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Our Goal: Spatio-Temporal Brain Dynamics

“Brain Movies”



The EEG/MEG Inverse Problem
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The EEG/MEG Forward Problem

EEG/MEG measure the 

primary sources indirectly

Sensors are differently sensitive 

to different sources

“Leadfield

”

Hauk, Strenroos, Treder. In: Supek S, Aine C (edts), “Magnetoencephalography: 

From Signals to Dynamic Cortical Networks, 2nd Ed.”
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EEG/MEG

d1= V11+V12+V13+V14 ...

d2= V21+V22+V23+V24 ...

Tomography (CT, fMRI…)

Information is lost during 

measurement

Cannot be retrieved by 

mathematics

Inherently limits spatial resolution
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EEG/MEG “Scanning” is not “Tomography”

x-ray

Available information is determined by 

the equipment/experimenter
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j1 + j2=1 

under-determined problem, no unique solution

d=Lj
d: data (n_sensors x 1)  L: “leadfield” (n_sensors x n_dipoles), j: dipoles (n_dipoles x 1)

Usually n_dipoles >> n_sensors.

The EEG/MEG Forward Problem



What is the solution to

x1 + x2 = 1

Maybe

x1 = 0 ; x2 = 1 ?

x1 = 1 ; x2 = 0 ?

x1 = 1000 ; x2 = -999 ?

x1 = π ; x2 = (1-π) ?

The “minimum norm solution” is:

x1 = 0.5 ; x2 = 0.5

with (0.52 + 0.52)=0.5 the minimum norm among all possible solutions.

Why Inverse “Problem”?
Without additional constraints the solution is non-unique, i.e. there are infinitely many solutions



In EEG/MEG “signal space”, we see a faint shadow of activity in “source space”.

If you are not shocked by the EEG/MEG inverse problem…

… then you haven’t understood it yet.

(freely adapted from Niels Bohr)

M.C. Escher

Why Inverse “Problem”?



Examples for Non-Uniqueness

Jensen & Hesse, chap. 7 in “MEG”, OUP 2010, Hansen/Kringelbach/Salmelin (edts.)

See also Krishnaswamy et al. PNAS 2017 for approaches for deep sources,

https://www.pnas.org/content/114/48/E10465

A distributed superficial distribution may be indistinguishable from a focal deep source.

https://www.pnas.org/content/114/48/E10465


Examples for Non-Uniqueness

Hämäläinen & Hari, in Brain Mapping: The Methods (2nd), Elsevier 2002

Different Sources

Field Patterns

Dipole Model

Minimum Norm Estimates

Original Sources

Same Field Patterns

Same Source Estimates



Example: Visually Evoked Activity ~100 ms

MagsEEG

Minimum Norm Estimate

Checkerboard to 

left visual field



Minimum Norm Estimate

Example: Auditorily Evoked Activity

MagsEEGTone to right ear





The Forward Problem and Head 

Modelling



http://www.cogsci.ucsd.edu/~sereno/movies.html

Sometimes “standard head models” are used, when no individual MRIs available.

SPM uses the same “canonical mesh” as source space for every subjects, but adjusts it individually.

Volume Conductor/Head Model
How we model conductivities/currents/potentials/fields in the head

e.g. sphere or realistic 1- or 3-compartments from MRI

Source Space
Where active sources may be located,

e.g. grey matter, 3D volume

Source Space and Head Model



Free

Fixed

“Loose”

Source Orientation Constraints



Dipole Source Distributed Source
Distributed Source, Inflated Surface

Direction of Current Flow



“signed”

or

or

Intensity

Direction of Current Flow



Solutions To The Inverse Problem –

Source Estimation



Dipole Fitting/Scanning

1. Assume there are only a 

few distinct sources

2. Iteratively adjust the 

location, orientation and 

strength of a few 

dipoles…

3. …until the result best 

fits the data

Distributed Sources

1. Assume sources are 

everywhere (e.g. distributed 

across the whole cortex)

2. Find the distribution of source 

strengths that explains the 

data…

3. …AND fulfils other 

constraints

Paths To Uniqueness



Hypothesis Testing - Dipole Fitting

Explicit assumptions about the number of focal sources (dipoles) are tested by fitting dipole models to the data. 

The common criterion for the selection of models is the goodness-of-fit.

It can be hard to choose the appropriate number of dipoles – a priori knowledge is required.

Solutions for several/many dipoles can get stuck in local minima, and may not be robust to noise.



Assumptions Cannot Completely Remove Uncertainty

95% CIs for single dipole source

Hari et al., Electroencephalogr Clin Nph 1988



Dipole Scanning

We may have reasonable assumptions about possible locations for 

isolated dipole sources, e.g. on the cortical surface.

Dipole scan: Fit dipoles vertex-by-vertex and plot the goodness-of-fit as a distribution.

The maxima in this distribution point to possible dipole locations.

The locations are reliable if there is only one dipole, or if multiple dipole topographies are mutually orthogonal (e.g. 

far apart).

