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Typical EEG/MEG Analysis Pipeline

Structural information

https://mne.tools/stable/overview/cookbook.html



https://mne.tools/stable/overview/cookbook.html

Data Pre-Processing - Artefacts



Artefacts
Artefacts can be

* non-physiological, i.e. from outside the body (sensor-intrinsic
noise, line noise, moving objects, vibrations)
=> Maxfilter (SSS), Frequency-Filtering, SSP, PCA/ICA

* Physiological but non-brain, e.g. eye movements, muscles
=> SSP, PCA/ICA, H/L-Filtering

« Physiological from the brain, I.e. brain sources that are not of

Interest or not included in your source model
=> choose appropriate source estimation, regularisation

Wisdoms:
“Some people’s signal is other people’s noise.”
Unfortunately, you cannot just choose what’s signals and what’s noise.
It’s always better to avoid artefacts than to correct them.



Artefacts in EEG and MEG Will End Up in Source Space

Eye Blink

This will affect all source estimation methods —
get rid of your artefacts beforehand.



Separating Signal and Noise Components

If signal and noise have characteristic topographies, several methods can be applied to
remove (some) noise or extract signals:

» SSP: Signal Space Projection (needs pre-defined topographies)

The following often go under the term “blind source separation”, because the
topographies are not pre-defined, and found by the methods themselves (under certain
assumptions):

» PCA: Principal Component Analysis

» SVD: Singular Value Decomposition

 ICA: Independent Component Analysis



Signal Space Projection (SSP)

You know the artefact topography N and regress it out of your data.
You decompose your data D, such that
D =a*N + Signal

You only analyse Signal.

This works well with eye-movement and blink artefacts.

Note:
Brain signals whose topographies are highly correlated with N will also be removed

or attenuated.



PCA and SVD

» Decompose data into orthogonal components T,, T,, etc. (topographies or time courses), i.e. data
D=a*T, +b*T,+ ...
* Find the components you don’t like (e.g. correlate highly with EOG and ECG, or components that
explain little variance).
 Reconstitute your data only with the “good” components,

e.g. D=a*T,; +c*T;+ ... if component 2 reflects eye blinks.
Also:
« Components have an order according to the variance they explain (e.g. var(T,)>var(T,)>...)
 Can be used to determine the number of independent components (according to specified criteria)

* Relatively fast (try svd() or princomp() in Matlab).

sUnfortunately: Orthogonality and variance ordering is not physiologically plausible.



Independent Component Analysis

Example: (De-)mixing of sources in the cocktail party effect
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http://www.tgmp.org/Content/vol06-1/p031/p031.pdf



Independent Component Analysis

Basic idea is similar to PCA and SVD:
Decompose data into components T, T, etc. (topographies or time courses), i.e. data

D=a*T, +b*T,+ ...

But:

ICA does not produce orthogonal components, and does not assume Gaussianity of signals.
There are number of ICA algorithms available that have been optimised for EEG/MEG
data.

They usually work well for example to remove eye movement and heart beat artefacts.






“*Maxfilter”
Suppressing Signals From Distant Sources (MEG only)

\- The mathematical basis of Maxfilter:

decomposition of magnetic field into spherical harmonics):

bOUt vnm(ﬁ (P - " n—1
B(r) = -, 2 2 WEra SN BT ©,,(0.0).
nl=1m=—-n n=1m=-n
Sout =
0 Oy Y, . imY, .
Vo(0.0) = =(n+1)Y e + 76 e+ o €y
dY imY,

®,,.(0,9) =nY, e + aemee+ 5y

b=b,+b

out

The measured magnetic field distribution is decomposed into “inside” (the helmet)
and “outside” components, and the outside components are removed.

Taulu & Kajola, Journal of Applied Physics 2005



Maxfilter

Without
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Latency 20 ms
Scale 16 fT/cm Q =2 nAm

Taulu & Kajola, Journal of Applied Physics 2005



Maxfilter Software

Software shielding (Signal Space Separation, SSS)

By subtracting the outer SSS components from measured signals, the program suppresses artifacts from distance sources.

Automated detection of bad channels
By comparing the reconstructed sum with measured signals, the program can automatically detect if there are MEG channels
with bad data that need to be excluded from Maxwell-filtering.

Spatio-temporal suppression of artifacts (*“-st™)
By correlation the time courses of SSS artefact components with the cleaned signal, the program can identify and suppress
further artefacts that arise close to the sensor array.

Notch Filter to remove 50/60 Hz line noise.

