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volume 
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The EEG/MEG Forward Problem

EEG/MEG measure the 
primary sources indirectly

Sensors are differently sensitive 
to different sources

“Leadfield
”

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 
From Signals to Dynamic Cortical Networks, 2nd Ed.”
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We Have To First State The Forward 
Problem In Order To Solve The 

Inverse Problem



v11 v12

v21 v22

d3 = V11+V21 d4 = V12+V22

d1 =V11+V12

d2 = V21+V22

d1= V11+V12
d2= V21+V22
d3= V11+V21
d4= V12+V22

EEG/MEG

d1= V11+V12+V13+V14 ...

d2= V21+V22+V23+V24 ...

Tomography (CT, fMRI…)

Information is lost during 
measurement

Cannot be retrieved by 
mathematics

Inherently limits spatial resolution

d1

d2

d3

d4
d5 d6

d7

d8

d9

EEG/MEG “Scanning” is not “Tomography”

x-ray

Available information is determined by 
the equipment/experimenter



Let’s Start Again:
The “Blurry Image” Analogy

Just because the brain is complicated doesn’t mean source estimation has to be complicated



The Superposition Principle
A “Constraint-Free” Interpretation of Linear Methods

Astronomy

https://en.wikipedia.org/wiki/Point_spread_function

Object

PSF

Image
convolution

Microscopy

Point-Spread Function
PSF



If you know the behaviour  for point sources, 
you can predict the behaviour for complex sources
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Linear Methods Can Easily Tell Us If They Do What We Want
Superposition Principle



Linear Methods – Superposition Principle

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), 
“Magnetoencephalography: 
F  Si l  t  D i  C ti l N t k  2 d Ed ”

Superposition In Source Space

Example Point-Spread 
Functions

Great! Good. :-(



Spatial resolution depends on:

number of sensors (EEG/MEG or both)
source location

source orientation
signal-to-noise ratio

head modelling
assumptions about the sources

=> difficult to make general statement

Spatial Resolution of Source Estimation Is Complex



With n sensors: 
-> n independent measurements
-> n independent parameters estimable 
-> at best separate activity from n brain regions

Sensors are not independent, data are noisy: ~ 50 degrees of freedom

Volume of source space:
Sphere 8cm minus sphere 4 cm: volume ~1877 cm3

“Resel”: 38 cm3 -> 3.43 cm3

Spatial Resolution – A Naïve Estimate

SVD of Leadfields

EEGMEG
MEG
EEG



Resolution Matrix
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Forward Problem

𝐝𝐝 = 𝐋𝐋𝐋𝐋
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Linear Inverse Problem

�𝐬𝐬 = 𝐆𝐆𝐆𝐆

�𝐬𝐬 = 𝐆𝐆𝐆𝐆𝐆𝐆 ≝ 𝐑𝐑𝐑𝐑
Relationship between estimated and true source distribution.

e.g. Hauk/Stenroos/Treder, bioRxiv 2019
https://www.biorxiv.org/content/10.1101/672956v1

https://www.biorxiv.org/content/10.1101/672956v1


𝑹𝑹 − 𝑰𝑰 𝟐𝟐 = min

Creating an Optimal Resolution Matrix

�𝐬𝐬 = 𝐑𝐑𝐑𝐑

The closer R is to the identity matrix, the closer our estimate is to the true 
source.

Therefore, let us minimise the difference between R and the identity matrix in 
the least-squares sense:

This leads to the Minimum Norm Estimator (MNE):

𝑮𝑮𝑴𝑴𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 −1

Its resolution matrix 𝑹𝑹𝑴𝑴𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 −1𝐋𝐋 is symmetric.

e.g. Hauk/Stenroos/Treder, bioRxiv 2019
https://www.biorxiv.org/content/10.1101/672956v1

https://www.biorxiv.org/content/10.1101/672956v1


Cross-Talk Function 
(CTF)

Point-Spread Function
(PSF)

How other sources may affect the      
estimate for this source

How this source affects 
estimates for other sources

Spatial Resolution / Leakage: 
Point-Spread and Cross-Talk

e.g. Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993

https://www.sciencedirect.com/science/article/pii/S1053811922002993


Good

PSFs and CTFs for Some ROIs
For MNE, PSFs and CTFs turn out to be the same



Less good

PSFs and CTFs for Some ROIs
For MNE, PSFs and CTFs turn out to be the same



?

?

Desikan-Killiany Atlas parcellation

Localisation Bias Has Consequences for ROI analysis
PSFs/CTFs Can Tell You How It Looks Like

Adaptive cortical parcellation based on resolution matrix are 
possible: Farahibozorg/Henson/Hauk NI 2018
https://pubmed.ncbi.nlm.nih.gov/28893608/

https://pubmed.ncbi.nlm.nih.gov/28893608/
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It’s not just peak localisation that counts, 
but also spatial extent of the distribution.

Quantifying Resolution From PSFs and CTFs

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4



Combining EEG and MEG improves spatial resolution.