This is not a “distributed source solution”.

http://www.cogsci.ucsd.edu/~sereno/movies.html

http://www.cogsci.ucsd.edu/~sereno/movies.html


Multi-Dipole Scan: MUSIC
(Multiple Source Signal Classification)

Ilmoniemi & Sarvas, “Brain Signals”, MIT 2019

Mosher & Leahy, IEEE-TBME 1998

Data and Noise Subspaces Classical MUSIC Recursively Applied

(RAP) MUSIC

1) Estimate number of dipoles, 

e.g. using PCA/SVD.

2) Run MUSIC for one dipole.

3) Run MUSIC for 2nd dipole, 

partialling out dipole 1.

4) Repeat for estimated number 

of dipoles.

See e.g. for overview and recent updates of MUSIC algorithms: 

Ilmoniemi & Sarvas, “Brain Signals”, MIT 2019;   Mäkelä et al., NI 2018 (“TRAP MUSIC”, https://pubmed.ncbi.nlm.nih.gov/29128542/)

One problem with MUSIC algorithms: They don’t give you source time courses.

https://pubmed.ncbi.nlm.nih.gov/29128542/


Assumptions:
• All sources captured in data covariance matrix C (signal and noise)

• We are interested in one source i in many sources

Aim:
Design a spatial filter wi which projects maximally on the source of interest and minimally on noise sources.

e.g. Hauk et al., Neuroimage 2022, https://pubmed.ncbi.nlm.nih.gov/35390459/

Hauk&Stenroos, HBM 2013, https://pubmed.ncbi.nlm.nih.gov/23616402/ ,

“Spatial Filters”: Beamformers

Create and apply these spatial filters vertex-by-vertex (dipole-by-dipole) and plot the distribution (possibly normalised by 

noise variance).

Spatial filters can also produce time courses for every source.

But note: The “spatial filter” interpretation applies to all linear methods, including MNE-type methods.

Project on source of interest:

Suppress noise:

Linearly-Constrained 

Minimum-Variance 

(LCMV) Beamformer

𝐰𝑖
𝑇𝐟𝑖

𝒎𝒊𝒏(𝐰𝑖
𝑇𝐂𝐰𝑖 )

𝐰𝑖 =
𝐟𝑖

𝑇𝐂−1

𝐟𝑖
𝑇𝐂−1𝐟𝑖

Van Veen et al., 1997, https://pubmed.ncbi.nlm.nih.gov/9282479/

https://pubmed.ncbi.nlm.nih.gov/35390459/
https://pubmed.ncbi.nlm.nih.gov/23616402/
https://pubmed.ncbi.nlm.nih.gov/9282479/


Beamformers are adaptive -

i.e. not strictly linear

𝐒𝐅𝑳𝑪𝑴𝑽 i =
ሚ𝐋.𝑖

𝑇 𝐂𝑑
−1

ሚ𝐋.𝑖
𝑇 𝐂𝑑

−1ሚ𝐋.𝑖

The “linearly-constrained maximum-variance” (LCMV) beamformer

depends on the data covariance matrix (“adaptive”).

Beamformers result in linear transformations of the data (“spatial filters”),

but those transformations strongly depend on the data of interest.

=> Beamformers are data-dependent and not linear with respect to the sources of 

interest.



Beamforming Is Problematic For Highly Synchronous Sources

Ilmoniemi and Sarvas, “Brain Signals”, MIT 2019

Hauk et al., Neuroimage 2022, https://pubmed.ncbi.nlm.nih.gov/35390459/

4 non-synchronous sources 2 non-synchronous,

2 synchronous sources

Beamformers are designed for – and work best for – small numbers of focal sources with uncorrelated time courses.

https://pubmed.ncbi.nlm.nih.gov/35390459/


Beamformers Are Popular for Rhythmic Brain Activity 

and Resting State Activity

Singh, NI 2012

Visual Gamma Band 

Response

Resting State

Networks

Motor Fronto-Parietal Visual

Brookes et al. PNAS 2011



Beamformers Are Popular for Rhythmic Brain Activity 

and Resting State Activity…

…but the choice of source estimation method should be based 

on knowledge (or its absence) about the source distribution.

Is there anything in rhythmic/oscillatory or resting state activity 

that favours some source distributions more than others

(e.g. number of sources, focality/sparsity, location)?

For example, visual gamma band sources may be focal, but 

resting state networks may be distributed.



Minimum Norm Estimation Of Distributed Sources

But this is the result of mathematical desperation, and not based on physiology or what we want to know 

(e.g. localisation of multiple sources).