Transformation of MEG data between different head positions (*“-trans™)
By transforming the inner components into harmonic amplitudes (i.e. virtual channels), MEG signals in a different head
position can be estimated easily.

Compensation of disturbances caused by head movements (“-movecomp™)
By extracting head position indicator (HPI) signals applied continuously during a measurement, the data transformation
capability is utilized to estimate the corresponding MEG signals in a static reference head position.



Maxfilter — Movement Compensation

Head movement is tracked continuously (well, every 200 ms) via HPI (Head Position
Indicator) coils.

We can take Maxfilter parameters from any time point t,
and estimate the MEG signals at sensor positions of time point t,

This compensates — to some degree — for spatial variation caused by head movements.

Stable subject Moving subject, Moving subject,
No compensation with compensation

Elekta Neuromag






Data Pre-Processing
Frequency and Time-Domain Filtering



Frequency Spectrum of EEG Data

Time course and topography may differ

among different frequency bands
(and may depend on task, environment, subject group etc.)
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http://link.springer.com/article/10.1007%2Fs10339-009-0352-1/

Time-Domain Signals Can Be Represented in the Frequency Domain
- and Vice Versa

Decomposing signals
Into sine/cosine terms

Approximating a step function m
with Fourier terms — AVAVAVAVAV.
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Basic Principals of Frequency Filtering

If you signals of interest and artefacts occur in separate frequency bands:
- Decompose your signal into its frequency spectrum
- Remove the part of the frequency spectrum that represents artefacts

- Recompose your time domain signal from the remaining frequency spectrum

Examples:

- Line Noise from electrical equipment (50 or 60 Hz): Notch filter

- Muscle artefacts are commonly high frequency (> 30 Hz): Low-pass filter



Basic Principals of Frequency Filtering

Unfortunately, signal and artefacts often overlap in the frequency domain (e.g. eye
movements, head movements, heart activity). Thus:

- Avoid artefacts wherever possible

- Control for artefacts (e.g. EOG electrodes, movement parameters)

- Use spatial artefact correction methods where appropriate (ICA, Maxfilter, etc.)



Basic Principals of Frequency Filtering

Filtering changes the time course of your data. Thus:

“Filter as much as necessary but as little as possible.”

Common types of filters:

“High-pass’: Lets higher frequencies pass, suppressses lower frequencies (incl. “detrending”)

“Low-pass”: Lets lower frequencies pass, removes higher frequencies

“Band-pass”: Lets frequencies within a frequency band pass, suppresses frequencies above and below the band

“Notch” filter: A very sharp band-pass filter, e.g. for 50 or 60 Hz line noise

(e.g. Cheveigen & Nelken, Neuron 2019, https://www.sciencedirect.com/science/article/pii/S0896627319301746), Widmann et al., Journal of Neuroscience Methods 2015,

https://www.sciencedirect.com/science/article/pii/S0165027014002866, Tanner et al., Psychophysiology 2016, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506207/).



https://www.sciencedirect.com/science/article/pii/S0896627319301746
https://www.sciencedirect.com/science/article/pii/S0165027014002866
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506207/

Basic Principals of Frequency Filtering

Time-domain and frequency-domain filtering are two sides of the same coin:

One type of frequency-domain filtering corresponds to one type of time-domain filtering.
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https://uk.mathworks.com/matlabcentral/fileexchange/51155-time-domain-filtering-vs-frequency-domain-filtering-in-images



https://uk.mathworks.com/matlabcentral/fileexchange/51155-time-domain-filtering-vs-frequency-domain-filtering-in-images

Filtering can affect both signal and artefact

High-pass filtering:
“(linear/polynomial) Detrending”
“Removing slow drifts”
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Low-pass filtering:

“Smoothing”
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506207/
https://www.sciencedirect.com/science/article/pii/S0165027014002866

Edge Artefacts of Filters

Filtering artefacts occur at signal discontinuities, e.g. at the beginning and the end of the data.

Thus, filter the “longest possible data segment”, ideally the raw data as early as possible.

If you have to filter epochs, consider filtering longer epochs than you actually need.

Be careful with “effects” close to the border of epochs.
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High-pass filtered signal
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Filtering and Downsampling: “Aliasing”

« Downsampling can lead to “aliasing” if the data are not filtered appropriately (Nyquist theorem):

Filter at least below half of the sampling frequency before downsampling.

Aliasing

. i T S . .

Aliasing produces waveform (blug) at 114 the original signal's frequency (green).

Also watch:

https://www.youtube.com/watch?v=R-1Vw8OKjvQ
Thanks to Alessandro.



https://www.youtube.com/watch?v=R-IVw8OKjvQ
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