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fMRI
• Functional MRI contrast:

– BOLD
– VASO
– …

• Functional MRI sequence:
– 2D Gradient‐Echo (GE) Echo‐Planar Imaging (EPI)
– 2D Spin‐Echo (SE) EPI
– 3D Gradient‐Echo EPI
– Multi‐echo EPI
– Multi‐slice EPI
– ….
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The BOLD contrast

• Complex (nonlinear) function of neural activity, blood flow, blood 
volume and blood oxygenation (Ogawa et al, 1990, PNAS)
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The BOLD contrast

Glover (2011) Neurosurg. Clin. N. Am.



The BOLD contrast



The Hemodynamic Response Function (HRF)
(BOLD impulse response function)

• Varies across brain 
region, individual, 
state (eg, caffeine)…

• Roughly linear when 
stimulus onset 
asynchrony (SOA)    
> ~2s



Applications

• Activation Analysis
– Brain Mapping (mass univariate)
– Subtraction logic (pure insertion)
– Blocked versus Intermixed (Epoch vs Event‐related)
– Functional localisation; Forward and Reverse Inference

• Functional Connectivity
– Matrix factorisation (Independent Component Analysis)
– ROI‐based connectomes, graph theory
– Task‐based (effective) connectivity

• Pattern (Information) Analysis
– Multi‐voxel pattern analysis (MVPA)
– Representational Similarity Analysis (RSA)

Theme: Fusiform Face Area (FFA)



Activation Analysis

• Early fMRI studies averaged BOLD signal change across 
(anatomical) Regions Of Interest (ROIs)

• Given possible ROI functional hetereogeneity, 
subsequent studies tested every single voxel in the image 
‐> “brain mapping” (“mass univariate analysis”)

• More recent studies have reverted back to ROI analyses, 
but using more sophisticated (eg functionally‐defined) 
ROIs (“parcellations”)



Mass Univariate Analysis
(“Brain Mapping”)

• Mostly uses the General Linear Model (GLM):

𝑦 (measured) = BOLD signal in voxel v at time t (TR/volume)

𝑋 (specified)   = “Design matrix” coding predictions at each t
according to each experimental condition p

𝛽 (estimated) = “Parameters” or “Betas” (weights) for each 
condition p

𝜀 (estimated) = residual error in voxel v at time t

• Uses an “encoding” model, where predict BOLD signal from 
experimental conditions (cf “decoding” models later)

𝑦 𝑡, 𝑣 ൌ 𝑋 𝑡, 𝑝 ൈ 𝛽 𝑝 ൅ 𝜀ሺ𝑡, 𝑣ሻ
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Mass Univariate Analysis
(“Brain Mapping”)



Mass Univariate Analysis
(“Brain Mapping”)

• Images sometimes smoothed (e.g., by 8x8x8mm Gaussian, if voxel sizes 
3x3x3mm) – can improve statistics (matched filter theorem / central limit 
theorem)

• Doing statistical tests on ~100,000s of voxels, so risk of false positives 
(using frequentist p‐values), though voxels not independent (smoothed)

• Many methods developed for correcting for multiple comparisons across  
voxels, e.g. “Random Field Theory”, or “Permutation Testing” (of the 
Maximum T‐value, Cluster‐size, Cluster‐mass…etc)

• Over‐arching aim is “localisation” (of function)
pu = 0.05



Subtraction Logic & Blocked Designs
• Since absolute value of BOLD signal is arbitrary, fMRI studies used 

Donder’s “subtraction logic”, i.e., to isolate function F, compare activity 
in a condition with F with a condition matched in every way except F

• This makes assumption of “Pure Insertion”, i.e, that adding F to a 
condition does not change anything else, which can be violated…

• …for example, Price et al. (1997, Human Brain Mapping) showed that 
BOLD response to objects vs colors in some brain regions depends 
whether you are naming them, or passively viewing them

• (a stimulus x task interaction, or failure of pure insertion; “conjunctions” 
of simple effects in each task can address to some extent)

