Matlab Basics

Yaara Erez
MRC Cognition and Brain Sciences Unit

November 2012

MatLab – Matrix Laboratory

- Programming environment based on matrix representations.
- Mainly useful for data analysis, simulations (research, engineering).
- Contains a large set of ready-to-use functions.
- Easy graphics.

Why is programming important?

- It gives you the power to do whatever you want with your data / experiment / simulations, without being limited by off-the-shelf software
 - → It significantly enhances your capabilities as researchers.

 Some of the commonly used software in research are Matlab-based (like SPM for fMRI/MEG data analysis).

This talk

- Matlab basics
 - Variables
 - Matlab programming environment
 - Editor, scripts, functions

Practice practice!

Variables

- A variable: a place in memory with a name that contains a value.
- Variables types 2 basic types in Matlab (roughly speaking):
 - **Numeric**: single element (scalar), array, multi-dimensional array.
 - **Text**: character, string (array of characters).

A few words about syntax

- Syntax is "the set of rules that define the combinations of symbols that are considered to be correctly structured programs in a programming language".
- In other words, it is the vocabulary and grammar with which we write our code, such that it will be unambiguously understandable by the programming language.
 - When defining a variable, refer to it later *exactly* in the same name. <u>Tip</u>: use **copy & paste**.
 - Typos are unacceptable.
 - Matlab is case-sensitive.

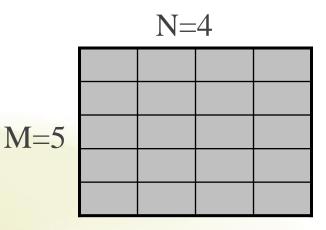
Defining numeric variables

x = 1 ()(scalar, integer)

Semicolon (;) at the end of a command prevents echo in the command line

- numSubjects = 8; (meaningful name)
- myScalar = 1.1; (scalar, rational (decimal) number)
- myVec = [1 2 3]; (one-dimensional array)
- myVec = [1.2 2 3]; (one-dimensional array with mixed integers and rational (decimal) numbers)

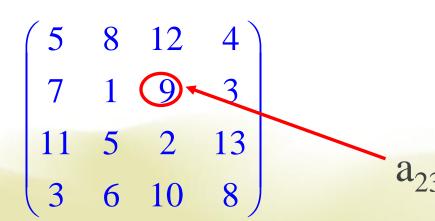
Arrays and indexing


- Array a set of ordered elements.
- Indexing: Every element in the array has a place called index.
 - The i-th element is the element in the i-th place.
- Defining arrays:
 - myVec = [3 1 7 9 4]; → the index of 7 is 3
- Retrieval Getting an element from a specific index in the array.
 - arrayName(index)
 - $myVec(3) \rightarrow 7$
- Assignment an element can be replaced:
 - arrayName(index) = newValue
 - $myVec(3) = 5 \rightarrow myVec = [3 1 5 9 1]$

myVec(1)	myVec(2)	myVec(3)	myVec(4)	myVec(5)
3	1	7	9	4

Matrices

- Matrix 2D array (table).
 - Elements are ordered in 2 dimensions: rows and columns.
- M x N matrix M rows, N columns.
- Example:
 - myFirstMat = [1 2 3; 4 5 6];


