= Course Material for COGNESTIC 2022 = The Cognitive Neuroscience Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for neuroimaging and neurostimulation. You can find more information on the [[https://www.mrc-cbu.cam.ac.uk/conferences/cognestic2022/|COGNESTIC webpage]]. Below you will find documents, videos and web links that will be used for the course or can be used for preparation. <
><
> <> ||||||~+'''Introduction and Open Science'''+~ <
> Rik Henson & Olaf Hauk || ||<10%>__Websites__ ||[[https://osf.io/|OSF]] <
> [[https://www.ukrn.org/primers/|UKRN]] <
> [[https://bids.neuroimaging.io/|BIDS]] || ||__Suggested reading__ ||[[https://doi.org/10.1038/s41562-016-0021|Munafo et al, 2017, problems in science]] <
> [[https://doi.org/10.1038/nrn3475|Button et al, 2013, power in neuroscience]] <
> [[https://doi.org/10.1038/nrn.2016.167|Poldrack et al, 2017, reproducible neuroimaging]] <
> [[https://doi.org/10.1038/s41586-022-04492-9|Marek et al, 2022, power in neuroimaging association studies]] || ||__Suggested viewing__ ||[[https://youtu.be/kTVtc7kjVQg|Open Cognitive Neuroscience (will give this talk live on day)]] <
> [[https://www.youtube.com/watch?v=D0VKyjNGvrs|Statistical power in neuroimaging]] <
> [[https://www.youtube.com/watch?v=zAzTR8eq20k|PayWall: open access]] <
> [[https://www.facebook.com/LastWeekTonight/videos/896755337120143|Comedian's Perspective on science and media]] || ||__Tutorial slides and scripts__ ||[[attachment:COGNESTIC_OpenCogNeuro.pdf|Open Science Talk Slides]] || <
> <> ||||||~+'''Structural MRI - VBM and Surface-based Analysis '''+~<
> Marta Correia || ||<10%>__Software__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] [[https://surfer.nmr.mgh.harvard.edu/|Freesurfe]]r || ||__Datasets__ ||[[https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/Data|Freesurfer tutorial data]] <
> Subset of the CamCAN dataset (~3GB) https://www.cam-can.org/, please sign [[attachment:CamCAN Data User Agreement_COGNESTIC.docx|data user agreement]] if using || ||__Suggested reading__ ||[[attachment:IntroductionToGLM.pdf|Introduction to GLM for structural MRI analysis]] <
> [[https://pubmed.ncbi.nlm.nih.gov/11525331/|Good et al, 2001, A VBM study of ageing]] <
> [[https://pubmed.ncbi.nlm.nih.gov/15501092/|Smith et al, 2004, Structural MRI analysis in FSL]] <
> [[https://pubmed.ncbi.nlm.nih.gov/9931268/|Dale et al, 1999, Cortical surface-based analysis I]] <
> [[https://pubmed.ncbi.nlm.nih.gov/9931269/|Fischl et al, 1999, Cortical surface-based analysis II]] || ||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=6eJMxh7PlOY|Using the command line]] <
> [[https://youtu.be/Psh-GovQLiI|Introduction to MRI Physics and image contrast]] <
> [[attachment:IntroductionToMRIPhysics.pdf|Slides]] || ||__Tutorial slides and scripts__ ||[[attachment:COGNESTIC_FSLVBM.pdf|FSLVBM slides]] <
> [[attachment:FSLVBM_tutorials.docx|FSLVBM tutorial]] <
> [[attachment:FSLVBM_cognestic_all.sh|FSLVBM bash script]] <
> <
> [[attachment:COGNESTIC_FS_CorticalThickness.pdf|FreeSurfer Cortical Thickness slides]] <
> [[attachment:FreeSurfer_tutorials.docx|Freesurfer tutorials]] <
> [[attachment:FS_check_location.sh|FS check location script]] <
> [[attachment:FS_visualising_output.sh|FS visualising the output script]]<
> [[attachment:FS_group_analysis.sh|FS group analysis script]] <
> [[attachment:FS_ROI_analysis.sh|FS ROI analysis script]] || <
> <> ||||||~+'''Diffusion MRI I - DTI Model Fitting and Group Analysis'''+~ <
