
Effective Connectivity (for fMRI and M/EEG)

Rik Henson
MRC CBU, Cambridge



Structural, functional & effective 
connectivity

• Structural/anatomical connectivity

= presence of axonal connections / white matter tracks (eg, DWI)

• Functional connectivity 

= statistical dependencies between regional time series (eg, ICA)

• Effective connectivity 

= causal (directed) influences between neuronal populations (eg, DCM) 

(based on explicit network models)



• Tracing studies

• Tractography from DWI

But functionally, effect of one neuron 

on another can depend on:

– Activity of a third (gating)

– Rapid changes in plasticity

Structural vs Functional 
connectivity



No connection between B and C,
yet B and C correlated because 
of common input from A, eg:

A = V1 fMRI time-series
B = 0.5 * A + e1
C = 0.3 * A + e2

Correlations: 

A B C
1
0.49 1
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A
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χ2=0.5, ns.

Functional 
connectivity

Effective connectivity

Functional vs Effective 
connectivity
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• Useful when no model, no experimental perturbation (eg resting state)

• Popular examples: seed-voxel correlations, PCA, ICA, etc

• Graph-theory summaries of functional networks

• Correlations in fMRI timeseries could be spurious haemodynamics (e.g, 

effects of heart-rate/breathing; movement confounds...)

• Condition-dependent changes in functional connectivity (e.g,  PPIs...)

Functional connectivity



1. Direct experimental interventions (e.g, lesion, drugs)

2. Indirect experimental manipulations (e.g, PPI, DCM)

3. Network model inference (e.g, SEM, DCM)

4. Temporal precedence (e.g, Granger Causality, DCM)

5. …

Effective-connectivity:
Definitions of Causality?
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factor is psychological (eg attention)

...and other is physiological (viz. activity 
extracted from a brain region of interest)

2. Condition-dependent 
changes: eg PPI
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• (Bivariate) correlations do not use an explicit network (graph) model

• Structural Equation Modelling (SEM) can test different network models, by 

simply comparing predicted with observed covariance matrices, but...

– has no dynamical model (stationary covariances)

– has no neural-BOLD model

– cannot test some graphs, eg loops (no temporal definition of direction)

– restricted to classical inference comparing nested models

3. Explicit Network Models of 
Causality
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4. Temporal definition of 
Causality

Stationary
(correlations, SEM)

Dynamic
(Granger, DCM)

Ti
m

e

(“unfolding” in time is one way to infer direction of connectivity)



• Problem with time-based measures of connectivity arises with fMRI: BOLD

timeseries is not direct reflection of Neural timeseries 

– (e.g, peak BOLD response in motor cortex can precede that in visual cortex in a 

visually-cued motor task, owing to different neural-BOLD mappings)

• This compromises methods like Granger Causality and Multivariate Auto-

Regressive models (MAR) that operate directly on fMRI data 

(Friston, 2010; Smith et al, 2011)

• Note that this does not preclude these methods (eg MAR) for MEG/EEG 

timeseries, assuming these are more direct measures of neural activity

4. Note on temporal causality 
and fMRI



1. Dynamic: based on first-order differential equations 

- at level of neural activity, with separate haemodynamic model for fMRI

2. Causal: based on explicit directed graph models

3. Modelling: designed to test experimental manipulations

- “bilinear” approximation to interactive dynamics

4. (Estimated in a Bayesian context, allowing formal comparison 

of any number/type of models…)

=> Development of DCM



Rough comparison of popular 
methods?

Experimental 
modulation

Temporal/
Dynamical

Network 
model

Haemodynamic 
Model (for fMRI)

Correlation /  
ICA / PCA

PPI Y

Granger Y

SEM Y

DCM Y Y Y Y
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DCM overview

Friston et al. 2003, NeuroImage



DCM parameters = rate constants

1
1

dz sz
dt

= −
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Oridinary Differential Equations:
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Neurodynamics: 
2 nodes, 1 driving input
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Neurodynamics: 
…+1 modulatory input
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Bilinear state equation
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The haemodynamic
“Balloon” model
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Haemodynamics: 
reciprocal connections

blue: neuronal activity
red: BOLD response
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response (balloon model) to input 



0 20 40 60

0
2
4

0 20 40 60

0
2
4

seconds

BOLD
with 

Noise added

BOLD
with 

Noise added

y1

y2

u1

u2

euhy += ),( θ
y represents simulated observation of BOLD response, i.e. includes noise

z1

z2

Haemodynamics: 
reciprocal connections



BOLD
y

y

y

haemodynamic
model

Input
u(t)

activity
z2(t)

activity
z1(t)

activity
z3(t)

effective 
connectivity

direct inputs

modulation of
connectivity

The bilinear model CuzBuAz j
j ++= ∑ )(

c1
b23

a12

neuronal
states

λ

z

y

Neuronal state equation ),,( nuzFz θ=

Conceptual overview

Friston et al. 2003, NeuroImage
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Model evidence: The optimal balance of fit and complexity

Comparing models

• Which is the best model?

