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Ingredients for Source Estimation

Volume Conductor/ MEG data
Head Model ==

Coordinate
Transformation

Noise/Covariance Matrix




Our Goal: Spatio-Temporal Brain Dynamics
“Brain Movies”
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Forward And Inverse Problem

(and some solutions)



The EEG/MEG Forward Problem

EEG/MEG measure the Sensors are differently sensitive
primary sources indirectly to different sources

“Leadfield

volume

current,
“dipole”

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography:
From Signals to Dynamic Cortical Networks, 2nd Ed.”




We Have To First State The Forward Problem
In Order To Solve The Inverse Problem

Inverse Operator

data  “leadfield” dipples dipoles Inverse data

s ~ (i) (15034 0.1241
1.2(d1) = [0'5 0 03 j i, inversion j, |=]0.2483 0.9379 *[gljl:
e d 0 1 -03 - 2
2 \j3)<3— s 0.8276 —0.2069 2

"N




EEG/MEG “Scanning” is not “Tomography”

Tomography (CT, fMRI...) EEG/MEG
d

d dg

X-ray dy =V tVy,
d;
d, =V, tVy,
d3=Vy+tVy  d=VtVy, d1: VitV tVgty,, ..
— 0y= Vo1tV tVostvy, ..
dl_ V11+V12
d2: V21+V22 Information is lost during
d3: V, +V,, measurenTent
d = V12+V22 Cannot be retrieved by

mathematics
Available information is determined by

the equipment/experimenter Inherently limits spatial resolution



Why Inverse “Problem”?

source §2

i

T M.C. Escher

In “signal space”, we see a faint shadow of activity in “source space”.

If you are not shocked by the EEG/MEG inverse problem...
... then you haven’t understood it yet.
(freely adapted from Niels Bohr)



Why Inverse “Problem”?
Without additional constraints the solution is non-unique, i.e. there are infinitely many solutions

What is the solution to

X;+X,=1
Maybe
X;=0;%,=1 ?
X, =1;%,=0 ?
X; = 1000 ; x, =-999 ?
X, =TT ; X, = (1-m) ?

The “minimum norm solution” is:
X;=0.5;x%,=0.5

with (0.5% + 0.52)=0.5 the minimum norm among all possible solutions.



Once We Have Stated the Forward Problem,
We Are Ready Address the Inverse Problem

Forward Operation

Inverse Operation
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E.g., MNE produces solution with minimal power or “norm’:

(i2+ 2+ i)




Examples for Non-Uniqueness

A distributed superficial distribution may be indistinguishable from a focal deep source.

Jensen & Hesse, chap. 7 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)
See also Krishnaswamy et al. PNAS 2017 for approaches for deep sources,
https://www.pnas.org/content/114/48/E10465



https://www.pnas.org/content/114/48/E10465

Examples for Non-Uniqueness

Field Patterns Same Field Patterns

Dipole Model

Same Source Estimates

Minimum Norm Estimates

Hamalainen & Hari, in Brain Mapping: The Methods (2"), Elsevier 2002



Example: Visually Evoked Activity ~100 ms

Minimum Norm Estimate



Example: Auditorily Evoked Activity

Minimum Norm Estima



Reminder: Artefacts in EEG and MEG Will End Up in Source Space

Eye Blink

This will affect all source estimation methods —
get rid of your artefacts beforehand.



The Forward Problem and Head
Modelling



Source Space and Head Model

Source Space Volume Conductor/Head Model
Where active sources may be located, How we model conductivities/currents/potentials/fields in the head
e.g. grey matter, 3D volume e.g. sphere or realistic 1- or 3-compartments from MRI

http://www.cogsci.ucsd.edu/~sereno/movies.html

Sometimes “standard head models” are used, when no individual MRIs available.
SPM uses the same “canonical mesh” as source space for every subjects, but adjusts it

individually.



Source Orientation Constraints

MNE : 003-loose
108.00 ms
0.00..1.05..2.1 *1e-10

MNE : 003-fixed
108.00 ms
0.00..2.40..48 *1e-10

MNE : 003-loose02
108.00 ms
0.00..1.69..3.4 ~1e-10

MNE : 003-loose
108.00 ms
0.00..1.05..21 " 1e-10

MNE : 003-fixed
108.00 ms
0.00..2.40 .48 * 1e-10

MNE : 003-loose0z
108.00 ms
0.00..1.69.34 "1e-10



Direction of Current Flow

Dipole Source Distributed Source o
Distributed Source, Inflated Surface

YO e



Direction of Current Flow

dSPM : 003-loose02-dspm £ dSPM : 003-loose02-dspm
108.00 ms 108.00 ms
0.00 .. 13.65.. 27.3 0.00 .. 13.65.. 27.3

dSPM : 003-lcosel2-dspm-signed : SPM : 003-loosel2-dspm-signed
108.00 ms R 08.00 ms
0.00..13.00 .. 26.0 g 00..13.00..26.0




Solutions To The Inverse Problem —
Source Estimation



Paths To Uniqueness

Dipole Fitting/Scanning

1.  Assume there are only a few
distinct sources

2.  lteratively adjust the
location, orientation and
strength of a few dipoles...