> Marta Correia || ||<10%>__Software__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds001226/versions/00001|BTC_preop]] || ||__Suggested reading__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT|FSL Diffusion Toolbox Wiki]] <
> [[https://doi.org/10.1371/journal.pbio.1002203|Le Bihan et al, 2015, What water tells us about biological tissues]] <
> [[https://doi.org/10.3389/fnins.2013.00031|Soares et al, 2013, A short guide to Diffusion Tensor Imaging]] <
> [[https://pubmed.ncbi.nlm.nih.gov/16624579/|Smith et al, 2006, Tract-based spatial statistics (TBSS)]] || ||__Suggested viewing__ ||[[https://youtu.be/stpmlzO7b6c|Introduction to Diffusion MRI - Part I]] <
> [[attachment:IntroductionToDiffusionMRI_I.pdf|Slides]] || ||__Tutorial slides and scripts__ ||[[attachment:COGNESTIC_FSL_DTI&TBSS.pdf|FSL DTI and TBSS slides]] <
> [[attachment:FSL_FDT_DTI_tutorials.docx|DTI and group analysis in TBSS tutorial]]<
> [[attachment:FDT_DTI_pipeline.sh|FSL DTI pipeline script]] <
> [[attachment:FDT_DTI_TBSS.sh|FSL TBSS script]]<
> [[attachment:FDT_DTI_group_QC.sh|FSL Group QC script]] || <
> <> ||||||~+'''Diffusion MRI II - Tractography and Structural Connectivity'''+~ <
> Marta Correia || ||<10%>__Software__ ||[[https://www.mrtrix.org/|MRtrix3]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds001226/versions/00001|BTC_preop]] || ||__Suggested reading__ ||[[https://mrtrix.readthedocs.io/en/latest/|MRtrix3 documentation]] <
> [[https://www.sciencedirect.com/science/article/pii/B9780123964601000196|MR Diffusion Tractography]] || ||__Suggested viewing__ ||[[https://youtu.be/QDJJ6G2ZouA|Introduction to Diffusion MRI - Part II]] <
> [[attachment:IntroductionToDiffusionMRI_II.pdf|Slides]] || ||__Tutorial slides and scripts__ ||[[attachment:COGNESTIC_MRtrix_tractography.pdf|MRtrix Tractography slides]] <
> [[attachment:MRtrix_dMRI_tutorials.docx|MRtrix Tractography tutorials]] <
> [[attachment:MRTrix_dMRI_preprocessing.sh|MRtrix preprocessing script]] <
> [[attachment:MRTrix_dMRI_CSD_tractography.sh|MRtrix CSD Tractography script]] <
> [[attachment:MRTrix_dMRI_connectome.sh|MRtrix connectome script]] || <
> <> ||||||~+'''fMRI I - Data management, structure, manipulation'''+~ <
> Dace Apšvalka || ||<10%>__Software__ ||[[https://heudiconv.readthedocs.io/en/latest/|HeudiConv]], [[https://bids-standard.github.io/pybids/|PyBIDS]], [[https://nipy.org/nibabel/|NiBabel]], [[https://nilearn.github.io/stable/index.html|Nilearn]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||__Suggested reading__ ||[[https://doi.org/10.1038/sdata.2016.44|Gorgolewski et al., 2016, The brain imaging data structure (BIDS)]] || ||__Suggested viewing__ ||[[https://osf.io/fbj5u|BIDS for MRI: Structure and Conversion]] by Taylor Salo (13:39) <
> [[https://youtu.be/OuRdQJMU5ro|fMRI Data Structure & Terminology]] by Martin Lindquist and Tor Wager (6:47) || ||Slides and scripts__ __ ||https://github.com/dcdace/COGNESTIC-fMRI || <
> <> ||||||~+'''fMRI II - Quality control & Pre-processing'''+~ <
> Dace Apšvalka || ||<10%>Software__ __ ||[[https://mriqc.readthedocs.io/en/latest/|MRIQC]], [[https://fmriprep.org/en/stable/|fMRIprep]], [[https://nipype.readthedocs.io/en/latest/|Nipype]] || ||Datasets__ __ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||Suggested reading__ __ ||[[https://link.springer.com/article/10.1007/s11065-015-9294-9|Chen & Glover (2015), Functional Magnetic Resonance Imaging Methods]]<
