

Diffusion Tractography and Connectivity Analysis in MRTrix

Marta M. Correia
MRC Cognition and Brain Sciences Unit

DWI denoising

- Denoising must be performed as the first step of the pipeline
- Exploits data redundancy in the patch-level PCA domain

Removal of Gibbs artefacts (optional)

- Removes Gibbs ringing artefacts from DWI images
- Designed for data acquired with full k-space
- May fail for data acquired with Partial Fourier always inspect the output

DWI distortion correction

Pre-processing of DWI images using TOPUP and EDDY

Constrained Spherical Deconvolution (CSD)

- Two distinct fibre orientations
- $S_1(\theta,\phi)$, $S_2(\theta,\phi)$ diffusion weighted signal attenuation
- f_1, f_2 volume fractions

Axially symmetric response function describing the signal attenuation measured for a single fibre population.

Constrained Spherical Deconvolution (CSD)

Estimate the response function per tissue type

https://andysbrainbook.readthedocs.io/en/latest/MRtrix/MRtrix Course/MRtrix 05 BasisFunctions.html

Constrained Spherical Deconvolution (CSD)

• Estimate the fiber orientation distribution function (ODF) per tissue per voxel

Anatomically Constrained Tractography (ACT)

- Find the GM/WM boundary to seed the streamlines
 - Tissue segmentation of T1w data using FSL tools
 - Image registration using FSL
 - Generate boundary mask in DWI space

Anatomically Constrained Tractography (ACT)

Find the GM/WM boundary to seed the streamlines

boundary

DWI space

MRC Cognition and Brain Sciences Unit

mrc-cbu.cam.ac.uk

Anatomically Constrained Tractography (ACT)

- Find the GM/WM boundary to seed the streamlines
- Generate streamlines

Creating the Connectome

- Parcellate the brain using Freesurfer
- Apply parcellation to the tractogram to generate a connectivity matrix, representing the number of streamlines connecting each pair of ROIs

Interpretation of results

- Streamlines generated with diffusion MRI tractography lack polarity
- Even the best fiber orientation reconstruction algorithm cannot resolve all crossing fibers
- Structural connectomes are dominated by false positives
- Choice of fitting model, tracking algorithm, stopping criteria, etc, can also influence the connectome

Thank you