$$\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}$$

Matrices - indexing

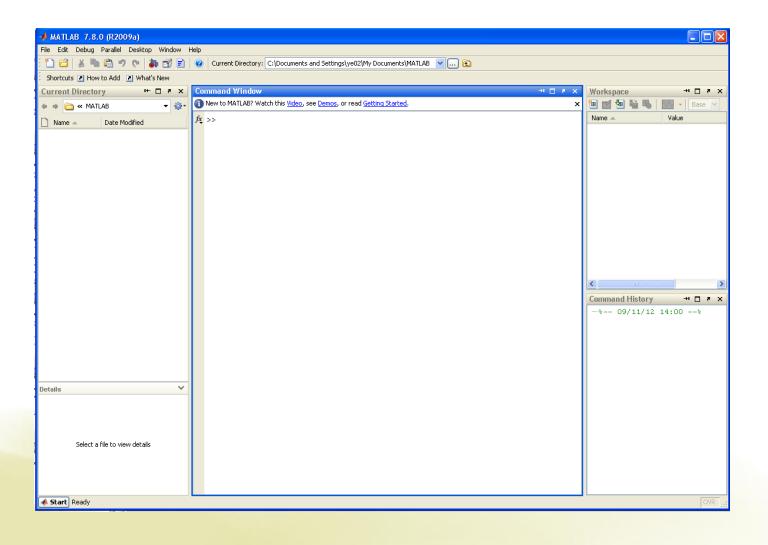
 Indexing: the a_{ij} element is the element in the i-th row and the j-th column.

Example:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Arrays

- Vector one-dimensional array.
 - Row: 1xN array.
 - Column: Nx1 array
- Matrix two-dimensional array
 - Table with rows and columns: MxN
- Three-dimensional array/matrix a kind of a cube of elements.
 - Dimensions MxNxK.
- Multi-dimensional arrays/matrices...
- All these arrays are simply the same data-type in Matlab, with just different dimensions, or size.


A few more notes about arrays

- We can assign values to a variable directly to its place in the array.
 - myVar(2,3) = 5;
 - myVar([1 2],3) = [5 6];
- We can assign a value of one variable to another variable
 - x(2) = y;
- We can delete an element from an array
 - myVec = [1 2 3 4];
 - myVec(2) = [];
 - myVec([2 3]) = [];

Text variables

- Text variables are comprised of characters and marked with ".
 - myChar = 'h';
 - myChar = '5'; (this is not the number 5 but the character 5)
- A text variable can contain more than one character → string (an array of characters).
 - firstString = 'hello';
 - secondString = 'world';
 - longerOne = 'hello world';
 - longerOne2 = [firstString secondString]; (what's wrong with that?)

Matlab programming environment

'Current Directory'

- The current directory is the directory, or path, to which Matlab currently refers when reading/writing files, unless a different path is specified for a file.
- When opening Matlab, it is recommended to change the current directory to the one that you are working with.
 - It makes it easier to manage/find/save files.

Basic functions

- Matlab has a HUGE number of ready-to-use functions/commands. These are very useful and one of the major advantages of Matlab.
 - Examples: length, size, pwd, clc, clear, disp, sum, mean, std, zeros, rand, randn, save, load, and many more...

Code files

- Matlab code files are have '.m' extension.
- They include the lines of code.
- Use the Matlab editor to edit and run code files.
 - Scripts
 - Functions
 - More on that in the next talk by Jason.

Help!

- help *name_of_function*
- lookfor keyword
- helpdesk
- Internet

Exercise 1

- In the command window, do the following:
 - Create a 1x5 array with numeric values as you like.
 - Find the variable in the workspace and double-click it to see its content.
 - Change the value of the 3rd element in the array. Make sure you can see this change in the workspace.
 - Delete the 4th element in the array.
 - Use 'size' function to check for the size of the array.
 - Use 'length' function to check for the length of the array.
 - Clear all the variables and command window using 'clear' and 'clc'.

Exercise 2

- Create a Matlab code file and save it in your current directory. In this file, do the following:
 - Create a 3x4 matrix with values as you like.
 - Change the value of the element in the 2nd row and 3rd column.
 - Change all the values in the 2nd column at once by assigning a new vector.
 - Replace columns 1 and 3.
 - Delete the 4th column.
 - Use 'size' function to check for the size of the matrix.

Exercise 3

- In the command window, do the following:
 - Create a text variable that contains one word.
 - Create another text variable that contains one or more words.
 - Concatenate the two strings to create a third variable.
 - Display one of the strings in the command window using 'disp' function.