> [[https://mriquestions.com/uploads/3/4/5/7/34572113/ch2.pdf|Ashburner J & Friston KJ (2004), Rigid body registration]]<
> [[https://doi.org/10.1002/mrm.24314|Maclaren et al. (2013), Prospective Motion Correction in Brain Imaging: A Review]]<
> [[https://doi.org/10.1016/j.neuroimage.2011.06.078|Sladky et al. (2011), Slice-timing effects and their correction in functional MRI]]<
> [[https://doi.org/10.1006/nimg.2000.0609|Friston et al. (2000), To Smooth or Not to Smooth?: Bias and Efficiency in fMRI Time-Series Analysis]]<
> [[https://www.nature.com/articles/s41592-018-0235-4|Esteban et al., 2018, fMRIPrep: a robust preprocessing pipeline for functional MRI]] || ||Suggested viewing__ __ ||[[https://youtu.be/7Kk_RsGycHs|fMRI Artifacts and Noise]] by Martin Lindquist and Tor Wager (11:57)<
>[[https://youtu.be/Qc3rRaJWOc4|Pre-processing I]] by Martin Lindquist and Tor Wager (10:17)<
>[[https://youtu.be/qamRGWSC-6g|Pre-processing II]] by Martin Lindquist and Tor Wager (7:42) || ||Slides and scripts ||https://github.com/dcdace/COGNESTIC-fMRI || <
> <> ||||||~+'''fMRI III - Subject Level Analysis'''+~ <
> Dace Apšvalka || ||<10%>__Software__ ||[[http://nipype.readthedocs.io/en/latest/|Nipype]], [[http://nilearn.github.io/stable/index.html|Nilearn]], [[http://www.fil.ion.ucl.ac.uk/spm/software/spm12/|SPM12]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||__Suggested reading__ ||[[https://doi.org/10.1002/hbm.460020402|Friston et al. (1994), Statistical parametric maps in functional imaging: A general linear approach]]<
>[[https://doi.org/10.1016/j.neuroimage.2012.01.133|Poline & Brett (2012), Poline, J. B., & Brett, M. (2012). The general linear model and fMRI: does love last forever?]]<
>[[https://doi.org/10.3389/fnhum.2011.00028|Monti (2011), Statistical analysis of fMRI time-series: a critical review of the GLM approach]]<
>[[https://doi.org/10.1191/0962280203sm341ra|Nichols & Hayasaka (2003), Controlling the familywise error rate in functional neuroimaging: a comparative review]]<
>[[https://doi.org/10.1016/j.neuroimage.2008.05.021|Chumbley & Friston (2009), False discovery rate revisited: FDR and topological inference using Gaussian random fields]]<
>[[https://doi.org/10.1016/j.neuroimage.2013.12.058|Woo et al. (2014), Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations]]<
>[[https://doi.org/10.1214/09-STS282|Lindquist (2008), The Statistical Analysis of fMRI Data]] || ||__Suggested viewing__ ||[[https://youtu.be/GDkLQuV4he4|The General Linear Model]] by Martin Lindquist and Tor Wager (12:24)<
>[[https://www.youtube.com/watch?v=OyLKMb9FNhg|GLM applied to fMRI]] by Martin Lindquist and Tor Wager (11:21)<
>[[https://www.youtube.com/watch?v=7MibM1ATai4|Model Building I – conditions and contrasts]] by Martin Lindquist and Tor Wager (11:48)<
>[[https://www.youtube.com/watch?v=YfeMIcDWwko|Model Building II – temporal basis sets]] by Martin Lindquist and Tor Wager (11:08)<
>[[https://www.youtube.com/watch?v=DEtwsFdFwYc|Model Building III- nuisance variables]] by Martin Lindquist and Tor Wager (13:58)<
>[[https://www.youtube.com/watch?v=Ab-5AbJ8gAs|GLM Estimation]] by Martin Lindquist and Tor Wager (9:11)<
>[[https://youtu.be/Mb9LDzvhecY|Noise Models- AR models]] by Martin Lindquist and Tor Wager (9:57)<
>[[https://youtu.be/NRunOo7EKD8|Inference- Contrasts and t-tests]] by Martin Lindquist and Tor Wager (11:05)<
>[[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] by Martin Lindquist and Tor Wager (9:03)<
