the source of interest, ŝi, but would be orthogonal

to all the others, that is, to all ŝj with j p i. More formally, the values

of the resolution vector ri
T = Gi.L should be maximal at its ith

element, and vanish anywhere else. This approach to underdeter-

mined linear inverse problems was first suggested by Backus and

Gilbert (1968), and a similar strategy was developed by Capon

(1969). The ideal choice for ri would be a (n*1)-vector containing

zeroes everywhere except for the position of the source of interest

(the ith element), at which it should be 1. This corresponds to the ith

column of the (n*n)-identity matrix I.i (Jackson, 1972).
However, the construction of an optimal ri is restricted by

the condition ri
T = Gi.L, that is, it is a linear combination of

the rows of the leadfield matrix. One can only expect to

optimize the behavior of the estimator Gi. to some degree.

This can be done by defining the ideal resolution vector ti and

formulating a measure for its distance to the feasible resolution

vector ri:

minðWðri � tiÞÞ2 ð21Þ

Z minððGi:L� tTi ÞWTWðGi:L� tTi Þ
T Þ ð22Þ

Z minðGi:SGi:
T � 2Gi:uþ constÞ ð23Þ

with

S ¼ LWTWLT

and

u ¼ LWTWtTi

W is a weighting matrix that might give differential

weights to the components of the difference between ri and

ti. For example, the original idea of Backus and Gilbert (1968)

was to increasingly penalize contributions from sources distant

to the location of interest, such that activity produced at these

distant sites projects less on the linear estimator than nearer

ones.

The solution to this minimization problem is unique, and yields

the estimator (Grave de Peralta Menendez et al., 1997a)

Gi: ¼ S�1u ð24Þ

If the target vector ti is chosen as the ideal resolution vector,

that is, as one row of the identity matrix Ii. and if equal weight is

given to the minimization of the difference between the obtainable

resolution vector and the ideal one (ri � ti) (i.e., W = I), then S =

LLT and u = L.i (which is the ith column of the leadfield matrix),

yielding

Gi: ¼ ðLLT Þ�1
L:i: ð25Þ

Computing such an estimator for all solution points, one again

obtains the MNP

G ¼ LT ðLLT Þ�1 ð26Þ

The choice of the matrix W is critical for the resolution

properties of the linear estimator. For example, special care has

to be taken in the case of vector fields (Grave de Peralta Menendez

and Gonzalez Andino, 1999). Furthermore, due to the flexibility in

the choice of W, it is possible to obtain weighted minimum norm

solutions of the type described above (Grave de Peralta Menendez

et al., 1997b).

Regularization

If we assume that signal and noise are additive, then the linear

estimate obtained with an inverse matrix G can be analogously

decomposed:

ŝ ¼ Gd ¼ Gds þGdn ¼ ŝs þ ŝn ð27Þ
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Fig. 1. Parts of the simulation set-up used in this paper. Shown are (from

outside to inside) the skin and the liquor surface used in the BEM model,

and shell 1, shell 2, and shell 3 used as the source space.
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or elementwise:

ŝi ¼ Gi:d ¼ Gi:ds þGi:dn ¼ ŝis þ ŝin ð28Þ

ŝn is the part of the estimate due to noise and should therefore

be minimized. This can be accomplished in a least-squares frame-

work for each element of ŝ individually:

minð½Gi:n�2Þ Z minð½nT ðGi:G
T
i: Þn�Þ Z minðGi:½nTn�GT

i: Þ
Z minðGi:CnG

T
i: Þ ð29Þ

[ ]denotes the expectation value operator and Cn the noise

covariance matrix.
Fig. 2. Amplitude of the potential distribution (A) and the minimum norm estimate

placed approximately beneath the vertex, 10, 20, and 30 mm below the cortical

electrodes or dipoles, respectively, and normalized to the maximum value in ea

combined. The amplitudes on separate shells for these solutions, but for the same
This expression can be included in Eq. (3) with a regularization

parameter k that indicates how much weight is given to the

suppression of noise:

minððWðGi:L� tTi ÞÞ
2 þ kðGi:CnGi:

T ÞÞ ð30Þ

This yields the unique solution:

Gi: ¼ ðSþ kCnÞ�1
u ð31Þ

For the simplifications mentioned above (i.e., W = I, ti = I.i),

this becomes

Gi: ¼ ðLLT þ kIÞ�1
L:i; or G ¼ LT ðLLT þ kIÞ�1 ð32Þ

which is the formula for Tikhonov regularization as in Eq. (15).