3. ...until the result best fits the
data

3.

Distributed Sources

Assume sources are everywhere
(e.g. distributed across the whole
cortex)

Find the distribution of source
strengths that explains the data...

...AND fulfils other constraints

AUDITORY
55 ms

; " -
s /4
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Hypothesis Testing - Dipole Fitting

Explicit assumptions about the number of focal sources (dipoles) are tested by fitting dipole models to the data.
The common criterion for the selection of models is the goodness-of-fit.

\_/_
i

110.6 - 150.4 ms

It can be hard to choose the appropriate number of dipoles — a priori knowledge is required.
Solutions for several/many dipoles can get stuck in local minima, and may not be robust to noise.



Assumptions Cannot Completely Remove Uncertainty

95% Cls for single dipole source
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Hari et al., Electroencephalogr Clin Nph 1988



Dipole Scanning

We may have reasonable assumptions about possible locations for
isolated dipole sources, e.g. on the cortical surface.

http://www.cogsci.ucsd.edu/~sereno/movies.html

Dipole scan: Fit dipoles vertex-by-vertex and plot the goodness-of-fit as a distribution.
The maxima in this distribution point to possible dipole locations.
The locations are reliable if there is only one dipole, or if multiple dipole topographies are mutually orthogonal (e.g.

far apart).
This is not a “distributed source solution”.


http://www.cogsci.ucsd.edu/%7Esereno/movies.html




Multi-Dipole Scan: MUSIC

(Multiple Source Signal Classification)

Data and Noise Subspaces  Classical MUSIC Recursively Applied
(RAP) MUSIC

1) Obtain a spatio-temporal data matrix ', comprising in-

formation from m sensors and n time slices. Decompose 1 Estlmate number Of d| OleS
/i F o FF,. and select the rank of the signal subspace .
R l(p) to obtain ¢,. Overspecifying the true rank by a couple €.g. using PCA/SVD.
of dimensions usually has little effect on performance. .
Underspecifying the rank can dramatically reduce the 2) Run MUSIC for one d|p0|e
performance. nd A;
2) Create a relatively dense grid of dipolar source locations. 3) Run MUSIC forz d|p0|e’
At each grid point, form the gain matrix ¢ for the dipole. part|a|l|ng out d|p0|e 1.
9 At each grid point, calculate the subspace correlations .
. I(p) subcort{G. B, ). 4) Repeat for estimated number
) 3) As a graphical aid. plot the inverse of /1 — cf. where Of dipoles
4 = ¢y 1s the maximum subspace correlation. Correlations '
pan(A) Span{l]" “’lu close to unity will exhibit sharp peaks. Locate r or

fewer peaks m the gnd. At each peak, refine the search
llmoniemi & Sarvas, “Brain Signals”, MIT 2019 grid to improve the location accuracy, and check the

second subspace correlation. A large second subspace
correlation 15 an mdication of a “rotating dipole.”

Mosher & Leahy, IEEE-TBME 1998

See e.g. for overview and recent updates of MUSIC algorithms:
llmoniemi & Sarvas, “Brain Signals”, MIT 2019; Makela et al., NI 2018 (“TRAP MUSIC”, nttps://pubmed.ncbi.nim.nih.qov/29128542/)

One problem with MUSIC algorithms: They don’t give you source time courses.


https://pubmed.ncbi.nlm.nih.gov/29128542/

“Spatial Filters”: Beamformers

Assumptions:

» All sources captured in data covariance matrix C (signal and noise)
* \We are interested in one source i in many sources

Alm:

Design a spatial filter w; which projects maximally on the source of interest and minimally on noise sources.

Project on source of interest: w/ f; f7¢1 Linearly-Constrained
= o1t Minimum-Variance
o (LCMV) Beamformer

Van Veen et al., 1997, https://pubmed.ncbi.nim.nih.gov/9282479/

i

Suppress noise: min(w/ Cw; )

Create and apply these spatial filters vertex-by-vertex (dipole-by-dipole) and plot the distribution (possibly normalised by
noise variance).