Comparing families of models

• What type of model is best?

• Feedforward vs feedback 

• Parallel vs sequential processing

• With or without modulation

Only compare models with the same data

1 2 3 4 5 6 7 8 9 10
model

lm
e

A

D

B

C

A

B

C

Inference on model space



V1

V5

SPC
Photic

Motion

Time [s]

Attention

What is site of attention modulation during visual 
motion processing

Friston et al. 2003, NeuroImage

Example DCM:

Attention to motion

- fixation only
- observe static dots + photic  V1
- observe moving dots + motion  V5
- task on moving dots + attention  V5 + parietal cortex

?



Model 1:
attentional modulation
of V1→V5

Model 2:
attentional modulation
of SPC→V5

Bayesian model selection: Model 1 better than model 2

→ attention primarily modulates V1→V5 (in these data)

1 2log ( | ) log ( | )p y m p y m>>

Example DCM:

Attention to motion



So, DCM….

• enables one to infer hidden neuronal processes

• allows one to test mechanistic hypotheses about observed effects

– uses a deterministic differential equation to model neuro-dynamics 
(represented by matrices A, B and C)

• is informed by anatomical and physiological principles

• uses a Bayesian framework to estimate model parameters

• is a generic approach to modelling experimentally perturbed dynamic systems

– provides an observation model for neuroimaging data, e.g. fMRI, M/EEG

– DCM is not model or modality specific (models will change and the 
method extended to other modalities e.g. LFPs)



• DCM for fMRI

– “non-linear” DCM: modulatory input (B) equal to activity in another region

– “two-state” DCM: inhibitory and excitatory neuronal subpopulations

– “stochastic” DCM: random element to activity (e.g, for resting state)

• DCM for E/MEG

– “evoked” responses (complex neuronal model based on physiology)  

– “induced” responses (within/across frequency power coupling; no 

physiological model (more like DCM for fMRI))

– “steady-state” responses 

– with (e.g, EEG/MEG) or without (e.g, LFP, iEEG) a forward (head) model

Variants of DCM
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Functional Connectivity
Background

• Much interest in functional connectivity in fMRI

• And yet many neural interactions (e.g, coupled oscillations) 
occur at a timescale faster than visible by fMRI

• So, real promise of MEG/EEG is functional connectivity?



Talk Overview

1. Problem of Field Spread (Volume Conduction)

2. Linear vs Nonlinear measures

3. Directed vs Undirected measures

4. Direct vs Indirect measures

5. Generative Models



Field Spread Problem

Many (zero-lag) measures of functional connectivity between 
sensors can be spurious, i.e, reflect activity from single source

No true source connectivity Spurious sensor connectivity

True source connectivity True sensor connectivity

0-lag correlation

PDC (see later)



Field Spread Problem

Source reconstruction reduces field spread problem…

…and allows easier comparison with fMRI connectivity

BUT spurious connections between sources can remain 
(“point-spread”)

One approach is to orthogonalise raw data, then correlate 
(0-lag) power envelopes… 

…another uses fact that field-spread is instantaneous, so 
time- or phase-lagged measures are immune to field spread 
(though assume no true zero-lag connectivity)

Hillebrand et al (2012) Neuroimage

Colclough et al (2015) Neuroimage



Different Types of Connection

Undirected, Indirect (bivariate)

Directed, Indirect (bivariate)

Directed, Direct (multivariate)
(“effective connectivity”)



Cross-Correlation

Undirected, Indirect, Linear (sensitive to Field-spread when =0) 
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( ) ( )f i f= Λ + Ψ

( ) arctan( ( ) / ( ))f f fΦ = Ψ Λ

Digression on Complex Numbers

An oscillation of frequency f can be represented in terms of amplitude and phase 
(polar coordinates), which can also be represented by a complex number

( )realΛ

( )imaginaryΨ

( / )phase angleΦ

( )A magnitude
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Coherence
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Undirected, Indirect, Linear, sensitive to Field-spread



Imaginary Coherency
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Undirected, Indirect, Linear, immune to Field-spread
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Nolte et al (2004) Clin Neurophys



Imaginary Coherency

0Λ >

0Ψ =

A zero imaginary component implies a phase of the coherency of either 0o or 
180o, which could be caused by field-spread…

