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The EEG/MEG Forward Problem

EEG/MEG measure the Sensors are differently sensitive
primary sources indirectly to different sources

“Leadfield

volume

current,
“dipole”

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography:
From Signals to Dynamic Cortical Networks, 2nd Ed.”




We Have To First State The Forward
Problem In Order To Solve The
Inverse Problem

Inverse Operator

data  “leadfield” dipples dipoles Inverse data

s ~ (i) (15034 0.1241
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EEG/MEG “Scanning” is not “Tomography”

Tomography (CT, fMRI...) EEG/MEG
d

d dg

X-ray dy =V tVy,
d;
d, =V, tVy,
d3=Vy+tVy  d=VtVy, d1: VitV tVgty,, ..
— 0y= Vo1tV tVostvy, ..
dl_ V11+V12
d2: V21+V22 Information is lost during
d3: V, +V,, measurenTent
d = V12+V22 Cannot be retrieved by

mathematics
Available information is determined by

the equipment/experimenter Inherently limits spatial resolution



Let’'s Start Again:
The “Blurry Image” Analogy

Just because the brain is complicated doesn’t mean source estimation has to be complicated




The Superposition Principle
A “Constraint-Free” Interpretation of Linear Methods

Astronomy

Microscopy

Object \
conyolution

Point-Spread Function
PSF

https://en.wikipedia.org/wiki/Point_spread_function



Linear Methods Can Easily Tell Us If They Do What We Want
Superposition Principle

4 2 0 2 4 6 8 10

4 2 ) 2 4 6 8 10

If you know the behaviour for point sources,
you can predict the behaviour for complex sources




Linear Methods — Superposition Principle

Superposition In Source Space

PSF, =Gl PSF, =Gl, PSF, + PSF, = Gl, + Gl, = G(l,+,)

Example Point-Spread

0.02¢

DLE: 3.1
SD: 2.0 0

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts),
“Magnetoencephalography:



Spatial Resolution of Source Estimation Is Complex

Spatial resolution depends on:

number of sensors (EEG/MEG or both)
source location
source orientation
signal-to-noise ratio
head modelling
assumptions about the sources

=> difficult to make general statement



Spatial Resolution — A Naive Estimate

With n sensors:
-> n independent measurements
-> n independent parameters estimable

-> at best separate activity from n brain regions

Sensors are not independent, data are noisy: ~ 50 degrees of freedom

\Volume of source space:

Sphere 8cm minus sphere 4 cm: volume ~1877 cm?

“Resel”: 38 cm3 -> 3.43 cm?
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Resolution Matrix

Forward Problem Linear Inverse Problem

S = GLs & Rs

Relationship between estimated and true source distribution.

e.g. Hauk/Stenroos/Treder, bioRxiv 2019
https://www.biorxiv.org/content/10.1101/672956v1



https://www.biorxiv.org/content/10.1101/672956v1

Creating an Optimal Resolution Matrix

S = Rs

The closer R is to the identity matrix, the closer our estimate is to the true
source.

Therefore, let us minimise the difference between R and the identity matrix in
the least-squares sense:

IR — I||; = min
This leads to the Minimum Norm Estimator (MNE):
Gyy = L'(LL")™

Its resolution matrix Ry y = LT (LLT) 1L is symmetric.

e.g. Hauk/Stenroos/Treder, bioRxiv 2019
https://www.biorxiv.org/content/10.1101/672956v1



https://www.biorxiv.org/content/10.1101/672956v1

Spatial Resolution / Leakage:
Point-Spread and Cross-Talk

Cross-Talk Function Point-Spread Function
(CTF) (PSF)

+1
0
-1
How other sources may affect the How this source affects
estimate for this source estimates for other sources

e.g. Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993



https://www.sciencedirect.com/science/article/pii/S1053811922002993

PSFs and CTFs for Some ROls

For MNE, PSFs and CTFs turn out to be the same




PSFs and CTFs for Some ROls

For MNE, PSFs and CTFs turn out to be the same




Localisation Bias Has Consequences for ROl analysis
PSFs/CTFs Can Tell You How It Looks Like

Desikan-Killiany Atlas parcellation

Adaptive cortical parcellation based on resolution matrix are
possible: Farahibozorg/Henson/Hauk NI 2018
https://pubmed.ncbi.nim.nih.gov/28893608/



https://pubmed.ncbi.nlm.nih.gov/28893608/

Quantifying Resolution From PSFs and CTFs
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It’s not just peak localisation that counts,
but also spatial extent of the distribution.