𝐋𝐬 = 𝐝 ⇒ 𝐋𝐬 − 𝐝 𝟐 = 0 
(ignore noise for now)

subject to constraint

𝐬 𝟐 = min

yields the Minimum-Norm Least-Squares solution (“L2”)

ො𝒔 = 𝑮𝑴𝑵𝐝

with

𝑮𝑴𝑵 = 𝐋𝑇 𝐋𝐋𝑇 −1



There Are Many Norms, e.g. L1 vs L2 –

Sparseness vs Smoothness

Minimising the L2 norm, 𝐬 𝟐 = s𝟏
𝟐+ s𝟐

𝟐+…+ s𝑵
𝟐 penalizes large values in s

=> “smooth”

Minimising the L1 norm, 𝐬 𝟏 = s𝟏 + s𝟏 +…+ s𝑵 prefers large values in s

 “sparse”

For example:

x1 + 2x2=1

L2 solution: (0.2, 0.4)
L2-norm 0.22+0.42~0.45, L1-norm 0.2+0.4=0.6

L1 solution: (0, 0.5)
L2-norm 0.5, L1-norm 0.5



Noise and Regularisation in EEG/MEG Source Estimation
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The EEG/MEG Inverse Problem



(In)Stability – Sensitivity to Noise

2 0
0 2

𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 1/2 0
0 1/2

2 1
1 2

𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 2/3 −1/3
−1/3 2/3

2 1.999
1.999 2

𝐼𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 500.13 −499.87
−499.87 500.13

No linear dependence between rows/columns:

Some linear dependence:

High linear dependence:



Noise and Regularization

Explaining the data 100% may not be desirable – some of the measured 

activity is not produced by sources in the model.

Explaining noise may require larger amplitudes in source space than the signal 

of interest: 

Overfitting may seriously distort the solution 

(“variance amplification” in statistics/regression).



Leaving Variance Unexplained

𝐋𝐬 = 𝐝 + 𝛆 ⇒ 𝐋𝐬 − 𝐝 𝟐 <= e, s.t. 𝐬 𝟐 = min

This is equivalent to minimising the cost function

𝐋𝐬 − 𝐝 𝟐 + λ 𝐬 𝟐, λ>0

We can give sensors different weightings, 

e.g. based on their noise covariance matrix C:

𝐂−1 𝐋𝐬 − 𝐝 𝟐 = 𝐋𝐬 − 𝐝 𝑪
𝟐 = e

𝐋𝐬 − 𝐝 𝑪
𝟐+ λ 𝐬 𝟐, λ>0

𝑮𝑴𝑵 = 𝐋𝑇 𝐋𝐋𝑇 + 𝜆𝐂−1 −1

𝜆 (Lambda) is the regularisation parameter that determines how much 

variance we want to leave unexplained.



“Whitening” and Choice of Regularisation Parameter

Whitened data have a noise covariance that is the identity matrix – i.e. 
noise is “white” (uncorrelated) noise. 

𝑮𝑴𝑵 = 𝐋𝑇 𝐋𝐋𝑇 + 𝜆𝐂−1

−1

can also be written as

𝑮 ෪𝑴𝑵 = ሚ𝐋𝑇 ሚ𝐋ሚ𝐋𝑇 + 𝜆𝐈 −1

where ሚ𝐋 is the “whitened” leadfield 𝐂−1/2𝐋, and scaled such that 

trace(ሚ𝐋ሚ𝐋𝑇)=trace(𝐈).

ሚ𝐋 and λ can now be interpreted in terms of signal-to-noise ratios.

A reasonable choice for λ is then the approximate SNR of the data 

(e.g. in MNE software) –

usually heuristically chosen to be 3 (evoked) or 1 (raw/continuous).



“Evoked”

SNR=3
“Single trial”

SNR=1

The Effect of Regularisation
Suppressing Noise by “Smoothing”

var=51.5%var=64.8%



Over-fitting

“Under-smoothing”

SNR=300

Under-fitting

Over-smoothing

SNR=0.03

The Effect of Regularisation ~ Over- and Under-Fitting

var=0.4%var=95.2%



Noise Covariance Matrices

https://mne.tools/stable/auto_tutorials/forward/90_compute_covariance.html

https://mne.tools/stable/auto_tutorials/forward/90_compute_covariance.html


Covariance Estimation and “Whitening”

Whitening performance as criterion to choose the best covariance matrix:Whitenend data should have a average SNR~1 in the baseline:

https://mne.tools/stable/auto_tutorials/forward/90_compute_covariance.html

Engemann & Gramfort, NI 2015, https://pubmed.ncbi.nlm.nih.gov/25541187/

https://mne.tools/stable/auto_tutorials/forward/90_compute_covariance.html
https://pubmed.ncbi.nlm.nih.gov/25541187/


Noise and Regularization

1. Noise estimation:

a) For distributed source methods, baseline activity is not “noise”.

b) “Empty room recordings” not available for EEG, and may under-estimate noise.

2. Estimation of noise covariance matrix is important, and will usually need regularisation itself. 

Visualise the matrix, and check whitening performance on your data. 

(Also relevant for beamformers).

3. Choice of regularisation parameter involves some heuristics, and depends on SNR.

Check plausibility of source estimation results on “simple” data (e.g. early evoked responses).



MRC Cognition and Brain Sciences Unit @MRCCBU mrc-cbu.cam.ac.uk

Thank you