>[[https://youtu.be/MxQeEdVNihg|FWER Correction]] by Martin Lindquist and Tor Wager (16:11)<
>[[https://youtu.be/W9ogBO4GEzA|FDR Correction]] by Martin Lindquist and Tor Wager (5:25)<
>[[https://youtu.be/N7Iittt8HrU|More about multiple comparisons]] by Martin Lindquist and Tor Wager (14:39) || ||Slides and scripts__ __ ||https://github.com/dcdace/COGNESTIC-fMRI || <
> <> ||||||~+'''fMRI IV - Group Level Analysis & Reporting'''+~ <
> Dace Apšvalka || ||<10%>Software__ __ ||[[http://nilearn.github.io/stable/index.html|Nilearn]], [[https://pysurfer.github.io/|PySurfer]], [[http://www.fil.ion.ucl.ac.uk/spm/software/spm12/|SPM12]] || ||Datasets__ __ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||Suggested reading__ __ ||[[https://doi.org/10.1109/MEMB.2006.1607668|Mumford & Nichols (2006), Modeling and inference of multisubject fMRI data]]<
>[[https://www.nature.com/articles/nn.4500|Nichols et al. (2017), Best practices in data analysis and sharing in neuroimaging using MRI]]<
>[[https://doi.org/10.1016/j.neuroimage.2007.11.048|Poldrack et al. (2008), Guidelines for reporting an fMRI study]]<
>[[https://doi.org/10.1016/j.neuroimage.2015.04.016|Gorgolewski et al. (2016), NeuroVault.org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain]]<
>[[https://doi.org/10.7554/eLife.71774|Markiewicz et al. (2021), The OpenNeuro resource for sharing of neuroscience data]] || ||Suggested viewing__ __ ||[[https://youtu.be/__cOYPifDWk|Group-level Analysis I]] by Martin Lindquist and Tor Wager (7:05)<
>[[https://youtu.be/-abMLQSjMSI|Group-level Analysis II]] by Martin Lindquist and Tor Wager (10:09)<
>[[https://youtu.be/-yaHTygR9b8|Group-level Analysis III]] by Martin Lindquist and Tor Wager (14:01) || ||Slides and scripts ||https://github.com/dcdace/COGNESTIC-fMRI || <
> <> ||||||~+'''Connectivity for fMRI'''+~ <
> Rik Henson || ||<10%>__Software__ ||[[https://www.fil.ion.ucl.ac.uk/spm/software/spm12/|SPM12]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||__Suggested reading__ ||[[http://dx.doi.org/10.1016/j.tics.2013.09.016|Resting-state functional Connectivity]] <
> [[https://doi.org/10.1016/j.neuroimage.2013.07.008|Simple Intro to DCM]] <
> [[https://www.frontiersin.org/articles/10.3389/fnins.2019.00300/full#supplementary-material|fMRI preprocessing in SPM12 (for demo)]] <
> [[https://www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf|SPM12 manual (Chapter 36)]] || ||__Suggested viewing__ ||[[https://youtu.be/1VOKsWWLgjk|fMRI Functional Connectivity, including DCM]] <
> [[https://youtu.be/1cbEmn_Qgkc|Bayesian Model Comparison (for DCM for fMRI/MEEG)]] || ||__Tutorial slides and scripts__ ||[[attachment:Multimodal_DCM_cognestic_tutorial_fMRI.pdf|Tutorial for DCM for fMRI]] || <
> <> ||||||~+'''Eye-tracking'''+~ <
> Edwin Dalmaijer || ||<10%>Software__ __ ||Python NumPy, [[https://scipy.org/|SciPy]], [[https://matplotlib.org/|Matplotlib]] || ||Datasets__ __ ||[[https://www.pygaze.org/resources/downloads/PEP/ED_pupil.asc|Example Data]] EyeLink || ||Suggested reading__ __ ||https://doi.org/10.3758/s13428-021-01762-8 Paper on eye-tracking reporting standards (great for beginners and experts alike) || ||Suggested viewing__ __ ||https://www.youtube.com/watch?v=F5eBln42VyM Talk at the MRC CBU on how to hack pupillometry studies || ||Slides and scripts || || <
> <> ||||||~+'''EEG/MEG I – Pre-processing'''+~ <
> Olaf Hauk || ||<10%>__Software__ ||[[https://mne.tools/stable/index.html|MNE-Python]]<
> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] || ||__Datasets__ ||Sample dataset in MNE-Python. [[https://mne.tools/stable/auto_tutorials/preprocessing/index.html|Tutorials]]<
> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] || ||__Suggested reading__ ||[[https://pubmed.ncbi.nlm.nih.gov/25128257/|Digitial Filtering]] <
>[[https://www.sciencedirect.com/science/article/pii/S0896627319301746|Filtering How To]] <
> [[https://iopscience.iop.org/article/10.1088/0031-9155/51/7/008|Maxwell Filtering]] <
> [[attachment:General EEGMEG Literature.pdf|General EEG/MEG Literature]] || ||__Suggested viewing__ ||[[https://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures?action=AttachFile&do=view&target=EEGMEG1.mp4|Introduction to EEG/MEG Preprocessing]] <
>[[https://mediacentral.ucl.ac.uk/Player/2909|What are we measuring with M/EEG]]? || ||Slides and scripts__ __ ||[[attachment:EEGMEG1-preprocessing.zip|Notebooks and Slides]] || <
> <> ||||||~+'''EEG/MEG II – Source Estimation'''+~ <
> Olaf Hauk || ||<10%>Software__ __ ||[[https://mne.tools/stable/index.html|MNE-Python]]<
> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] || ||Datasets__ __ ||Sample dataset in MNE-Python. [[https://mne.tools/stable/auto_tutorials/inverse/index.html|Tutorials]]<
> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] || ||Suggested reading__ __ ||[[https://pubmed.ncbi.nlm.nih.gov/35390459/|Linear source estimation and spatial resolution]]<
> [[attachment:General EEGMEG Literature.pdf|General EEG/MEG Literature]] || ||Suggested viewing__ __ ||[[https://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures?action=AttachFile&do=view&target=EEGMEG2_SourceEstimation.mp4|Introduction to EEG/MEG Source Estimation]] [[https://mediacentral.ucl.ac.uk/Player/2917|M/EEG Source Analysis in SPM]] || ||Slides and scripts ||[[attachment:EEGMEG2-sourceestimation.zip|Notebooks and Slides]] || <
> <> ||||||~+'''EEG/MEG III – Time-Frequency and Functional Connectivity'''+~ <
> Olaf Hauk || ||<10%>__Software__ ||[[https://mne.tools/stable/index.html|MNE-Python]]<
> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] || ||__Datasets__ ||Sample dataset in MNE-Python. [[https://mne.tools/stable/auto_tutorials/time-freq/index.html|Tutorials]]<
> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] || ||__Suggested reading__ ||[[https://pubmed.ncbi.nlm.nih.gov/26778976/|Tutorial on Functional Connectivity]]<
> [[https://mitpress.mit.edu/books/analyzing-neural-time-series-data|Analyzing Neural Time Series Data]]<
> [[attachment:General EEGMEG Literature.pdf|General EEG/MEG Literature]] || ||__Suggested viewing__ ||[[https://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures?action=AttachFile&do=view&target=EEGMEG3.mp4|Introduction to time-frequency and functional connectivity analysis]] <
> [[https://www.youtube.com/watch?v=wB417SAbdak|Time-Frequency Analysis of EEG Time Series]] || ||Slides and scripts__ __ ||[[attachment:EEGMEG3-timefrequency.zip|Notebooks and Slides]] || <
> <> ||||||~+'''Graph Theory'''+~ <
> Caroline Nettekoven [[https://us02web.zoom.us/j/81982692386?pwd=TUZsdmpHZDEySUJLSFJIcDN6TXNFdz09|Zoom link]] || ||<10%>Software__ __ ||[[https://sites.google.com/site/bctnet/|Brain Connectivity Toolbox]] in [[https://uk.mathworks.com/products/matlab.html|Matlab]], [[https://sites.google.com/site/bctnet/list-of-measures?authuser=0|BCT Documentation]] || ||Datasets__ __ ||[[https://www.caroline-nettekoven.com/slides/graph-theory-exercises/|Coding exercises]]<