One advantage of this approach is that the trade-off between

resolution (given by the resolution vector ri) and the influence of

noise (given by the variance of the source estimate at a specific

location) can be controlled for each estimator Gi. (and thus for each

estimation point in the source space) separately. Estimators of this

kind are sometimes called ‘‘beamformers’’ (Barnes and Hillebrand,

2003; Sekihara et al., 2002; Vrba and Robinson, 2001) or ‘‘min-

imum variance spatial filters’’ (Van Veen et al., 1997), since the

aim is to create spatial filters Gi. that focus only on activity

generated in a circumscribed brain area, and are not sensitive to

activity outside these areas and noise.
Implementation of the minimum norm method

Motivation

The classical minimum norm solution is obtained by all of the

abovementioned approaches in the case of nonexisting a priori

knowledge about the source to be estimated. It would therefore be

applicable in many situations where minimum modeling assump-
s (B–D) in dependence of source depth. Radial and tangential sources were

surface, respectively. Amplitudes were determined as the RMS across all

ch diagram. For each source, a solution was computed on all three shells

dipole sources, are shown in different diagrams (B–D).
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Fig. 3. Current source distribution including dipole orientations estimated

for superficial radial and tangential sources (10 mm beneath vertex). The

solutions were obtained for all three shells combined. The distributions for

different shells (10, 20, and 30 mm below cortical surface) are displayed in

separate images, each of which is scaled to its maximum value for better
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tions are required, such as localization of complex cognition-

related brain activity, analysis of continuous EEG and MEG, or

analysis on a single-trial level. In the following, an implementation

of the minimum norm method will be described that optimally

exploits the strengths of this method, and allows for efficient data

processing, statistical analysis of results, and visualization.

It has been described previously that the minimum norm method

is not able to retrieve the depth of dipolar sources, even in the

absence of noise (Fuchs et al., 1999; Grave de Peralta-Menendez

and Gonzalez-Andino, 1998). The best we can therefore hope for is

a two-dimensional projection of the true current distribution. This

might at least tell us in which section of the brain a center of activity

is located. This led several research groups to compute their source

estimates on a two-dimensional surface right from the beginning

(Edlinger et al., 1997; Hämäläinen and Ilmoniemi, 1994; Uutela et

al., 1999; van Burik and Pfurtscheller, 1999). A consequence of this

approach is that sources that are possibly active in the brain are not

included in the source model. Although the depth of the source

cannot be deduced from the estimate, one should still expect that the

estimate becomes more reliable if no such modeling error is

introduced. Considering the two-dimensionality of information in

minimum estimates on the one hand, and the desirability of a three-

dimensional source space for most accurate modeling on the other,

it is suggested here to use a ‘‘shell model’’ for source reconstruction.

Such a model could consist of several surfaces at different distances

to the head center. Furthermore, including sources at different

depths into the model allows to explicitly investigate the effect of

source depth on the estimates.

Simulation configuration

The following simulations were carried out using the 152-

subject T1 average brain of the Montreal Neurological Institute

(MNI). Image processing was accomplished using the software

package CURRY (Neuroscan Labs, Sterling, USA). The surfaces

for skin, skull, liquor, and brain compartments were extracted

interactively using a region growing algorithm and three-dimen-

sional closing operations (Wagner et al., 1995). One hundred forty-

eight electrodes were regularly distributed on a sphere and projected

onto the skin surface of the MNI brain.

