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Volume Conductor/
Head Model

Source Space

MEG data

Noise/Covariance Matrix

Coordinate
Transformation

Ingredients for Source Estimation



Our Goal: Spatio-Temporal Brain Dynamics
“Brain Movies”



Forward And Inverse Problem
(and some solutions)



primary 
current,
“dipole”

volume 
currents

The EEG/MEG Forward Problem

EEG/MEG measure the 
primary sources indirectly

Sensors are differently sensitive 
to different sources

“Leadfield
”

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 
From Signals to Dynamic Cortical Networks, 2nd Ed.”
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We Have To First State The Forward Problem 
In Order To Solve The Inverse Problem



v11 v12

v21 v22

d3 = V11+V21 d4 = V12+V22

d1 =V11+V12

d2 = V21+V22

d1= V11+V12
d2= V21+V22
d3= V11+V21
d4= V12+V22

EEG/MEG

d1= V11+V12+V13+V14 ...

d2= V21+V22+V23+V24 ...

Tomography (CT, fMRI…)

Information is lost during 
measurement

Cannot be retrieved by 
mathematics

Inherently limits spatial resolution

d1

d2

d3

d4
d5 d6

d7

d8

d9

EEG/MEG “Scanning” is not “Tomography”

x-ray

Available information is determined by 
the equipment/experimenter



source s1

so
ur

ce
s 2

In “signal space”, we see a faint shadow of activity in “source space”.

If you are not shocked by the EEG/MEG inverse problem…
… then you haven’t understood it yet.

(freely adapted from Niels Bohr)

M.C. Escher

Why Inverse “Problem”?



What is the solution to
x1 + x2 = 1

Maybe
x1 = 0 ; x2 = 1 ?

x1 = 1 ; x2 = 0 ?

x1 = 1000 ; x2 = -999 ?

x1 = π ; x2 = (1-π) ?

The “minimum norm solution” is:

x1 = 0.5 ; x2 = 0.5

with (0.52 + 0.52)=0.5 the minimum norm among all possible solutions.

Why Inverse “Problem”?
Without additional constraints the solution is non-unique, i.e. there are infinitely many solutions
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Inverse Operation

2
2

Once We Have Stated the Forward Problem,
We Are Ready Address the Inverse Problem

E.g., MNE produces solution with minimal power or “norm”:
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Examples for Non-Uniqueness

Jensen & Hesse, chap. 7 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)
See also Krishnaswamy et al. PNAS 2017 for approaches for deep sources,
https://www.pnas.org/content/114/48/E10465

A distributed superficial distribution may be indistinguishable from a focal deep source.

https://www.pnas.org/content/114/48/E10465


Examples for Non-Uniqueness

Hämäläinen & Hari, in Brain Mapping: The Methods (2nd), Elsevier 2002

Different Sources

Field Patterns

Dipole Model

Minimum Norm Estimates

Original Sources

Same Field Patterns

Same Source Estimates



Magnetometers Gradiometers EEG

Minimum Norm Estimate

Example: Visually Evoked Activity ~100 ms



Minimum Norm Estimate

Example: Auditorily Evoked Activity



Eye Blink

This will affect all source estimation methods –
get rid of your artefacts beforehand.

Reminder: Artefacts in EEG and MEG Will End Up in Source Space



The Forward Problem and Head 
Modelling



http://www.cogsci.ucsd.edu/~sereno/movies.html

Sometimes “standard head models” are used, when no individual MRIs available.

SPM uses the same “canonical mesh” as source space for every subjects, but adjusts it 

individually.