Whole-Brain Maps of Resolution Metrics

Peak Localization Error
MEG EMEG EMEG2

75 R 2
DDA

DLE (¢ m)— |

Spatlal DeVIa'[IOH Molins et al., Neuroimage 2008
MEG EMEG EMEG2

B A0 A
DDA

SD (cm

0 1 2 3 4

Combining EEG and MEG improves spatial resolution.



Sensitivity Maps
RMS of Leadfield Columns

EEG MEG EEG+MEG

70 electrodes 102 mags + 204 grads 102 mags + 204 grads

Combining EEG and MEG improves sensitivity.

Also: Goldenholz et al, HBM 2009



Methods Comparison

« MEG+EEG: Elekta Vectorview (360+70 channels), Wakeman & Henson open data set
 Methods:

 L2-MNE

» depth-weighted L2-MNE

« dSPM

e SLORETA

e 2 LCMV beamformers (pre- and post-stimulus covariance matrices)
* Resolution Metrics:

e Peak Localisation Error

« Spatial Deviation (extent)

Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993



https://www.sciencedirect.com/science/article/pii/S1053811922002993

Example PSFs and CTFs for MNE and eLORETA

Note: For MNE PSFs and CTFs are the same

Anterior Temporal Lobe Pars Triangularis Pars Opercularis

eLOR PSF MNE PSF&CTF

eLOR CTF

Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993



https://www.sciencedirect.com/science/article/pii/S1053811922002993

Comparing Estimators — MNE-type

Peak Localization Error Spatial Deviation

PSF CTF PSF CTF
= f :
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Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993



https://www.sciencedirect.com/science/article/pii/S1053811922002993

Example PSFs and CTFs for Beamformers

Lateral Occipital Posterior Superior Temporal

PSF Vis

PSF Aud

CTFVis

PSF Base CTF Aud

MNE

Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993



https://www.sciencedirect.com/science/article/pii/S1053811922002993

PSF

CTF

Comparing Estimators — Beamformers

Peak Localization Error Spatial Deviation

>8cm

Post

O0cm

Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993



https://www.sciencedirect.com/science/article/pii/S1053811922002993

Comparing Estimators — Correlations With Depth

Correlation
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Hauk, Stenroos, Treder, Neuroimage 2022


https://www.sciencedirect.com/science/article/pii/S1053811922002993

Interim Conclusion From Methods
Comparison

- Methods vary with respect to localisation error and spatial deviation.

- Improvements in localization error are accompanied by increases in spatial deviation.
- Localisation error for PSFs can be minimised (even to zero), but not for CTFs.

- Spatial deviation for PSFs and CTFs cannot be minimised beyond a certain limit.

- Localisation error for beamformers is low (even zero), but spatial deviation higher than for MNE-type
methods.

- Performance of beamformers similar for different covariance matrices.

— There is no obvious “best method”.

= In this analysis, MNE and eLORETA seem to offer the best compromise between localisation and
spatial deviation.

= The tools (PSFs/CTFs, resolution metrics) can be applied to individual datasets — try it yourself!



Noise and Regularisation



Regularisation parameter
relative to optimal value

Trade-off norm-variance,

0.1

0.2

smoothness
Source at fixed excentricity 71% (60mm)
i = 5= -
s = = -

0.5

10

rel.
dev.

T
MNLS MNLS MNLS MNLS
radial dipoles tangential dip. radial dipcles tangential dip.
SNR = 68 SNR =77 SNR=7 SNR=8

Fuchs et al., J Clin Neurophys 1999



Adding priors (and biases)



Examples for Non-Uniqueness

A distributed superficial distribution may be indistinguishable from a focal deep source.