The brain surface was eroded by 10 mm (shell 1), 20 mm (shell

2), and 30 mm (shell 3), respectively, and the corresponding

surfaces were used as shells in the source space for the simulations.

This set-up is shown in Fig. 1. The shells contained a similar

number of source locations each (996, 991, and 915, respectively),

that is, the density of points was different for these shells.

Therefore, the forward solutions for dipoles on shell 2 and shell

3 were each weighted by the factors 6.5/8 and 4.9/8, respectively.

Side lengths of triangles connecting dipole locations were 8 mm on

shell 1, 6.5 mm on shell 2, and 4.9 mm on shell 3. At each location,

three orthogonal dipoles were placed (equivalent to one rotating

dipole), two of them approximately tangential to the scalp surface

and one of them radial.

The leadfield for this source configuration (i.e., the forward

solutions for all dipoles included in the model with unit strength)

was computed in a boundary element model (BEM) constructed

from the MNI standard brain. CURRY standard parameters using

the isolated problem approach and constant triangle potentials on

three compartments (scalp, skull, liquor) were used. The whole

BEM set-up comprised 4245 nodes. Side lengths of triangles within
the surface were 10 mm for the skin surface, 9 mm for the skull

surface, and 8 mm for the liquor surface.

Results

Fig. 2 presents the amplitudes obtained in the surface potential

and on different minimum norm solution shells, in dependence of

the depth of the dipole generating the surface potential. One radial
visualization. The corresponding RMS amplitudes are displayed in Fig. 2B.
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and one tangential dipole were considered at each location. The

amplitude was determined as the root-mean-square across all

electrodes or dipoles, respectively. The general pattern of the

results is not surprising: For radial as well as tangential dipoles,

the amplitude decreases with increasing source depth, and for each

source location, radial dipoles produce larger activity than tangen-

tial ones. More interestingly, the decline of amplitude with source

depth for each minimum norm solution shell is steeper than for the

surface potential. In other words, deeper dipoles are suppressed

more strongly on any of the solution shells than in the plain EEG

data. The more superficial the shell, the steeper the decline. In

conclusion, the sensitivity of minimum norm estimates to deep
Fig. 4. Potential (A) and intensity distributions for current source estimates (B–D)

below the cortical surface beneath the vertex). The source estimates for sources at

maximum value for better visualization of its spatial extent.
dipole sources is worse than for the surface potential. This depth

sensitivity depends on the depth of the solution shell, and improves

with increasing depth.

Fig. 3 presents minimum norm solutions obtained for one radial

and one tangential dipole placed near the vertex on shell 1. Each

image is normalized to its maximum value, such that also smaller

details of the distributions remain visible. The current estimates are

shown with their orientations, that is, the length and orientation of

the arrows at each source location indicate the strength and

direction of the dipole moment, respectively. The amplitudes

corresponding to these images can be found in Fig. 2B. Because

these dipoles were located on the most superficial shell, and in an
obtained for radial and tangential sources at different depths (10, 20, 30 mm

different depths are displayed in separate boxes. Each image is scaled to its
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area that is well-covered by the electrode array, the corresponding

source estimates illustrate the best limit of the resolution power of

this method.

To estimate the spatial extent of the source estimates in depen-

dence of the solution shell and the depth of the dipoles, intensity

maps are presented in Figs. 4B–D. Radial and tangential dipole

sources were placed beneath the vertex, at depths of 10, 20, and 30

mm below the cortical surface. The surface potential distributions

corresponding to these dipole sources are displayed in Fig. 4A. Like

for Fig. 3, all intensity maps were normalized to their maximum

value, so that smaller details can still be identified. The color scale

was set such that white contour areas reflect half the intensity

between zero and maximum intensity within each map. Red color

therefore indicates the upper and blue color indicates the lower

intensity range.