> [[https://www.caroline-nettekoven.com/slides/graph-theory-exercises-solutions/|Exercise solutions]] || ||Suggested reading__ __ ||[[https://www.nature.com/articles/nrn2575|Complex brain networks: graph theoretical analysis of structural and functional systems]] || ||Suggested viewing__ __ ||[[https://www.caroline-nettekoven.com/slides/graph-theory-lecture/|Slides]] || ||Slides and scripts || || <
> <> ||||||~+'''MVPA/RSA I'''+~ <
> Daniel Mitchell || ||<10%>__Software__ ||[[https://sites.google.com/site/tdtdecodingtoolbox/|The Decoding Toolbox]] in [[https://uk.mathworks.com/products/matlab.html|Matlab]]. (This might not be accessible from the CBU internet connection, so please download it in advance or use a difffernt wifi connection) || ||__Datasets__ ||[[https://www.bccn-berlin.de/tdt/downloads/sub01_firstlevel.zip|The Decoding Toolbox example dataset]] <
> (See toolbox webpage for a lower resolution alternative) || ||__Suggested reading__ ||[[https://academic.oup.com/scan/article/4/1/101/1613450|Mur et al. (2009) Revealing representational content with pattern-information fMRI--an introductory guide]]<
>[[https://www.frontiersin.org/articles/10.3389/fninf.2014.00088/full|Hebart et al. (2014) The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data]] || ||__Suggested viewing__ ||Excellent presentations from Martin Hebart's MVPA course, on:<
>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/02_lecture1|Introduction to MVPA]]<
>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/03_lecture2|Introduction to classification]]. (I've suggested these two, but the others are worth a look too.) || ||Slides and scripts__ __ ||[[attachment:COGNESTIC22_MVPA_djm_Part1.pptx|Slides for morning session - MVPA]]<
> [[attachment:TDTdemoFunctions.zip|These functions should be saved in a subfolder of the Decoding Toolbox demos folder]]<
> [[attachment:FunctionsToGoInTopFolder.zip|These functions should be saved in the top-level folder]] <
>(Please see the 3rd slide for an overview of the file structure expected by the demo scripts) || <
> <> ||||||~+'''MVPA/RSA II'''+~ <
> Daniel Mitchell || ||<10%>Software__ __ ||[[http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/license/|The RSA toolbox]] in [[https://uk.mathworks.com/products/matlab.html|Matlab]]<
>For the demos, please download this alternative version: https://git.fmrib.ox.ac.uk/hnili/rsa <
>(Note that the toolbox development has recently switched to Python. We will not be demoing this version, but you can find it here: [[https://github.com/rsagroup/rsatoolbox|Version 3.0]]) || ||Datasets__ __ ||[[attachment:imageryexp.zip|Group-averged example data]] from [[https://www.nature.com/articles/srep20232|Mitchell & Cusack (2016) Semantic and emotional content of imagined representations in human occipitotemporal cortex]] || ||Suggested reading__ __ ||[[https://www.frontiersin.org/articles/10.3389/neuro.06.004.2008/full|Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience]]<
>[[https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(13)00127-7|Kriegeskorte & Kievit (2013) Representational geometry: integrating cognition, computation, and the brain]] <
>[[https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003553|Nili et al. (2014) A toolbox for representational similarity analysis]]<
> <
>EEG/MEG: <
> [[https://pubmed.ncbi.nlm.nih.gov/27779910/%20|Tutorial on EEG/MEG decoding]]<