Volume Conductor/Head Model
How we model conductivities/currents/potentials/fields in the head

e.g. sphere or realistic 1- or 3-compartments from MRI

Source Space
Where active sources may be located,

e.g. grey matter, 3D volume

Source Space and Head Model



Free

Fixed

“Loose”

Source Orientation Constraints



Dipole Source Distributed Source
Distributed Source, Inflated Surface

Direction of Current Flow



“signed”

or

or

Intensity

Direction of Current Flow



Solutions To The Inverse Problem –
Source Estimation



Dipole Fitting/Scanning
1. Assume there are only a few 

distinct sources

2. Iteratively adjust the 
location, orientation and 
strength of a few dipoles…

3. …until the result best fits the 
data

Distributed Sources
1. Assume sources are everywhere 

(e.g. distributed across the whole 
cortex)

2. Find the distribution of source 
strengths that explains the data…

3. …AND fulfils other constraints

Paths To Uniqueness



Hypothesis Testing - Dipole Fitting

Explicit assumptions about the number of focal sources (dipoles) are tested by fitting dipole models to the data. 
The common criterion for the selection of models is the goodness-of-fit.

It can be hard to choose the appropriate number of dipoles – a priori knowledge is required.
Solutions for several/many dipoles can get stuck in local minima, and may not be robust to noise.



Assumptions Cannot Completely Remove Uncertainty

95% CIs for single dipole source

Hari et al., Electroencephalogr Clin Nph 1988



Dipole Scanning
We may have reasonable assumptions about possible locations for 
isolated dipole sources, e.g. on the cortical surface.

Dipole scan: Fit dipoles vertex-by-vertex and plot the goodness-of-fit as a distribution.
The maxima in this distribution point to possible dipole locations.
The locations are reliable if there is only one dipole, or if multiple dipole topographies are mutually orthogonal (e.g. 
far apart).
This is not a “distributed source solution”.

http://www.cogsci.ucsd.edu/~sereno/movies.html

http://www.cogsci.ucsd.edu/%7Esereno/movies.html





Multi-Dipole Scan: MUSIC
(Multiple Source Signal Classification)

Ilmoniemi & Sarvas, “Brain Signals”, MIT 2019

Mosher & Leahy, IEEE-TBME 1998

Data and Noise Subspaces Classical MUSIC Recursively Applied
(RAP) MUSIC

1) Estimate number of dipoles, 
e.g. using PCA/SVD.

2) Run MUSIC for one dipole.
3) Run MUSIC for 2nd dipole, 

partialling out dipole 1.
4) Repeat for estimated number 

of dipoles.

See e.g. for overview and recent updates of MUSIC algorithms: 
Ilmoniemi & Sarvas, “Brain Signals”, MIT 2019;   Mäkelä et al., NI 2018 (“TRAP MUSIC”, https://pubmed.ncbi.nlm.nih.gov/29128542/)

One problem with MUSIC algorithms: They don’t give you source time courses.

https://pubmed.ncbi.nlm.nih.gov/29128542/


Assumptions:
• All sources captured in data covariance matrix C (signal and noise)
• We are interested in one source i in many sources

Aim:
Design a spatial filter wi which projects maximally on the source of interest and minimally on noise sources.

e.g. Hauk et al., Neuroimage 2022, https://pubmed.ncbi.nlm.nih.gov/35390459/
Hauk&Stenroos, HBM 2013, https://pubmed.ncbi.nlm.nih.gov/23616402/ ,

“Spatial Filters”: Beamformers

Create and apply these spatial filters vertex-by-vertex (dipole-by-dipole) and plot the distribution (possibly normalised by 
noise variance).
Spatial filters can also produce time courses for every source.
But note: The “spatial filter” interpretation applies to all linear methods, including MNE-type methods.