Jensen & Hesse, chap. 7 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)
See also Krishnaswamy et al. PNAS 2017 for approaches for deep sources,
https://www.pnas.org/content/114/48/E10465



https://www.pnas.org/content/114/48/E10465

Examples for Non-Uniqueness

Field Patterns Same Field Patterns

Dipole Model

Same Source Estimates

Minimum Norm Estimates

Hamalainen & Hari, in Brain Mapping: The Methods (2"), Elsevier 2002



The Inverse “Problem”

How can we make the problem “more unique™?
How can we reduce the number of unknowns?

Do we know anything about our sources,
except that they produce our EEG/MEG data?



How Can “Priors” Help With These Problems?

We are losing information

in the measurement The information in the measurement is not enough to reconstruct its source.

w4

source

OXIEeVE Dl
http://www.pxleyes.com/photoshop-picture/502fba7537141/The-Classic-Optical-Room.html



http://www.pxleyes.com/photoshop-picture/502fba7537141/The-Classic-Optical-Room.html

How Can We Combine Measurement Modalities?

“Converging Evidence”:
Compare results from different modalities, determine commonalities and differences.

“(Asymmetric) Fusion”:

Use one modality as a constraint for another.
(e.g. EEG->fMRI, fMRI->EEG/MEG)

“Neural Modelling” (“Symmetric Fusion”):
Use of a common neural model that accounts for signals in all modalities.

(e.g. EEG<->MEGQG) e.g. Horwitz&Poeppel, HBM 2002; Henson et al., HBM
2010
Each of these options poses different challenges with respect to modelling assumptions and
complexity.
{ N
o0 @ 3

Visual Data Asymmetric Symmetric

Inspection Integration Fusion Fusion

Low information < > High information
>
Calhoun & Sui, Biol Psych Cogn Nsc 2017

_




How Can We Combine Modalities?

“Converging Evidence”:
Compare results from different modalities, determine commonalities and
differences.

“(Asymmetric) Fusion”:
Use one modality as a constraint for another.

“Neural Modelling” (* Symmetric Fusion”):
Use of a common neural model that accounts for signals in all modalities.

e.g. Horwitz&Poeppel, HBM 2002; Henson et al., HBM
2010



Comparing Representational Dissimilarity
Across Neuroimaging Methods

computational models
= symbolic models

+ connectionist models
» biological neural models
t ?
sl
ETE,
brain-activity data representational behavioral data

- cell recordings dissimllarity matrix «reaction time
<RI +errors
«EEG, MEG +explicit judgements

o N

m’o“'? computatlonal model “z,

'\}c'\\‘\- ’ (stage-2 representation) ‘ 0,5%
' "
$ >
human fMRI other modalities
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Kriegeskorte et al., Front Syst Nsc 2008



Comparing Representational Dissimilarity
Across Neuroimaging Methods

Time-time MEG 92 = 92 Human fMRI Time-time correlation matrix
decoding matriv  MEG decoding V IT MEG-MRI
1,200 ms matrix at tt, 1\ 1,200 ms
00m o
N rr) | H o
25
§z
By
—100 ms oan =z —100 rria ; ©
x
»\é’ & o
s \‘ - 4
Extract 82 = 92 MEG matrix at 5 Assign A to
time point combination t,, > Calculate SF:*‘"““‘" sR =+ time-time matrix at ¢, t
t

Repeat for all time point combinations
tx,t’ (—100 ms to 1,200 ms)

MEG-V1 minus MEG-IT

0 0 100 -
P OPFIESELEES O OASIIINIRES S 0@@@@9@@9@%@4@@@

Time (ms) Tima (ms) Time (ms)
- e | IEnEmEmEmE |
R 9:;)6:&%05}:0& RSN
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0
T EEEEr Yy e 1@"@@%@ SSSOSIESS ‘\@ SESESSITIESS
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W Significant positive effect = Mot significant W Significant negative effect

Cichy et al.,

Nat Nsc 2014



How Can We Combine Modalities?