Spatial filters can also produce time courses for every source.
But note: The “spatial filter” interpretation applies to all linear methods, including MNE-type methods.

e.g. Hauk et al., Neuroimage 2022, https://pubmed.ncbi.nlm.nih.gov/35390459/
Hauk&Stenroos, HBM 2013, https://pubmed.ncbi.nlm.nih.gov/23616402/ ,



https://pubmed.ncbi.nlm.nih.gov/35390459/
https://pubmed.ncbi.nlm.nih.gov/23616402/
https://pubmed.ncbi.nlm.nih.gov/9282479/

Beamformers are adaptive -
I.e. not strictly linear

The “linearly-constrained maximum-variance” (LCMV) beamformer
LiCq'

oy

L;C;°L;

SFemy (1) =

depends on the data covariance matrix (“adaptive”).

Beamformers result in linear transformations of the data (“spatial filters”),
but those transformations strongly depend on the data of interest.

=> Beamformers are data-dependent and not linear with respect to the sources of
Interest.



Beamforming Is Problematic For Highly Synchronous Sources

Rel.max of u: 22.5321

Rel.max of u: 11.2255

1

08t

0.6 F

0.4 |

0.2

04}

0.6

-0.8

2 non-synchronous,
2 synchronous sources

4 non-synchronous sources

Beamformers are designed for — and work best for — small numbers of focal sources with uncorrelated time courses.

IlImoniemi and Sarvas, “Brain Signals”, MIT 2019
Hauk et al., Neuroimage 2022, https://pubmed.ncbi.nlm.nih.qov/35390459/



https://pubmed.ncbi.nlm.nih.gov/35390459/

Beamformers Are Popular for Rhythmic Brain Activity
and Resting State Activity

Visual Gamma Band i
Response i

Motor Fronto-Parietal Visual

CRBRE -G
? LELH o

.‘sh é\‘:& "Q % .H ‘& %} q‘~$

Brookes et al. PNAS 2011



Beamformers Are Popular for Rhythmic Brain Activity
and Resting State Activity...

...but the choice of source estimation method should be based
on knowledge (or its absence) about the source distribution.

Is there anything in rhythmic/oscillatory or resting state activity
that favours some source distributions more than others
(e.g. number of sources, focality/sparsity, location)?

For example, visual gamma band sources may be focal, but
resting state networks may be distributed.



Minimum Norm Estimation Of Distributed Sources

Ls=d =|Ls—d|?=0
(ignore noise for now)
subject to constraint
Isllz = min

yields the Minimum-Norm Least-Squares solution (“L2")

Gyy = L'(LL)™

But this is the result of mathematical desperation, and not based on physiology or what we want to know
(e.g. localisation of multiple sources).



There Are Many Norms, e.g. L1vs L2 —
Sparseness vs Smoothness

Minimising the L2 norm, ||s|l, = |s1|?+|s3|%+...+|sy|? penalizes large values in s
=> “smooth”

Minimising the L1 norm, ||s||; = |sq|*|s1|+...+|sy| prefers large values in s
= “sparse”

For example:

X1 + 2x,=1

L2 solution: (0.2, 0.4)
L2-norm 0.22+0.42~0.45, L1-norm 0.2+0.4=0.6

L1 solution: (0, 0.5)

L2-norm 0.5, L1-norm 0.5



There Are Different Optimisation Criteria:
Bayesian Approach

Bayes’ rule:

p(s|d) ~ p(d|s) = p(s)
posterior ~ likelihood * prior

Assume normal distribution for noise:

M/2
_(F B 2
p<d|s>—<2n exp—= lILs — d|
Thus, minimise

~2log(p(sld)) = —2log(p(dls)) - 2log(p(s)) = BllLs — d||? -2log(p(s))

e.g. Henson et al., 2011,
https://www.ncbhi.nlm.nih.gov/pmc/articles/PMC3160752/

“Most likely” is still not what we want to know —
Does the method do what we want it to do?