Project on source of interest:

Suppress noise:

Linearly-Constrained 
Minimum-Variance 

(LCMV) Beamformer

𝐰𝐰𝑖𝑖
𝑇𝑇𝐟𝐟𝑖𝑖

𝒎𝒎𝒎𝒎𝒎𝒎(𝐰𝐰𝑖𝑖
𝑇𝑇𝐂𝐂𝐰𝐰𝑖𝑖 )

𝐰𝐰𝑖𝑖 =
𝐟𝐟𝑖𝑖𝑇𝑇𝐂𝐂−1

𝐟𝐟𝑖𝑖𝑇𝑇𝐂𝐂−1𝐟𝐟𝑖𝑖

Van Veen et al., 1997, https://pubmed.ncbi.nlm.nih.gov/9282479/

https://pubmed.ncbi.nlm.nih.gov/35390459/
https://pubmed.ncbi.nlm.nih.gov/23616402/
https://pubmed.ncbi.nlm.nih.gov/9282479/


Beamformers are adaptive -
i.e. not strictly linear

𝐒𝐒𝐒𝐒𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 i =
𝐋̃𝐋.𝑖𝑖
𝑇𝑇𝐂𝐂𝑑𝑑−1

𝐋̃𝐋.𝑖𝑖
𝑇𝑇𝐂𝐂𝑑𝑑−1𝐋̃𝐋.𝑖𝑖

The “linearly-constrained maximum-variance” (LCMV) beamformer

depends on the data covariance matrix (“adaptive”).

Beamformers result in linear transformations of the data (“spatial filters”),
but those transformations strongly depend on the data of interest.

=> Beamformers are data-dependent and not linear with respect to the sources of 
interest.



Beamforming Is Problematic For Highly Synchronous Sources

Ilmoniemi and Sarvas, “Brain Signals”, MIT 2019
Hauk et al., Neuroimage 2022, https://pubmed.ncbi.nlm.nih.gov/35390459/

4 non-synchronous sources 2 non-synchronous,
2 synchronous sources

Beamformers are designed for – and work best for – small numbers of focal sources with uncorrelated time courses.

https://pubmed.ncbi.nlm.nih.gov/35390459/


Beamformers Are Popular for Rhythmic Brain Activity 
and Resting State Activity

Singh, NI 2012

Visual Gamma Band 
Response

Resting State
Networks

Motor Fronto-Parietal Visual

Brookes et al. PNAS 2011



Beamformers Are Popular for Rhythmic Brain Activity 
and Resting State Activity…

…but the choice of source estimation method should be based 
on knowledge (or its absence) about the source distribution.

Is there anything in rhythmic/oscillatory or resting state activity 
that favours some source distributions more than others

(e.g. number of sources, focality/sparsity, location)?

For example, visual gamma band sources may be focal, but 
resting state networks may be distributed.



Minimum Norm Estimation Of Distributed Sources

But this is the result of mathematical desperation, and not based on physiology or what we want to know 
(e.g. localisation of multiple sources).

𝐋𝐋𝐋𝐋 = 𝐝𝐝 ⇒ 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐 = 0 
(ignore noise for now)

subject to constraint

𝐬𝐬 𝟐𝟐 = min

yields the Minimum-Norm Least-Squares solution (“L2”)

�𝒔𝒔 = 𝑮𝑮𝑴𝑴𝑴𝑴𝐝𝐝

with

𝑮𝑮𝑴𝑴𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 −1



There Are Many Norms, e.g. L1 vs L2 –
Sparseness vs Smoothness

Minimising the L2 norm, 𝐬𝐬 𝟐𝟐 = s𝟏𝟏 𝟐𝟐+ s𝟐𝟐 𝟐𝟐+…+ s𝑵𝑵 𝟐𝟐 penalizes large values in s
=> “smooth”

Minimising the L1 norm, 𝐬𝐬 𝟏𝟏 = s𝟏𝟏 + s𝟏𝟏 +…+ s𝑵𝑵 prefers large values in s
⇒ “sparse”

For example:

x1 + 2x2=1

L2 solution: (0.2, 0.4)
L2-norm 0.22+0.42~0.45, L1-norm 0.2+0.4=0.6

L1 solution: (0, 0.5)
L2-norm 0.5, L1-norm 0.5



There Are Different Optimisation Criteria:
Bayesian Approach

Bayes’ rule:

𝑝𝑝 𝐬𝐬 𝐝𝐝 ~ 𝑝𝑝 𝐝𝐝 𝐬𝐬 ∗ 𝑝𝑝 𝐬𝐬
posterior  ~  likelihood * prior

Assume normal distribution for noise:

𝑝𝑝 𝐝𝐝 𝐬𝐬 =
𝛽𝛽

2𝜋𝜋

𝑴𝑴/𝟐𝟐

𝑒𝑒𝑒𝑒𝑒𝑒 −
𝛽𝛽
2

𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐

Thus, minimise

−2𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 𝐬𝐬 𝐝𝐝 = −2log 𝑝𝑝 𝐝𝐝 𝐬𝐬 − 2log 𝑝𝑝 𝐬𝐬 = 𝛽𝛽 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐 -2log 𝑝𝑝 𝐬𝐬

“Most likely” is still not what we want to know –
Does the method do what we want it to do?

e.g. Henson et al., 2011, 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160752/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160752/


Let’s Start Again:
The “Blurry Image” Analogy

Just because the brain is complicated doesn’t mean source estimation has to be complicated



The Superposition Principle
A “Constraint-Free” Interpretation of Linear Methods

Astronomy

https://en.wikipedia.org/wiki/Point_spread_function

Object

PSF

Image
convolution

Microscopy

Point-Spread Function
PSF

https://en.wikipedia.org/wiki/Point_spread_function


If you know the behaviour  for point sources, 
you can predict the behaviour for complex sources
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For Linear Methods We Can Find Out If They Do What We Want
Superposition Principle



Linear Methods – Superposition 
Principle

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 
From Signals to Dynamic Cortical Networks, 2nd Ed.”

Superposition In Source Space

Example Point-Spread 
Functions

Great! Good. :-(



Resolution Matrix

1

1
2

23

Forward Problem

𝐝𝐝 = 𝐋𝐋𝐋𝐋

1

1
2

23

Linear Inverse Problem

�𝐬𝐬 = 𝐆𝐆𝐆𝐆

�𝐬𝐬 = 𝐆𝐆𝐆𝐆𝐆𝐆 ≝ 𝐑𝐑𝐑𝐑
Relationship between estimated and true source distribution.

e.g. Hauk et al., Neuroimage 2022, https://pubmed.ncbi.nlm.nih.gov/35390459/

https://pubmed.ncbi.nlm.nih.gov/35390459/


𝑹𝑹 − 𝑰𝑰 𝟐𝟐 = min

Creating an Optimal Resolution Matrix

�𝐬𝐬 = 𝐑𝐑𝐑𝐑

The closer R is to the identity matrix, the closer our estimate is to the true 
source.

Therefore, let us minimise the difference between R and the identity matrix in 
the least-squares sense:

This leads to the Minimum Norm Estimator (MNE):

𝑲𝑲𝑴𝑴𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 −1

Its resolution matrix 𝑹𝑹𝑴𝑴𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 −1𝐋𝐋 is symmetric.

e.g. Hauk et al., Neuroimage 2022, https://pubmed.ncbi.nlm.nih.gov/35390459/

L2-MNE (non-weighted, non-normalised) has the ideal resolution matrix in the least-squares sense.

https://pubmed.ncbi.nlm.nih.gov/35390459/


Weighted and Noise-Normalised MNE Methods

L2-MNE
𝑲𝑲𝑀𝑀𝑀𝑀𝐸𝐸 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 −1

(Depth-)Weighted MNE
𝑲𝑲𝑤𝑤𝑀𝑀𝑀𝑀 = 𝐃𝐃𝐋𝐋𝑇𝑇 𝐋𝐋𝐃𝐃𝐋𝐋𝑇𝑇 −1

dSPM

𝑲𝑲𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑾𝑾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑲𝑲𝑀𝑀𝑀𝑀𝑀𝑀 𝑾𝑾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝑲𝑲𝑀𝑀𝑀𝑀𝑀𝑀𝑪𝑪𝑲𝑲𝑀𝑀𝑀𝑀𝑀𝑀
𝑻𝑻 )