( ) ( ( ))xy xyf imag C fΨ =
xyc

x

y

lNolte et al (2004) Clin Neurophys



Imaginary Coherency

A zero imaginary component implies a phase of the coherency of either 0o or 
180o, which could be caused by field-spread…

( ) ( ( ))xy xyf imag C fΨ =
xyc

x

y

0Λ <

0Ψ =

lNolte et al (2004) Clin Neurophys



Imaginary Coherency

…whereas a NON-zero imaginary component implies a phase of the coherency 
other than 0o or 180o, which can NOT be caused by field-spread

( ) ( ( ))xy xyf imag C fΨ =

Nolte et al (2004) Clin Neurophys
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Digression on Analytic Signals

A signal can be represented analytically in terms of its amplitude and phase over 
time (within a narrow frequency band) (e.g, using Hilbert transform)
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Phase-Locking Value

Phase-Lag Index

Phase-related Measures

Stam et al (2007) Human Brain Mapp
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Cross-frequency coupling

Jenson & Colgin (2007) TICS 
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Nonlinear Measures
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Nonlinear Measures

Cross-correlation/coherence insensitive to nonlinear dependencies
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Mutual Information

Sensitive to Field-spread, Undirected, Indirect, Nonlinear
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Directed Measures

(bivariate) Granger Causality
Immune to Field-spread, Directed, Indirect, Linear

1

1

( ) ( 1) ( ) ( )

( ) ( )

y p

p

l
l

y t a y t a y t p e t

a y t l e t
=

= − + + − +

= − +∑



1 1
( ) ( ) ( ) ( )

p q

y x l l
l l

y t a y t l b x t l e t←
= =

= − + − +∑ ∑

Auto-regressive model to order p
(assuming mean-corrected, with residuals e)

Augmented model including past values of x (to order q)
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(special case of MVAR; see later)

x

y



Directed, Nonlinear Measures

Generalised Synchronisation
Sensitive to Field-spread, Directed, Indirect, Nonlinear
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Quian Quiroga et al (2000)  Phys Rev E

m is the embedding dimension and l lag

Transfer Entropy (lagged generalisation of mutual information)
Immune to Field-spread, Directed, Indirect, Nonlinear

Schreiber (2000)  Phys Rev Letters
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Direct Measures

Multivariate Autoregressive Modelling (MVAR)

Various summary measures, eg, 
Partial Directed Coherence (PDC):
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Though insensitive to true zero-lag 
dependencies (occur in reality?)
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Generative Models

Connectivity modelled between 
sources

Projected to sensors via headmodel

Typically a handful of sources, and 
a range of networks fit to data

Bayesian methods for comparing 
which network model is best

Dynamic Causal Modelling (DCM) 
is one approach 

Chen et al, 2009, Neuroimage

2 ( )X t

1( )X t 3 ( )X t

1( )s t
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Immune to Field-spread, Directed, Direct, Nonlinear, model-driven



Measure Immume to  
Field Spread

Directed Nonlinear Direct

Cross-Correlation Y
(l>0)

N N N

Coherence Y
(imaginary)

N N N

PLV/PLI Y N N N

Granger
(bivariate)

Y Y N N

Mutual 
Information

N N Y N

Generalised 
Synchrony

N Y Y N

Transfer 
Entropy

Y Y Y N

MVAR
(eg, PDC)

Y Y N Y

Generative
(eg, DCM)

Y Y Y Y



The End



DCM Neural Level

Input u(t)

connectivity parameters θ

system
z(t) state 

System changes depend on:

– the current state z

– the connectivity θ

– external inputs u
– driving (to nodes)
– modulatory (on links)

– time constants & delays ),,( θuzF
dt
dz

=

(cf GLM, “inputs” to all 
nodes simultaneously!)



Constraints on
•Haemodynamic parameters

•Connections

Models of
•Haemodynamics in a single region

•Neuronal interactions

Bayesian estimation

)(θp

)()|()|( θθθ pypyp ∝

)|( θyp

posterior

priorslikelihood

DCM Estimation: Bayesian framework

Inferences on:
1. Parameters
2. Models
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Inference about DCM parameters:

Bayesian single subject analysis

• The model parameters are 
distributions that have a mean 
ηθ|y and covariance Cθ|y.

– Use of the cumulative normal 
distribution to test the 
probability that a certain 
parameter is above a chosen 
threshold γ:

 γ ηθ|

y

Classical frequentist test across Ss

• Test summary statistic: mean ηθ|y

– One-sample t-test: Parameter>0?

– Paired t-test:
parameter 1 > parameter 2? 

– rmANOVA: e.g. in case of multiple 
sessions per subject



Model comparison and selection

Given competing hypotheses, 
which model is the best?

log ( | )
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Pitt & Miyung (2002) TICS

Bayes Factor
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