• Although fMRI could acquire an image in 2‐4secs, while PET took 60+ 
seconds, early fMRI studies mimicked PET by averaging activity over 10s 
of seconds (“blocked” designs)



Mass Univariate Analysis
(“Brain Mapping”)

• For example, discovery of the “Fusiform Face Area” (FFA)

• Found for a variety of control stimuli, but again, difficult to match for 
every difference, e.g, eye‐movement differences / center‐periphery 
Levy et al. (2001) Nat. Neuro

Kanwisher et al. (1997) J. Neuro.
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Subtraction Logic & Blocked Designs

• Interpretation of Blocked designs can be particularly difficult, e.g., 
differences between two conditions in their mean activity across 
~30secs could be due to attention / predictability of each stimulus…

• … if could estimate activity to individual trials, then can randomise their 
order to remove effects of predictability, etc

• Early such “event‐related” designs waited ~30secs between trials, to 
allow BOLD response to return to baseline (much like ERP analyses)…

• … but if responses to successive trials summate in a linear fashion, then 
can model the overlap expected from shorter times between trials…

• … effectively using the GLM to “deconvolve” the mean response to trials 
of the same type (condition)



Deconvolution & HRF variability

• Noted earlier that HRF can differ across 
brain regions / individuals, e.g., owing to 
differences in vasculature

• One can allow for this variability by using a 
“temporal basis set”, such as Gamma 
functions, or temporal derivatives of a 
“canonical” HRF

Convolution

T  2T  3T ...

u(t) h()= ßi  fi ()

down‐sampled each scan

u(t)  h() 

Design 
Matrix

Fitted Response

0          time {secs}        30

F‐test



Temporal Basis Sets

• Could estimate HRF for each person (from known brain region during known 
task)… but would not handle between-region variance

• Could fit HRF with nonlinear (iterative) model, but computationally expensive 
at every voxel…

• In practice, many people stick with a single “canonical HRF” which probably 
explains ~80% variance in most regions/people (Henson et al, 2024, HBM)

Canonical HRF

Temporal 
Derivative

Dispersion 
Derivative

Finite Impulse 
Response (FIR)

Fourier Set

Gamma 
Functions



Some terminology
• Conditions can be blocked or 

intermixed…
• … neural activity can be 

modelled as events or epochs

• (event = delta function of 
duration 0; epoch = top‐hat 
function with duration > 0)

• An event vs epoch model 
affects interpretation of 
parameters:

– For event model, 𝛽 is 
response per trial

– For epoch models, 𝛽 is 
response per block

=3 =5

=9=11

Rate = 1/4s Rate = 1/2s

Epoch 
model

Event 
model



Intermixed, Trial‐based Designs
• Randomly intermixed initial and repeated presentations of faces (blocking 

repetition could affect attention, etc)
• The FFA shows adaptation to repeated presentations (of familiar faces)

F1 F2

F1
F2

Henson et al. (2000) Science

• Other advantages of event‐related fMRI:
– When timing of events can only be indicated by participants (e.g., spontaneous 

transitions of perceptually ambiguous stimuli)

– When the type of event can only be determined by participant’s response (e.g, 
correct vs incorrect trials, or subsequently remembered vs forgotten…)

– When events cannot be blocked (e.g, oddball trials)

L                         R



Functional Localisers

• Good for allow anatomical variability across participants (but to what extent; how 
much location variance is measurement noise; face‐responsive regions also seen in 
smoothed, anatomically‐registered images…)

• Problematic to identify ROI (statistically) in some participants
• (Often missed opportunity to examine factorial interactions)
• Important to match other factors, such as task and any effect of 

time/fatigue/habituation (and match localiser stimuli/tasks across studies)
Friston et al. vs. Saxe et al. (2006) Neuroimage

• A separate session/run/scan (“localiser”) to identify, e.g, “face‐responsive” regions 
like FFA in each person…

• …followed by further investigation of properties of those functionally‐defined ROIs 
in a main experiment

‐ ‐

‐?