Molins et al., Neuroimage 2008

Whole-Brain Maps of Resolution Metrics
Peak Localization Error

Spatial Deviation



Sensitivity Maps
RMS of Leadfield Columns

EEG
70 electrodes

MEG
102 mags + 204 grads

EEG+MEG
102 mags + 204 grads

Combining EEG and MEG improves sensitivity.

Also: Goldenholz et al, HBM 2009



Methods Comparison

• MEG+EEG: Elekta Vectorview (360+70 channels), Wakeman & Henson open data set

• Methods: 

• L2-MNE

• depth-weighted L2-MNE

• dSPM

• sLORETA

• 2 LCMV beamformers (pre- and post-stimulus covariance matrices)

• Resolution Metrics: 

• Peak Localisation Error

• Spatial Deviation (extent)

Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993

https://www.sciencedirect.com/science/article/pii/S1053811922002993


Example PSFs and CTFs for MNE and eLORETA
Note: For MNE PSFs and CTFs are the same

Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993

https://www.sciencedirect.com/science/article/pii/S1053811922002993


Comparing Estimators – MNE-type 
methods

Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993

https://www.sciencedirect.com/science/article/pii/S1053811922002993


Example PSFs and CTFs for Beamformers

Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993

https://www.sciencedirect.com/science/article/pii/S1053811922002993


Comparing Estimators – Beamformers

Hauk, Stenroos, Treder, Neuroimage 2022
https://www.sciencedirect.com/science/article/pii/S1053811922002993

https://www.sciencedirect.com/science/article/pii/S1053811922002993


Comparing Estimators – Correlations With Depth
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Interim Conclusion From Methods 
Comparison

- Methods vary with respect to localisation error and spatial deviation.
- Improvements in localization error are accompanied by increases in spatial deviation.
- Localisation error for PSFs can be minimised (even to zero), but not for CTFs.
- Spatial deviation for PSFs and CTFs cannot be minimised beyond a certain limit.
- Localisation error for beamformers is low (even zero), but spatial deviation higher than for MNE-type 

methods.
- Performance of beamformers similar for different covariance matrices.

⇒ There is no obvious “best method”. 
⇒ In this analysis, MNE and eLORETA seem to offer the best compromise between localisation and 

spatial deviation. 
⇒ The tools (PSFs/CTFs, resolution metrics) can be applied to individual datasets – try it yourself!



Noise and Regularisation



Trade-off norm-variance, 
smoothness
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Fuchs et al., J Clin Neurophys 1999 

Source at fixed excentricity 71% (60mm)



Adding priors (and biases)



Examples for Non-Uniqueness

Jensen & Hesse, chap. 7 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)
See also Krishnaswamy et al. PNAS 2017 for approaches for deep sources,
https://www.pnas.org/content/114/48/E10465

A distributed superficial distribution may be indistinguishable from a focal deep source.

https://www.pnas.org/content/114/48/E10465


Examples for Non-Uniqueness

Hämäläinen & Hari, in Brain Mapping: The Methods (2nd), Elsevier 2002

Different Sources

Field Patterns

Dipole Model

Minimum Norm Estimates

Original Sources

Same Field Patterns

Same Source Estimates



The Inverse “Problem”

How can we make the problem “more unique”?

How can we reduce the number of unknowns?

Do we know anything about our sources, 
except that they produce our EEG/MEG data?



How Can “Priors” Help With These Problems?

source s1

so
ur

ce
s 2

We are losing information 
in the measurement The information in the measurement is not enough to reconstruct its source.

?
http://www.pxleyes.com/photoshop-picture/502fba7537141/The-Classic-Optical-Room.html

http://www.pxleyes.com/photoshop-picture/502fba7537141/The-Classic-Optical-Room.html


How Can We Combine Measurement Modalities?
“Converging Evidence”: 

Compare results from different modalities, determine commonalities and differences.

“(Asymmetric) Fusion”: 
Use one modality as a constraint for another.

(e.g. EEG->fMRI, fMRI->EEG/MEG)

“Neural Modelling” (“Symmetric Fusion”):
Use of a common neural model that accounts for signals in all modalities.

(e.g. EEG<->MEG)

Each of these options poses different challenges with respect to modelling assumptions and 
complexity.

e.g. Horwitz&Poeppel, HBM 2002; Henson et al., HBM 
2010 

Calhoun & Sui, Biol Psych Cogn Nsc 2017



How Can We Combine Modalities?

“Converging Evidence”: 
Compare results from different modalities, determine commonalities and 

differences.

“(Asymmetric) Fusion”: 
Use one modality as a constraint for another.

“Neural Modelling” (“Symmetric Fusion”):
Use of a common neural model that accounts for signals in all modalities.

e.g. Horwitz&Poeppel, HBM 2002; Henson et al., HBM 
2010 



Comparing Representational Dissimilarity 
Across Neuroimaging Methods 

Kriegeskorte et al., Front Syst Nsc 2008



Comparing Representational Dissimilarity 
Across Neuroimaging Methods 

Cichy et al., Nat Nsc 2014



How Can We Combine Modalities?

“Converging Evidence”: 
Compare results from different modalities, determine commonalities and 

differences.

“(Asymmetric) Fusion”: 
Use one modality as a constraint for another.