> [[https://pubmed.ncbi.nlm.nih.gov/27779910|Temporal Generalization]] || ||Suggested viewing__ __ ||[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/08_lecture6|Martin Hebart's lecture on RSA]] || ||Slides and scripts ||[[attachment:COGNESTIC22_MVPA_djm_Part2.pptx|Slides for afternoon session - RSA]] <
>[[attachment:FunctionsToGoInRsa-MasterDemos.zip|These functions should be saved in rsa-master/Demos]]<
> [[attachment:EEGMEG4-decoding.zip|EEGMEG Notebooks and Slides]] || <
> <> ||||||~+'''Statistics in R'''+~ <
> Peter Watson || ||<10%>__Software__ ||[[https://www.r-project.org/|R]] Data&Code || ||__Datasets__ ||[[attachment:PW SEPT 2022 R COURSE.zip|Data&Code]] [[attachment:README R COURSE.txt|Readme]] || ||__Suggested reading__ ||[[https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjZrKTMs635AhWQUMAKHZfTA6gQFnoECAYQAQ&url=https://labs.la.utexas.edu/gilden/files/2016/05/Statistics-Text.pdf|Statistical Methods for Psychology (Howell)]] <
> [[https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjB1Pnxs635AhXOQkEAHfHvBqgQFnoECBQQAQ&url=https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf|Introduction to R]] <
> [[https://www.amazon.co.uk/Discovering-Statistics-Using-Andy-Field/dp/1446200469|Discovering statistics using R]] <
> [[https://www.amazon.co.uk/Introduction-Statistical-Learning-Applications-Statistics/dp/1071614177/ref=sr_1_1?crid=ZCK7U9XROUWC&keywords=an+introduction+to+statistical+learning+with+applications+in+r&qid=1664181428&s=books&sprefix=an+introduction+to+statistical+learning,stripbooks,56&sr=1-1|An introduction to statistical learning with applications in R]] || ||__Suggested viewing__ ||[[https://imaging.mrc-cbu.cam.ac.uk/statswiki/StatsCourse2021/recordings|CBU Statistics Lectures]] || ||Slides and scripts__ __ || || <
> <> ||||||~+'''Brain Stimulation'''+~ <
> Ajay Halai || ||<10%>Software__ __ ||[[https://simnibs.github.io/simnibs/build/html/index.html|SIMNIBS]] (also requires access to Matlab, FSL and Freesurfer to run certain functions, see SIMNIBS installation guide) and [[http://www.k-wave.org/|k-wave]] || ||Datasets__ __ ||[[https://simnibs.github.io/simnibs/build/html/dataset.html|tutorial_data]] || ||Suggested reading__ __ ||[[https://www.sciencedirect.com/science/article/pii/S1053811916001191?via=ihub|Approaches to brain stimulation]] ; [[https://direct.mit.edu/jocn/article/33/2/195/95534/Inferring-Causality-from-Noninvasive-Brain|what can we infer from brain stimulation]]; [[https://www.nature.com/articles/nrneurol.2010.30.pdf|using NIBS clinically]] ; focused ultrasound [[https://www.nature.com/articles/srep34026.pdf|1]] and [[https://www.nature.com/articles/s41598-018-28320-1.pdf|2]] || ||Suggested viewing__ __ ||[[attachment:AH_slides.pptx|slides]] || ||Slides and scripts ||[[attachment:AH_scripts.zip|scripts]] || <
> <> ||||||~+'''DCM for M/EEG'''+~ <
> Pranay Yadav & Rik Henson || ||<10%>__Software__ ||[[https://www.fil.ion.ucl.ac.uk/spm/software/spm12/|SPM12]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||__Suggested reading__ ||[[https://doi.org/10.3389/fnins.2019.00300|Preprocessing M/EEG in SPM12]] <
> [[https://doi.org/10.1016/j.neuroimage.2013.07.008|Simple Intro to DCM]] || ||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=HNaAvKmVCYo|Talk on DCM for M/EEG]] <
> [[https://youtu.be/6b35VvQpPDU|MEEG connectivity other than DCM (not demo'ed, and related to Hauk talks above)]] || ||__Tutorial slides and scripts__ ||[[attachment:Multimodal_DCM_cognestic_tutorial_MEEG.pdf|Tutorial for DCM for ERP]] || ---- ----