R                 L R                 L R                 L



Laminar fMRI
• High-field (eg 7T) fMRI offers higher spatial resolution (<1mm voxels), 

distinguishing layers (laminae) within cortex (typically 2-3mm thick), 
e.g, deep vs middle vs superficial

• Top-down connections tend to target the deep and superficial layers, 
whereas bottom-up connections preferentially target the middle layer

• Perceived vs Imagined faces should activate different layers?

• (Also used for layer-specific MVPA) Carricarte et al (2024) iSci.
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Multi‐variate Analysis

• Early studies decomposed images using 
Principal Component Analysis (PCA = 
svd(Y’Y))…

• …or Partial Least Squares (PLS = svd(X’Y)) 
or Canonical Correlation Analysis (CCA)…

• …or Independent Component Analysis 
(ICA), and correlate with predictors in X

• These are more sensitive, and appropriate 
if functions are performed by Networks of 
ROIs rather than individual ROIs…

• … but care that difficult to interpret role of 
individual ROIs 
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Are Functions “localised” in Brain? 
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Simple effects within 
each ROI not sufficient

Need interaction between 
Region and Condition…?

C1 C2 C3
Region R1

Functional Specialisation
(“Imagers Fallacy”)

C1 C2 C3
Region R2

C1 C2 C3
Region R1

C1 C2 C3
Region R2Henson (2006) Trends Cog. Sci.
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Need interaction between 
Region and Condition…?
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Henson (2006) Trends Cog. Sci.
C1 C2 C3

Region R1
C1 C2 C3

Region R2

Functional Specialisation
Nonlinear (but monotonic) Function‐> BOLD
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…need a “reversed 
association”…

(“state-trace” analysis)
C1 C2 C3

Region R1
C1 C2 C3

Region R2Henson (2006) Trends Cog. Sci.
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Functional Specialisation
“Reversed Association”



Functional Specialisation
(“Forward Inference”)

• Finding a reversed association between 2+ Regions and 3+ Conditions 
implies more than one underlying Function (assuming only a monotonic 
relationship between Function and Activation)…

• … so can rule out single‐function accounts
• This does not require a one‐to‐one mapping between function and region, 

unlike “Reverse Inference”….



Functional Specialisation
Dangers of “Reverse Inference”

• If, Region R activated when comparing Conditions C1 and C2…
• … and, in previous studies, Region R associated with Function F …
• … then, Conditions C1 and C2 also differ in Function F

• But assumes a one‐to‐one mapping between Region and Function

p(F|R) = p(R|F)p(F) / ( p(R|F)p(F) + p(R|~F)p(~F) )

• If Region R could be associated with other functions (in other studies, 
ie p(R|~F) ~= 0), then probability of Function F occurring in your study 
is reduced…

• … and meta‐analyses often do show same Region R in multiple 
different contexts 

Poldrack (2006) Trends Cog. Sci.



“Adaptive behaviour” “The Brain”

F1 F2

Function Structure

F11 F12 F21 F22

R1 R2

R11 R12 R21 R22

one-to-one

many-to-one

one-to-many

Function‐Structure Mappings
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• (Same problem if replace Regions with Networks N1, N2…)



Function‐Structure Mappings
• As an example of one‐to‐many mapping, comparing Faces to non‐Face stimuli can 

activate not only FFA, but also OFA, posterior STS, medial PFC, Amygdala…

• As an example of many‐to‐one mapping, others have associated FFA activation 
with visual expertise, even with non‐face stimuli..

Gobbini & Haxby (2006) Neuropsychologia

Gauthier et al (2000) Nat. Neuro.R                 L R                 L R                 L



Are Functions “localised” in Brain? 