−𝟏𝟏

eLORETA
𝑲𝑲𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑫𝑫𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐋𝐋𝑇𝑇 𝐋𝐋𝑫𝑫𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐋𝐋𝑇𝑇 −1

sLORETA
𝑲𝑲𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑾𝑾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑲𝑲𝑀𝑀𝑀𝑀𝑀𝑀 𝑾𝑾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑹𝑹𝑀𝑀𝑀𝑀𝑀𝑀)

−𝟏𝟏

“Alleviating Depth Bias”

“Zero 
Dipole Localization Error”



Noise and Regularisation
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2

1

1
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Stable Instable

(In)Stability – Sensitivity to Noise

Similar topographies 
are difficult to 
distinguish, especially 
in the presence of noise.



Noise and Regularization
Over- And Under-Fitting

Explaining the data 100% may not be desirable – some of the measured activity is not 
produced by sources in the model.

Explaining noise may require larger amplitudes in source space than the signal of 
interest: 

Overfitting may seriously distort the solution (“variance amplification” in 
statistics/regression).

“Regularisation” results in a spatially smoother solution that is less affected by noise. 
The degree of smoothing depends on the “regularisation parameter” (also called 

“lambda”).

Underfitting (over-smoothing) may waste spatial resolution.



Some channels are noisier than others
⇒They should get different weights in your analysis

Sensors are not independent
=> Sensors that carry the same information should be downweighted relative to more 

independent sensors

(Full) Noise Covariance Matrix
(Diagonal) Noise Covariance Matrix
(contains only variance for sensors)

Regularisation Can Take Into Account Noise 
covariance



Leaving Variance Unexplained

𝐋𝐋𝐋𝐋 = 𝐝𝐝 + 𝛆𝛆 ⇒ 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐 <= e, s.t. 𝐬𝐬 𝟐𝟐 = min

This is equivalent to minimising the cost function

𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐 + λ 𝐬𝐬 𝟐𝟐, λ>0

We can give sensors different weightings, 

e.g. based on their noise covariance matrix C:

𝐂𝐂−1 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝟐𝟐 = 𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝑪𝑪
𝟐𝟐 = e

𝐋𝐋𝐋𝐋 − 𝐝𝐝 𝑪𝑪
𝟐𝟐+ λ 𝐬𝐬 𝟐𝟐, λ>0

𝑲𝑲𝑴𝑴𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 + 𝜆𝜆𝐂𝐂 −1

𝜆𝜆 (Lambda) is the regularisation parameter that determines how much 
variance we want to leave unexplained.



Whitening and Choice of Regularisation Parameter

𝑲𝑲𝑴𝑴𝑴𝑴 = 𝐋𝐋𝑇𝑇 𝐋𝐋𝐋𝐋𝑇𝑇 + 𝜆𝜆𝐂𝐂−1 −1

can also be written as

𝑲𝑲 �𝑴𝑴𝑴𝑴 = 𝐋̃𝐋𝑇𝑇 𝐋̃𝐋𝐋̃𝐋𝑇𝑇 + 𝜆𝜆𝐈𝐈 −1

where 𝐋̃𝐋 is the “whitened” leadfield 𝐂𝐂−1/2𝐋𝐋, and scaled such that 
trace(𝐋̃𝐋𝐋̃𝐋𝑇𝑇)=trace(𝐈𝐈).

“Whitening” turns data and leadfield into signal-to-noise ratios.

𝐋̃𝐋 and λ can now be interpreted in terms of signal-to-noise ratios.

A reasonable choice for λ is then the approximate SNR of the data.



Trade-off norm-variance, 
smoothness
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Fuchs et al., J Clin Neurophys 1999 

Source at fixed excentricity 71% (60mm)
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Thank you
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