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160752/

Let’'s Start Again:
The “Blurry Image” Analogy

Just because the brain is complicated doesn’t mean source estimation has to be complicated




The Superposition Principle
A “Constraint-Free” Interpretation of Linear Methods

Astronomy

Microscopy

Object \
conyolution

Point-Spread Function
PSF

https://en.wikipedia.org/wiki/Point spread function



https://en.wikipedia.org/wiki/Point_spread_function

For Linear Methods We Can Find Out If They Do What We Want
Superposition Principle

4 2 0 2 4 6 8 10

4 2 ) 2 4 6 8 10

If you know the behaviour for point sources,
you can predict the behaviour for complex sources




Linear Methods — Superposition

Principle
Superposition In Source Space

PSF, =Gl PSF, =Gl, PSF, + PSF, = Gl, + Gl, = G(l,+,)

Example Point-Spread

0.02¢

DLE: 3.1
SD: 2.0 0

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography:
From Signals to Dynamic Cortical Networks, 2nd Ed.”



Resolution Matrix

Forward Problem Linear Inverse Problem

S = GLs & Rs

Relationship between estimated and true source distribution.

e.g. Hauk et al., Neuroimage 2022, https://pubmed.ncbi.nlm.nih.gov/35390459/



https://pubmed.ncbi.nlm.nih.gov/35390459/

Creating an Optimal Resolution Matrix

S =Rs

The closer R is to the identity matrix, the closer our estimate is to the true
source.

Therefore, let us minimise the difference between R and the identity matrix in
the least-squares sense:

IR — Iz = min
This leads to the Minimum Norm Estimator (MNE):
Kyy =L'(LL")™!
Its resolution matrix Ry y = LT (LLT) 1L is symmetric.

L2-MNE (non-weighted, non-normalised) has the ideal resolution matrix in the least-squares sense.

e.g. Hauk et al., Neuroimage 2022, https://pubmed.ncbi.nlm.nih.gov/35390459/



https://pubmed.ncbi.nlm.nih.gov/35390459/

Weighted and Noise-Normalised MNE Methods

L2-MNE
Kyyg = L' (LL")™!

(Depth-)Weighted MNE
K,y = DLT(LDLT)™1

“Alleviating Depth Bias”

dSPM
-1

Kispm = WaspmKyune Waspy = \/ diag (KMNECKQNE)

eLORETA
Koior = DepogLl" (LD gpppLlT) ™1 -
sLORETA Dipole Localization Error”

-1
Ksior = WsiorKyng Wsior = \/ diag(RynE)



Noise and Regularisation



(In)Stability — Sensitivity to Noise

Stable Instable

Similar topographies
are difficult to

| distinguish, especially

- - .| in the presence of noise.




Noise and Regularization
Over- And Under-Fitting

Explaining the data 100% may not be desirable — some of the measured activity is not
produced by sources in the model.

Explaining noise may require larger amplitudes in source space than the signal of
Interest:
Overfitting may seriously distort the solution (“variance amplification” in
statistics/regression).

“Regularisation” results in a spatially smoother solution that is less affected by noise.
The degree of smoothing depends on the “regularisation parameter” (also called
“lambda”).

Underfitting (over-smoothing) may waste spatial resolution.



Regularisation Can Take Into Account Noise
covariance

Some channels are noisier than others
=They should get different weights in your analysis

Sensors are not independent
=> Sensors that carry the same information should be downweighted relative to more
independent sensors

(Diagonal) Noise Covariance Matrix

Full) Noise Covariance Matrix . .
(Full) (contains only variance for sensors)




Leaving Variance Unexplained

Ls=d+ € = ||[Ls — d||? <=e, s.t. ||s]l; = min
This is equivalent to minimising the cost function
ILs — d||* + Alls||?, A>0
We can give sensors different weightings,
e.g. based on their noise covariance matrix C:
Ic ' (Ls —d)I? = ILs —d]lZ =
ILs — dlIg+ Alls||%, A>0

KMN — LT(LLT + AC)_l

A (Lambda) is the regularisation parameter that determines how much
variance we want to leave unexplained.



Whitening and Choice of Regularisation Parameter

Kyy = L'(LL" + 2C7H)~
can also be written as
Ky = LT(LLT + 2D~

where L is the “whitened” leadfield C~1/2L, and scaled such that
trace(LLT)=trace(I).

“Whitening” turns data and leadfield into signal-to-noise ratios.
L and A can now be interpreted in terms of signal-to-noise ratios.

A reasonable choice for A is then the approximate SNR of the data.



Regularisation parameter
relative to optimal value

Trade-off norm-variance,

0.1

0.2

smoothness
Source at fixed excentricity 71% (60mm)
i = 5= -
s = = -

0.5

10

rel.
dev.

T
MNLS MNLS MNLS MNLS
radial dipoles tangential dip. radial dipcles tangential dip.
SNR = 68 SNR =77 SNR=7 SNR=8

Fuchs et al., J Clin Neurophys 1999
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