Applications

• Activation Analysis
– Brain Mapping (mass univariate)
– Subtraction logic (pure insertion)
– Blocked versus Intermixed (Epoch vs Event‐related)
– Functional localisation; Forward and Reverse Inference

• Functional Connectivity
– Matrix factorisation (Independent Component Analysis)
– ROI‐based connectomes, graph theory
– Task‐based (effective) connectivity

• Pattern (Information) Analysis
– Multi‐voxel pattern analysis (MVPA)
– Representational Similarity Analysis (RSA)

Theme: Fusiform Face Area (FFA)
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Voxel 1

Vo
xe
l 2

PCA vs ICA

• ICA assumes components are independent (usually across space with 
fMRI, but could be across time) and has been shown more effective 
than PCA in (re)producing characteristic resting‐state networks (RSNs), 
and separating signal from noise



ICA RSNs

open.win.ox.ac.uk

ICA Noise components



Seed(ROI)‐based Connectivity

• Resting‐state functional connectivity between FFA and OFA is 
behaviourally relevant

Zhu et al (2011) J. Neuro.



CSF
TR

WM GS
6 motion

parameters
3 spikes Highpass

Motion & Physiological Artefacts

• Lowpass filter (eg, 0.1 Hz) to remove high‐freq
motion since HRF slow? But loose many dfs…

• Highpass filter (eg, 0.01 Hz) to remove low‐freq
aliased physiological noise

• Covary WM/CSF/Global Signal (latter contentious)

• “Scrubbing” (removing volumes with high motion), 
but ignores temporal autocorrelation…

• … so rather than remove data, regress out motion 
parameters, including derivatives, second‐order 
expansions (Volterra expansion), etc

• Spikes = extreme values (high order expansion) –
model as separate regressors



Resting‐state, Movie‐watching…

• Resting‐state (eyes open or closed) is easy for all participants 
(even patients who might struggle with many tasks), and often 
assumed to reflect a trait component of people

• However, no control over what people are doing cognitively 
(e.g., day‐dreaming), i.e., time‐series cannot be compared 
across people

• Movie‐watching is also easy for everyone, and:
– 1) Can assume similar time‐series across people watching same movie 

(“inter‐subject correlation”)



Inter‐Subject Correlations

Nastase et al (2019) Soc. Cog. Aff. Neuro.
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Resting‐state, Movie‐watching…

• Resting‐state (eyes open or closed) is easy for all participants 
(even patients who might struggle with many tasks), and often 
assumed to reflect a trait component of people

• However, no control over what people are doing cognitively 
(e.g., day‐dreaming), i.e., time‐series cannot be compared 
across people

• Movie‐watching is also easy for everyone, and:
– 1) Can assume similar time‐series across people watching same movie 

(“inter‐subject correlation”)
– 2) Can examine common activation/patterns at certain points in movie 

(e.g. whenever a face present) – more “naturalistic” than many tasks



Reverse Correlation

Hasson et al. (2004) Science

• …potentially “discover” new function of some regions

• Confirm expected function in more naturalistic context…



• All pairwise connections between ROIs (parcels), e.g., from a structural 
or functional atlas

Bottger et al (2013) IEEE

ROI‐to‐ROI Connectomes



• Connectome can be summarised by one or more graph-theoretic measures, e.g., 
efficiency, clustering, small-worldness…

Network / Graph Analysis

• Graph metrics abstracted from meanings of nodes/connections, so can compare 
fMRI networks with white-matter DTI networks, gene transcription networks, etc.



Network / Graph Analysis
• Rather than simply using graph theory to describe networks, we can 

simulate processes like neuro-degeneration or brain development, and 
match to graph-metrics, in order to understand mechanisms

Achard et al. (2006) J. Neuro.



– Multi-dimensional (pattern-based) connectivity
Basti et al., 2020, Neuroimage

– Dynamic connectivity (e.g moving windows or Hidden Markov Models)
Hutchison et al. 2013 Neuroimage

Other types of Functional Connectivity



• Another way to minimise confounds is to compare functional connectivity 
across two or more tasks/conditions. Two main approaches:

I. Beta-Series Correlation/Regression (BSR): correlate Betas (trial-wise parameter 
estimates from single-trial model) across ROIs, and compare correlation 
coefficients/regression slopes across conditions

II. Psycho-Physiological Interactions (PPIs): construct a model (GLM) of fMRI 
timeseries with regressors for 1) conditions (“psychological”), 2) timeseries from one 
ROI (seed) (“physiological”) and 3) the interaction between 1+2 (the key PPI term), 
and test significance of interaction term

Task-Based Connectivity



• Estimate a separate Beta for each individual trial (as long as SOA > TR)

Beta-Series Regression (BSR)

• Then correlate Betas (rather than TRs) across ROIs….