Superficial sources produce less extended solutions than deeper

ones, and tangential sources produce more widespread peaks than

radial ones. It is noteworthy, however, that the centers of these

peaks always appear near the true dipole source location, and that

none of the images in Figs. 3 and 4 contain any significant local

maxima distant from the target location (‘‘ghost sources’’). Fur-

thermore, the distributions on deeper solution shells are generally

more widespread than those on superficial shells, though the

centers of the peaks are approximately at the same locations. Shell

1 produces the sharpest images, and is therefore superior with

respect to spatial resolution. This is in contrast with the results

obtained from Fig. 2, where shell 1 was found to be least sensitive

to deep sources. This suggest that a trade-off exists between spatial

resolution (or the degree of blurring) and depth sensitivity of a

source estimate.
Discussion

Theory

The theoretical part of this paper compared three main strate-

gies to tackle the bioelectromagnetic inverse problem: the statisti-

cal, the minimum norm, and the resolution optimization approach.

The main results are:

(1) All three approaches can incorporate the same constraints on

the source distribution.

(2) All three approaches allow the handling of noisy data, and can

take into account different noise levels at different sensors or

the covariances between them.

(3) In the case where there is no a priori information implemented

and the noise level is assumed to be the same in all sensors, all

three approaches yield Tikhonov regularization.

(4) In the case where there is no a priori information and no

regularization implemented, all three approaches yield the

minimum norm pseudoinverse (MNP).

Point (1) implies that even though experimenters who chose

different approaches can interpret their results differently (e.g., talk

about the ‘‘most likely’’ solution in one case and about the ‘‘least

energy consuming’’ in another), the actual source distributions

might be exactly the same. Importantly, although the derivation of

a solution within a certain framework might be complex, the

crucial question to be asked is whether there is any reliable a

priori information available for the problem at hand that can be
implemented by the corresponding method. What is therefore

needed to obtain a more detailed image of the source configuration

underlying a measured potential distribution is not a more com-

plicated mathematical approach. It would be more essential to

provide reliable physiological information, for example, about the

number or the approximate location of possibly active sources,

which could then be incorporated into any of the outlined

approaches. Unless such information is available, the classical

minimum norm solution presents us with an, in some well-defined

terms, optimal approach, that is, it only includes sources predicted

from the data alone.

A simple example on the danger of accepting ‘‘invisible’’

sources can be constructed for the case of MEG. In a spherical

head model, radial dipoles do not produce any measurable field at

any sensor around the head, and therefore present a part of the null

space (Sarvas, 1987). They could be added to any other solution

obtained by any method, and would not increase the discrepancy

between the predicted and the measured magnetic field (e.g., the

residual variance). If such radial sources in some brain region are

part of a source distribution, for example, as a result of a constraint

that favors sources in that particular area, they might be interpreted

as evidence for the activation of that brain area. However, the

presence of these sources would not be supported by the data. It is

therefore one thing to claim that a feature of the solution does not

contradict the data and a certain hypothesis, but yet another thing to

prove that the data themselves support this feature.

There are two ways of dealing with this problem. Either one can

avoid it completely by using the MNP, or one can check with any

given solution if the features of interest lie in the null space. If the

latter option is chosen, the following aspects should be carefully

considered:

(1) an explicit and clear justification for the a priori information

must be provided,

(2) it should be clearly described how (e.g., by which of the

abovementioned approaches) it was implemented,

(3) it should be demonstrated how much information is actually

obtained from the data, for example, by comparison with the

minimum norm solution.

Practical implementation

This paper suggests an efficient implementation of the MNP. In

simulations, it produced single activation peaks around the correct

two-dimensional spherical locations. Previous studies reported that

the localization accuracy of the MNP in 3D space, usually measured

as the distance between the true location of a simulated dipole and

the largest peak in the distributed source estimate, is inferior to

weighted minimum norm or nonlinear solutions (Fuchs et al., 1999;