“Converging Evidence”:
Compare results from different modalities, determine commonalities and
differences.

“(Asymmetric) Fusion”:
Use one modality as a constraint for another.

“Neural Modelling” (* Symmetric Fusion”):
Use of a common neural model that accounts for signals in all modalities.

e.g. Horwitz&Poeppel, HBM 2002; Henson et al., HBM
2010



Problems Integrating EEG/MEG And fMRI

1. Metabolic activity can occur without EEG/MEG activity.
2. EEG/MEG activity can occur without BOLD activity.

3. EEG/MEG and metabolic activity may have common sources, but are not
fully spatially overlapping.

4. EEG/MEG and metabolic activity have different time courses.

Note: Usually EEG/MEG and fMRI are acquired in different sessions,
causing:

a) inter- and intra-subject variability (same or different subjects in different sessions)
b) differences in scanning position (supine, seated)
c) differences in scanning environment (e.g. scanner noise)

e.g. Poline et al., in “MEG — An Introduction to Methods”



Problems Integrating EEG/MEG And fMRI

Synchronous: fMRIT MEGT Asynchronous: fMRIT MEG]

Source Configuration Time Scale

— 13

— 10
: /Il A fMRI |
iMRI T . = MEGI
MEG | 0

=100 0 100 204 300 400 ms




Which “Neural Activity” Do You Mean?

modulatory/environmental factors

behaviour

-

flow?

volume!

(regional variability?)
(individual variability? )
[ReSpiration ! Cardlac?j

L

CERm

Psychology LFP/MUA electrode recordings BOLD-fMRI
Clinical assessments EcoG in animal and patients ASL perfusion
MEG and EEG Oprical Imaging and NIRS
PET

Singh, NI 2012



Which “Neural Activity” Do You Mean?

gamma spike
."‘/

/

\

sustained gamma

" evoked response C h : S—— '_ =y v e .'

MEG source localisation of induced  fMRI BOLD responses using the same
visual gamma using SAM beamformer task design

latency / secs
alpha/beta suppression

Singh, NI 2012



BOLD Correlated With High-Frequency
Spectral Perturbations

pC cortex FG LTO
BOLD
1.00 %
. A A’ &
000 12000 0 12000

dUOO 12000
-IIII-III-IIII-IIII-III-IIII-IIII-III-IIII-
Event-Related Potentials

40|||Vi

100 500 1500 100 500 1500

100 500 1500
e e T N P e R R

Event-Related Spectral Perturbations

m@%

1500 1500

100 500 1500

Time (ms)
I 100 M= I 500 ms I 1500 ms

Engell et al.,

NI 2012



BOLD fMRI Correlation Reflects Frequency-

Specific Neuronal Correlation

A Electrophysiological / MEG(f) Hemodynamic / BOLD fMRI

T

Muecinmeern — Mesnmr = W +— Murymrr Correlation

B  Cross-modal correlation (raw) D Cross-modal correlation
21 5 (SNR corrected)
‘ ;
§ 2 =z
52 8t
58 £ g
T = 8:-_
5 | — Within subjects v
O == Cross subjects %
T T T T T 1 0
024 & 16 32 64 128 2 4 8 16 32 64 128
Frequency (Hz) Frequency (Hz)
C Within-modal correlation
. r.7
MEG fMRI | -
gé L
T2 r &
o= e
E L s
38 L 8
0 T -

2 4 8 16 32 64 128
Frequency (Hz)

Hipp&Siegel, Curr Biol 2015



Problems Integrating EEG/MEG And fMRI

Liu et al., PNAS 1998:

1) “Fundamental mis-specifications can arise because EEG and MEG and
fMRI measure physically different aspects of brain function.”

2) “Experimental mis-specifications refer to measurement or estimation
errors that can be corrected, at least in theory”.