• FFA Beta Correlation reveals similarities, as well as differences, 
with standard activation analysis

Gazzaley et al. (2004) Cog. Aff. Beh. Neuro.

Beta-Series Regression (BSR)



• Some trial-to-trial correlation could be due to global variability in attention; 
safer to compare regression slopes across two or more conditions

• One problem with BSR is how to estimate single-trial responses for event-
related designs with short SOAs:

Beta-Series Regression (BSR)

Abdulrahman & Henson (2016) Neuroimage

• LSS better when scan noise higher than trial variability (normally the case); 
LSA better when trial variability higher than scan noise



Psycho-Physiological Interactions (PPI)

Amyg
(phy)

Affect
(psy)

Amyg X 
Affect
(PPI) Sacu et al. (2023) Psychol. Med.

Parametric, factorial design, in which one 
factor is psychological (eg affective state)
...and other is physiological (viz. activity 
extracted from a brain region of interest)

0       0    1



Laminar fMRI

• High-field (eg 7T) fMRI offers higher spatial resolution (<1mm), 
distinguishing layers (laminae) within cortex, eg deep vs middle vs superficial

• Top-down connections tend to target the deep and superficial layers, 
whereas bottom-up connections preferentially target the middle layer

• So can (indirectly) infer direction of information flow?

Sharoh et al (2019) PNAS

PPI for Words vs Nonwords



No connection between B and C,
yet B and C correlated because of 
common input from A, eg:

A = fMRI time-series
B = 0.5 * A + e1
C = 0.3 * A + e2

Correlations: 

A B C
1
0.49 1
0.30 0.12 1

A

B

C

0.49

0.31

-0.02
χ2=0.5, ns.

Functional 
connectivity

Effective connectivity

Functional vs Effective Connectivity

(One can calculate partial correlations across whole connectomes, 
but normally need to regularise their estimation…)



1. Direct experimental interventions (e.g, lesion, drugs)

2. Indirect experimental manipulations (e.g, PPI, DCM)

3. Network model inference (e.g, SEM, DCM)

4. Temporal precedence (e.g, Granger Causality, DCM)

5. …

Effective Connectivity and Causality



Experimental 
modulation

Temporal/
Dynamical

Network 
model

Haemodynamic 
Model (for fMRI)

Correlation /  
ICA / PCA

BSR /
PPI

Y

Granger Y

SEM Y

DCM Y Y Y Y

Effective Connectivity and Causality



Dynamic Causal Modelling (DCM)

Lee et al. (2022) Neuroimage

Famous Initial

Unfamiliar Initial

Unfamiliar Immediate Repeat

Scrambled Initial



Applications

• Activation Analysis
– Brain Mapping (mass univariate)
– Subtraction logic (pure insertion)
– Blocked versus Intermixed (Epoch vs Event‐related)
– Functional localisation; Forward and Reverse Inference

• Functional Connectivity
– Matrix factorisation (Independent Component Analysis)
– ROI‐based connectomes, graph theory
– Task‐based (effective) connectivity

• Pattern (Information) Analysis
– Multi‐voxel pattern analysis (MVPA)
– Representational Similarity Analysis (RSA)

Theme: Fusiform Face Area (FFA)



Haxby et al (2001) Science

Information Outside Maximally-
Responsive Regions 

• Face representations distributed across IT 
(not just FFA)



Mur et al. (2009) Soc. Cog. Aff. Neuro.