Grave de Peralta-Menendez and Gonzalez-Andino, 1998). Howev-

er, the theoretical considerations of this paper show that the

properties of the MNP reflect fundamental properties of the mea-

surement configuration, and are not just a limitation of this

particular method itself. For example, its inability to determine

the depth of a source indicates that this information is simply not

contained in the data. The potential or magnetic field generated by a

single dipole at some depth inside the brain can always as well be

explained by a distributed solution on a surface with an arbitrary

radius. All these solutions would be fully compatible with the

recorded data, and one could pick out any of them to claim that the

source is located at that specific depth. However, the simulations of
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this study and earlier reports suggest that the MNP can provide a

blurred two-dimensional projection of the true sources (Hauk et al.,

2002). If spherical coordinates are employed and the radius is

neglected, the MNP can produce activation peaks directly above the

true sources. This can already hint at the number and approximate

location of sources in a particular data set, and can provide valuable

information for more constrained source analysis (e.g., dipole

modeling). In any case, this information is more reliable than the

raw ERPs, and can easily be subjected to statistical analysis to

compare for differences between experimental conditions (Hauk et

al., 2001, 2002).

It should be emphasized that the conclusion of this paper is not

that reliable a priori information does not exist at all and that the

classical minimum norm solution should always be preferred to any

other method. Obviously, in the case where reliable a priori

information is available, it can significantly increase the resolution

power of the analysis, and also localization in depth might become

possible (Babiloni et al., 2003; Dale et al., 2000; Phillips et al.,

2002). In the most fortunate case, one can assume a fixed number of

focal sources, which can be modeled as equivalent dipoles, as for

some perceptual processes (Di Russo et al., 2003; Lütkenhöner et

al., 2003). The assumption of single focal sources can also be

implemented in linear distributed methods (Grave de Peralta

Menendez et al., 2001). One can expect that the more constrained

the model and the less parameters to estimate, the more accurate the

result will be, given the constraints are correct. In this paper, it was

argued that if one does not want to run the risk of implementing

incorrect constraints that might distort the solution, the MNP is a

convenient and informative alternative.

Because it is linear, its localization accuracy for the case of

multiple sources can easily be deduced by the superposition

principle. The whole toolbox of linear inverse theory is at hand to

objectively quantify the performance of this method (Craig and

Brown, 1986; Fuchs et al., 1999; Grave de Peralta-Menendez and

Gonzalez-Andino, 1998; Menke, 1989; Parker, 1994; Tarantola,

1994). This extends to parameters not considered in the simulations

of this paper, as, for example, the influence of noise. Backus and

Gilbert (1970) demonstrated analytically that already a small

amount of regularization (i.e., with little loss of spatial resolution)

already significantly increases the stability of the solution. There-

fore, the present simulation results can be compared to data with

high signal-to-noise ratio.

The suggested implementation allows efficient data reduction,

because the critical parameter source depth is explicitly parame-

terized in the multiple-shell model. The data can be conveniently

visualized, for example, for only one or few solution shells that

might already carry the relevant information to be presented. The

orientation of dipole sources in distributed source estimates is

commonly not shown. One reason might be the difficulty to

visualize them in a convenient manner, as, for example, on

three-dimensional source spaces. Another reason might be that

some experimenters are not interested in the orientation of the

sources, but only in their strength. However, even if the intensity at

one brain site is the same between two conditions, their source

orientations could still be in completely opposite directions, which

would be a dramatic difference that might be missed by analyzing

intensity distributions alone. The shell approach suggested in this

paper would make the visualization of source orientations conve-

niently possible.

For these reasons, this method and the presented implementation

are well suited for standardized source estimation. It is suggested as
a powerful analysis tool when much complex data have to be

processed. This includes studies on higher cognitive function in

which individual source estimation preceding statistical analysis is

intended, or if source estimation is intended on a single-trial level

before averaging, for example, as a preprocessing tool for time

series analyses.
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Steinsträter, O., Patterson, R.D., 2003. Localization of primary auditory

cortex in humans by magnetoencephalography. NeuroImage 18, 58–66.

Menke, W., 1989. Geophysical Data Analysis: Discrete Inverse Theory.