“Weighting” and “Priors”

PG, 01x() & fir,0) = ("(‘7U(rfg()zg(;l)’%ir(ré?)P(j(r,l))

If source strengths and priors can be modelled as multivariate Gaussian
distributions, then the maximum a posteriori probability (MAP) estimate is
the minimum norm estimate:

$() = Wx(t), where W = RAT (ARA” + C)!
N 7

A Leadfield O<R;<1
R/C: Source/noise covariance depending on fMRI

Dale et al., Neuron 2000, also Liu et al., PNAS 1998



Relative Weighting of fMRI

|deally, this requires knowledge about “tMRI visible” and “fMRI invisible”
sources —
if we knew those, we wouldn’t need source estimation anymore.

“The optimal fMRI weighting, which depends on the confidence in the hypothesis
that neuronal and hemodynamic activity are tightly coupled, currently cannot be

determined a priori.”
Liu et al., PNAS 1998



Relative Weighting of fMRI

<] fMRI Invisible Sources I fMRI Visible Sources
200% 200%
o B c D o
:@ 150% - =150% .._‘5
7 7]
g 100% - —100% g
| ™= T
Q 50% | 50% ©
0% L ' .s. i B o M G . l | L 0%
0 90 99 100 0 80 99 100 0 S0 99 100 0 90 99 100
fMRI Weighting {%) fMRI Weighting (%) fMRI Weighting (%) fMRI Weighting (%)
10 Point Sources 10 Sources, 2cm 10 Point Sources 10 Sources, 2 cm
Without Orientation Constraint With Orientation Constraint

FiG. 3. Crosstalk versus relative fMRI weighting. Crosstalk is
shown for 10 sources (point and 2 cm in diameter), with and without
orientation constraint. The relative fMRI weighting was either 0%,
90%, 99%, or 100%. The optimal fIMRI weighting requires a com-
promise between resolving fMRI visible sources (i.e., higher fMRI
weighting) and minimizing distortion from fMRI invisible sources (i.e.,
lower MR weighting). The results indicate that a 90% fMRI weight-
ing greatly reduces the crosstalk from fMRI visible sources, while only
slightly increasing the crosstalk from fMRI invisible sources.

Liu et al., PNAS 1998



Relative Weighting of fMRI

fMRI Visible IMRI Invisible fMR! Visible fMRI Invisible
Without Orientation Constraint With Orientation Constraint

F1G. 4. Crosstalk versus extent and number of sources. Crosstalk
is shown for a variety of extents and numbers of sources. The extent
of sources was either point, 1 cm or 2 cm in diameter, and the number
of sources was 5, 10, or 20 (indicated by different gray scale). A partial
fMRI weighting of 90% was used in these simulations. The results
indicate that the crosstalk is relatively independent of source extent
and number. This demonstrates that the proposed linear estimation
method is appropriate for modeling multiple, extended areas of activa-
tion, as typically encountered in functional neuroimaging studies.

Liu et al., PNAS 1998



fMRI And EEG/MEG Integration: Examples

Dale et al., Neuron 2000



ERPs

Multimodal Integration: Examples
Hypothesis-Guided Dipole Modelling

a Attend left Attend right
B d d B E d d B PET-constrained
ool L | | Dipole Modelling
Dipole-fitting
Residual variance (%)
40
30

PET seeded

Best inverse

60 80 100 120 140 160 180 200 220
Time (ms)

Attend left Attend right

5d 36 Bd @6

180
220 @ RV < 2.5%
® rvo2m

. PET Aclivation

right

ide view
Bl Plane of Section Side

A

Heinze et al., Nature 1994



Multimodal Integration: Examples
Minimum-Norm Estimation

Word-evoked activity — MEG Only
Single subject, dSPM maps, p<0.001
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Dale et al., Neuron 2000



Multimodal Integration: Examples
Minimum-Norm Estimation

Word-evoked activity — fMRI
single subject fMRI
p— =\

s

-

& . l";

task main effect

; novel minus repeated
(novel vs. repeated vs. fixation) P

Dale et al., Neuron 2000



Multimodal Integration: Examples
Minimum-Norm Estimation

Word-evoked activity — MEG only
Single subject, dSPM maps, p<0.001
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Dale et al., Neuron 2000



Multimodal Integration: Examples
Minimum-Norm Estimation

Word-evoked activity — MEG+fMRI
Single subject, dSPM maps, p<0.001

SPIOM [BAOU

o
°

(]

w

]
Q
z

(=]

=

(=8
7]

pajeadal
SNuUIW |aA0U

Dale et al., Neuron 2000






(How) Can We Estimate Deep Sources?