Multi-Voxel Pattern Analysis (MVPA)

• If we can classify experimental conditions based on activity patterns 
(better than chance) …

• … then the activity pattern carries information about the experimental 
conditions
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How does MVPA work? 
classification example

Predictions:

True labels:

Compare

Thanks to Danny Mitchell



Decoding Model
• Linear classifiers like a “reversed” (logistic) GLM:

𝑦 (measured) = Activations for each trial t in voxel v

𝑋 (specified)   = “Design matrix” coding condition label of each trial t

𝛽 (estimated) = “Betas” (weights) for each voxel v

𝜀 (estimated) = residual error for each trial t

• Normally v>t, so regularisation needed, e.g. minimise:

e.g., Ridge Regression (p=2), LASSO (p=1), Elastic Net, 𝜆 = regularisation parameter…

• (Decoding model actually more “causal”, e.g., predict behaviour from all 
voxels / ROIs in brain…)

𝑋 𝑡 ൌ 𝑓ሺ𝑦 𝑡, 𝑣 ൈ 𝛽 𝑣 ሻ ൅ 𝜀ሺ𝑡ሻ

‖𝜀‖𝑝 ൅ 𝜆‖𝛽‖𝑝



Why do MVPA?

• Scientific questions 

– What information does a brain region represent? 
(classification: are patterns reliably different?)

– In what format does it represent the information?
(RSA: what are distance relations between patterns?)

• Practical uses

– Mind Reading? Disease status? 

– More sensitive than univariate analysis…



• Uses covariance between voxels

• Suppresses correlated noise

• Allows for spatial hetereogeniety
across individuals

Why can MVPA be more sensitive?

Voxel 1 Voxel 1
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SUBJECT A SUBJECT B



• Original view: biased sampling of sub-voxel patterns

• Later spatial filtering experiments:
– Smoothing can actually improve classification

(Op de Beeck, 2010, Neuroimage)
– Therefore some patterns may be coarse

Physiology: fine or coarse patterns?

Kamitani & Tong (2005) Nat. Neuro.

Kriegeskorte et al. (2010) Neuroimage

• Much evidence that information is represented at 
multiple spatial scales
(e.g. FFA/PPA – see Haxby et al slide earlier)

• Veins as multipronged sensors? (We sample 
from veins, which sample from neurons…)

• Practical consequences, e.g., smoothing, 
motion, search-light size



Kriegeskorte et al (2006) PNAS

Localisation: Information‐Mapping!

3 voxel radius 
searchlight

• One can map out information!



• Just because we can decode information in one brain region, does not 
mean that other brain regions also can (or use this information)! 

• Eg can decode Faces vs Houses in V1 (EVC), but neurons there do not 
respond to these categories specifically

Caveats



• Quantifies neural relationships between conditions in an abstract space 
(e.g, space of stimuli), derived from, but no longer dependent on, the 
measurement format (cf. kernel trick in machine learning)

• Allows different representational structures to be distinguished, 
and compared in common format

Kriegeskorte et al. 2008 Front. Syst. Neurosci.

Representational Similarity Analysis (RSA)



Kriegeskorte & Kievit (2013) Trends. Cog.

Equivalent classification, different representations:

Representational Similarity Analysis (RSA)



Kriegeskorte & Kievit (2013) Trends. Cog.

Assuming a space of N stimuli, the size/nature of the original data space is 
irrelevant, e.g. whether over P voxels, or Q participants, or R units of a Neural 
Network Model…

Representational Dis‐similarity Matrix (RDM)

RDM



RDM for Human InferoTemporal (IT) cortex

Kriegeskorte et al (2008) Neuron
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RDMs across Species

Kriegeskorte et al (2008) Neuron



RDMs across Regions 
(human fMRI)

Kriegeskorte et al (2007) PNAS

• Early visual cortex (EVC) distinguished all stimuli

• FFA distinguished Faces from Houses

• Anterior IT (aIT) distinguished facial identities



Which measure of Dis‐Similarity?

• More sophisticated, eg cross-validated Mahalanobis distance

Kriegeskorte et al. 2008 Front. Syst. Neurosci.



Karimini-Rouzbahani et al (2022) Front. Neuro.

Multi‐dimensional (RSA) Connectivity



THE END!

(Thanks to Danny Mitchell for some MVPA slides)