Academic Press, San Diego.

Parker, R.L., 1994. Geophysical Inverse Theory. Princeton Univ. Press,

Princeton.
Pascual-Marqui, R.D., 1999. Review of methods for solving the EEG

inverse problem. IJBEM 1, 75–86.

Pascual-Marqui, R.D., Esslen, M., Kochi, K., Lehmann, D., 2002. Func-

tional imaging with low-resolution brain electromagnetic tomography

(LORETA): a review. Methods Find. Exp. Clin. Pharmacol. 24

(Suppl. C), 91–95.

Phillips, C., Rugg, M.D., Friston, K.J., 2002. Anatomically informed basis

functions for EEG source localization: combining functional and ana-

tomical constraints. NeuroImage 16, 678–695.

Pulvermüller, F., Shtyrov, Y., 2004. Automatic processing of grammar in

the human brain as revealed by the mismatch negativity. NeuroImage

(in press).

Rinne, T., Alho, K., Ilmoniemi, R.J., Virtanen, J., Naatanen, R., 2000.

Separate time behaviors of the temporal and frontal mismatch negativity

sources. NeuroImage 12, 14–19.

Sarvas, J., 1987. Basic mathematical and electromagnetic concepts of the

biomagnetic inverse problem. Phys. Med. Biol. 32, 11–22.

Sekihara, K., Nagarajan, S.S., Poeppel, D., Marantz, A., Miyashita, Y.,

2002. Application of an MEG eigenspace beamformer to reconstructing

spatio-temporal activities of neural sources. Hum. Brain Mapp. 15,

199–215.

Singh, K.D., Barnes, G.R., Hillebrand, A., Forde, E.M., Williams, A.L.,

2002. Task-related changes in cortical synchronization are spatially

coincident with the hemodynamic response. NeuroImage 16, 103–114.

Tarantola, A., 1994. Inverse Problem Theory, second ed. Elsevier,

Amsterdam.

Tikhonov, A.N., 1963. Solution of incorrectly formulated problems and the

regularization method. Sov. Math., Dokl. 4, 1035–1038.

Uutela, K., Hamalainen, M., Somersalo, E., 1999. Visualization of magne-

toencephalographic data using minimum current estimates. NeuroImage

10, 173–180.

van Burik, M., Pfurtscheller, G., 1999. Functional imaging of postmove-

ment beta event-related synchronization. J. Clin. Neurophysiol. 16,

383–390.

Van Veen, B.D., van Drongelen, W., Yuchtman, M., Suzuki, A., 1997.

Localization of brain electrical activity via linearly constrained min-

imum variance spatial filtering. IEEE Trans. Biomed. Eng. 44,

867–880.
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Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elek-

trischen Versuche. Annals of Physics and Chemistry 89, 211–233,

353–377.

Vrba, J., Robinson, S.E., 2001. Signal processing in magnetoencephalog-

raphy. Methods 25, 249–271.

Wagner, M., Fuchs, M., Wischmann, H.A., Ottenberg, K., Doessel, O.,

1995. Cortex segmentation from 3D MR images for MEG reconstruc-

tions. In: Baumgartner, C., et al. (Eds.), Biomagnetism: Fundamental

Research and Clinical Applications. Elsevier/IOS Press, Amsterdam,

pp. 433–438.

Wagner, M., Fuchs, M., Wischmann, H.A., Drenckhahn, R., Koehler, T.,

1996. Smooth reconstruction of cortical sources from EEG or MEG

recordings. NeuroImage 3, S168.


	Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data
	Introduction
	Theory
	General
	Resolution of linear estimation techniques

	Approaches to tackle the inverse problem
	Null-space approach
	Minimum norm approach
	Regularization

	Maximum likelihood approach
	Regularization

	Backus-Gilbert approach
	Regularization

	Implementation of the minimum norm method
	Motivation
	Simulation configuration
	Results

	Discussion
	Theory
	Practical implementation

	Acknowledgments
	References