Superficial Location Deep Location

(Top of Gyrus) (Bottom of Sulcus)

Liu et al., PNAS 1998



(How) Can We Estimate Deep Sources?

A Patches on C Field Map from a
Cortical Surface Cortical Patch

B Segmentations of Deep D Field Map from
Brain Volumes a Subcortical Subdivision

Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114



https://www.pnas.org/doi/10.1073/pnas.1705414114

(How) Can We Estimate Deep Sources?

A Subcortical Current

C Best Fitting Cortical
Current Distribution

0 0.0021
Relative Current Amplitude

0.0042 1

B Subcortical Field Pattern

{® )

D Cortical Field Pattern
most Similar to (B)

.

-1 -0.5 0 0.5 1

Normalized MEG Field

Krishnaswami et al., PNAS 2017

https://www.pnas.org/doi/10.1073/pnas.1705414114
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@)

Normalized MEG Field

0.5

-0.5

(How) Can We Estimate Deep Sources?

L

Subcortical Field
Pattern

g5°

HQ) =

D

Sites of Activity

Y

Example Cortical Fields with Increasing
Angles vs. Subcortical Field Pattern from (C)

45°

o

Y
I

—d
b

Normalized Histogram (%)

e
L]

Principal Angles

Subcort vs. Cort
Median 43.9°

Medlan 635

i
!
Al

0 .
0° 15° 30° 45° 60° 75° 90°

Principal Angle

Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114
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(How) How Can We Estimate Deep Sources?
The Importance Of Sparsity

Source Space Resolution Matrix Accuracy Metrics
| '% 0.03 12¢  spatial Dispersion (cm)
co|TEEs woog
&1 002 5
= s 2
g o] 001 % 2
o o B % T2 345 67
S Ik, & 30
v 1P e %5 20fl Localization Error (cm)
Eﬁl‘n! ‘o £ 10
T, L
h S S EalrE %01 23 4367
S

Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114
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(How) How Can We Estimate Deep Sources?
The Importance Of Sparsity

A Simulated MEG Field Pattern

O

Simulated Source Locations E Estimated Source Locations

Sensors
pT

B Noisy Measurement D Simulated Time Courses F Estimated Time Courses
~ t = 84 msec _n t = 84 msec L Th 70
2 05 € 60 + LS1 E 60
2 .k < L S2 <
= 0Ops ‘:: 50 | L PPC - 50
V05 o 2
e v- § 40 RS2 5 40
€ 200 50 100 150 200 230 S 30 L:j 30
= w
C) 0 20 | '|| | £ 20
o 3
g 20 310 H\ ; ' \ & 10
B _4 2 2 2 2 2 0 ‘ \ ‘Jl ‘ b 0 .
= % 50 100 150 200 250 0 50 100 150 200 250 ) 100
Time (Milliseconds) Time (Milliseconds) Time (Milliseconds)

Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114
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(How) How Can We Estimate Deep Sources?
Sparsity And Hierarchy Are Key

Estimated Source Locations Estimated Time Courses

A. No Sparsity, No Hierarchy B. No Sparsity, No Hierarchy

t=284 msec L §1
+ L 52

3 . L PPC

Source Currents (nAm)
LS ]

il 1 1 e ki i e b
0 50 100 150 200 250
Time (Milliseconds)

Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114



https://www.pnas.org/doi/10.1073/pnas.1705414114

Conclusions

Priors lead to a bias of your solution towards what you
already know.

The link between the physiology of EEG/MEG and fMRI
IS not well understood.

The usefulness of priors depends on the individual case.

Priors can be implemented as weightings or source
covariance matrices in the (Bayesian) minimum-norm
framework.

Prior information on the location and sparsity of sources
IS particularly useful (required) for deep sources.
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