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How Can We Combine Measurement Modalities?

“Converging Evidence”:
Compare results from different modalities, determine commonalities and differences.

“(Asymmetric) Fusion”:

Use one modality as a constraint for another.
(e.g. EEG->fMRI, fMRI->EEG/MEG)

“Neural Modelling” (“Symmetric Fusion”):
Use of a common neural model that accounts for signals in all modalities.

(e.g. EEG<->MEG) e.g. Horwitz&Poeppel, HBM 2002; Henson et al., HBM
2010
Each of these options poses different challenges with respect to modelling assumptions and
complexity.
900 @ 6O €O
Visual Data Asymmetric Symmetric
Inspection Integration Fusion Fusion
Low information < > High information
\ J

Calhoun & Sui, Biol Psych Cogn Nsc 2017



How Can We Combine Modalities?

“Converging Evidence”:
Compare results from different modalities, determine commonalities and
differences.

“(Asymmetric) Fusion”:
Use one modality as a constraint for another.

“Neural Modelling” (“Symmetric Fusion”):
Use of a common neural model that accounts for signals in all modalities.

e.g. Horwitz&Poeppel, HBM 2002; Henson et al., HBM
2010



Comparing Representational Dissimilarity
Across Neuroimaging Methods
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Comparing Representational Dissimilarity

Across Neuroimaging Methods
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Problems Integrating EEG/MEG And fMRI

1. Metabolic activity can occur without EEG/MEG activity.
2. EEG/MEG activity can occur without BOLD activity.

3. EEG/MEG and metabolic activity may have common sources, but are not
fully spatially overlapping.

4. EEG/MEG and metabolic activity have different time courses.

Note: Usually EEG/MEG and fMRI are acquired in different sessions,
causing:

a) inter- and intra-subject variability (same or different subjects in different sessions)
b) differences in scanning position (supine, seated)
c) differences in scanning environment (e.g. scanner noise)

e.g. Poline et al., in “MEG — An Introduction to Methods”



Problems Integrating EEG/MEG And fMRI
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Which “Neural Activity” Do You Mean?

modulatory/environmental factors
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Which “Neural Activity” Do You Mean?
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Problems Integrating EEG/MEG And fMRI

Liu et al., PNAS 1998:

1) “Fundamental mis-specifications can arise because EEG and MEG and
fMRI measure physically different aspects of brain function.”

2) “Experimental mis-specifications refer to measurement or estimation
errors that can be corrected, at least in theory”.



Multimodal Integration
Hypothesis-Guided Dipole Modelling
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“Weighting” and “Priors”

PGE 0 & 1) = PROUEOPUEOUEOPLC

If source strengths and priors can be modelled as multivariate Gaussian
distributions, then the maximum a posteriori probability (MAP) estimate is
the minimum norm estimate:

$() = Wx(?), where W = RA” (ARA” + C)!
N

A: Leadfield O<R;<1
R/C: Source/noise covariance depending on fMRI

Dale et al., Neuron 2000, also Liu et al., PNAS 1998



Relative Weighting of fMRI

|deally, this requires knowledge about “fMRI visible” and “fMRI invisible”
sources —
if we knew those, we wouldn’t need source estimation anymore.

“The optimal fMRI weighting, which depends on the confidence in the hypothesis
that neuronal and hemodynamic activity are tightly coupled, currently cannot be

determined a priori.”
Liu et al., PNAS 1998



Relative Weighting of fMRI
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FiG. 3. Crosstalk versus relative fMRI weighting. Crosstalk is
shown for 10 sources (point and 2 cm in diameter), with and without
orientation constraint. The relative fMRI weighting was either 0%,
90%, 99%, or 100%. The optimal fIMRI weighting requires a com-
promise between resolving fMRI visible sources (i.e., higher IMRI
weighting) and minimizing distortion from fMRI invisible sources (i.e.,
lower MR weighting). The results indicate that a 90% tMRI weight-
ing greatly reduces the crosstalk from fMRI visible sources, while only
slightly increasing the crosstalk from fMRI invisible sources.

Liu et al., PNAS 1998



Relative Weighting of fMRI

fMRI Visible {MRI Invisible fMR! Visible fMRI Invisible
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F1G. 4. Crosstalk versus extent and number of sources. Crosstalk
is shown for a variety of extents and numbers of sources. The extent
of sources was either point, 1 cm or 2 cm in diameter, and the number
of sources was 5, 10, or 20 (indicated by different gray scale). A partial
fMRI weighting of 90% was used in these simulations. The results
indicate that the crosstalk is relatively independent of source extent
and number. This demonstrates that the proposed linear estimation
method is appropriate for modeling multiple, extended areas of activa-
tion, as typically encountered in functional neuroimaging studies.

Liu et al., PNAS 1998






(How) Can We Estimate Deep Sources?
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(How) Can We Estimate Deep Sources?

A Patches on C Field Map from a
Cortical Surface Cortical Patch

B  Segmentations of Deep D Field Map from
Brain Volumes a Subcortical Subdivision
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Krishnaswami et al., PNAS 2017
https://www.pnas.org/doi/10.1073/pnas.1705414114
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(How) Can We Estimate Deep Sources?

A Subcortical Current B SubcorticAaI Field Pattern

C  Best Fitting Cortical D Cortical Field Pattern
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(How) Can We Estimate Deep Sources?
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(How) How Can We Estimate Deep Sources?
The Importance Of Sparsity
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(How) How Can We Estimate Deep Sources?
Sparsity And Hierarchy Are Key

Estimated Source Locations Estimated Time Courses
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(How) How Can We Estimate Deep Sources?
The Importance Of Sparsity

A Simulated MEG Field Pattern
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Conclusions

Priors lead to a bias of your solution towards what you
already know.

The link between the physiology of EEG/MEG and fMRI
IS not well understood.

The usefulness of priors depends on the individual case.

Priors can be implemented as weightings or source
covariance matrices in the (Bayesian) minimum-norm
framework.

Prior information on the location and sparsity of sources
IS particularly useful (required) for deep sources.
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