“Neural Modelling” (“Symmetric Fusion”):
Use of a common neural model that accounts for signals in all modalities.

e.g. Horwitz&Poeppel, HBM 2002; Henson et al., HBM 
2010 



Problems Integrating EEG/MEG And fMRI

1. Metabolic activity can occur without EEG/MEG activity.

2. EEG/MEG activity can occur without BOLD activity.

3. EEG/MEG and metabolic activity may have common sources, but are not 
fully spatially overlapping.

4. EEG/MEG and metabolic activity have different time courses.

Note: Usually EEG/MEG and fMRI are acquired in different sessions, 
causing:
a) inter- and intra-subject variability (same or different subjects in different sessions)
b) differences in scanning position (supine, seated)
c) differences in scanning environment (e.g. scanner noise)

e.g. Poline et al., in “MEG – An Introduction to Methods”



EMEG-MEG

tim
e

Problems Integrating EEG/MEG And fMRI
Synchronous: fMRI     MEG    

tim
e

Asynchronous: fMRI     MEG    

Source Configuration

fMRI     
MEG    

Time Scale

fMRI     
MEG    



Singh, NI 2012

Which “Neural Activity” Do You Mean?



Singh, NI 2012

Which “Neural Activity” Do You Mean?



Engell et al., NI 2012

BOLD Correlated With High-Frequency 
Spectral Perturbations



BOLD fMRI Correlation Reflects Frequency-
Specific Neuronal Correlation

Hipp&Siegel, Curr Biol 2015



Problems Integrating EEG/MEG And fMRI

Liu et al., PNAS 1998:

1) “Fundamental mis-specifications can arise because EEG and MEG and 
fMRI measure physically different aspects of brain function.”

2) “Experimental mis-specifications refer to measurement or estimation 
errors that can be corrected, at least in theory”.



“Weighting” and “Priors”

Dale et al., Neuron 2000, also Liu et al., PNAS 1998

If source strengths and priors can be modelled as multivariate Gaussian 
distributions, then the maximum a posteriori probability (MAP) estimate is 
the minimum norm estimate:

0<Rii<1 
depending on fMRI

A: Leadfield
R/C: Source/noise covariance



Ideally, this requires knowledge about “fMRI visible” and “fMRI invisible” 
sources –
if we knew those, we wouldn’t need source estimation anymore.

Relative Weighting of fMRI

“The optimal fMRI weighting, which depends on the confidence in the hypothesis 
that neuronal and hemodynamic activity are tightly coupled, currently cannot be 
determined a priori.”
Liu et al., PNAS 1998



Liu et al., PNAS 1998

Relative Weighting of fMRI



Liu et al., PNAS 1998

Relative Weighting of fMRI



Dale et al., Neuron 2000

fMRI And EEG/MEG Integration: Examples



Heinze et al., Nature 1994

Multimodal Integration: Examples
Hypothesis-Guided Dipole Modelling

ER
Ps

PE
T

PET-constrained
Dipole Modelling



Multimodal Integration: Examples
Minimum-Norm Estimation

Dale et al., Neuron 2000

Word-evoked activity – MEG Only
Single subject, dSPM maps, p<0.001



Multimodal Integration: Examples
Minimum-Norm Estimation

Dale et al., Neuron 2000

Word-evoked activity – fMRI



Multimodal Integration: Examples
Minimum-Norm Estimation

Dale et al., Neuron 2000

Word-evoked activity – MEG only
Single subject, dSPM maps, p<0.001



Multimodal Integration: Examples
Minimum-Norm Estimation

Dale et al., Neuron 2000

Word-evoked activity – MEG+fMRI
Single subject, dSPM maps, p<0.001





Liu et al., PNAS 1998

(How) Can We Estimate Deep Sources?



Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114

(How) Can We Estimate Deep Sources?

https://www.pnas.org/doi/10.1073/pnas.1705414114


(How) Can We Estimate Deep Sources?

Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114

https://www.pnas.org/doi/10.1073/pnas.1705414114


(How) Can We Estimate Deep Sources?

Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114

https://www.pnas.org/doi/10.1073/pnas.1705414114


(How) How Can We Estimate Deep Sources?
The Importance Of Sparsity

Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114

https://www.pnas.org/doi/10.1073/pnas.1705414114


(How) How Can We Estimate Deep Sources?
The Importance Of Sparsity

Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114

https://www.pnas.org/doi/10.1073/pnas.1705414114


(How) How Can We Estimate Deep Sources?
Sparsity And Hierarchy Are Key

Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114

https://www.pnas.org/doi/10.1073/pnas.1705414114


Conclusions

• Priors lead to a bias of your solution towards what you 
already know.

• The link between the physiology of EEG/MEG and fMRI 
is not well understood. 
The usefulness of priors depends on the individual case.

• Priors can be implemented as weightings or source 
covariance matrices in the (Bayesian) minimum-norm 
framework.

• Prior information on the location and sparsity of sources 
is particularly useful (required) for deep sources.



MRC Cognition and Brain Sciences Unit @MRCCBU mrc-cbu.cam.ac.uk

Thank you
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