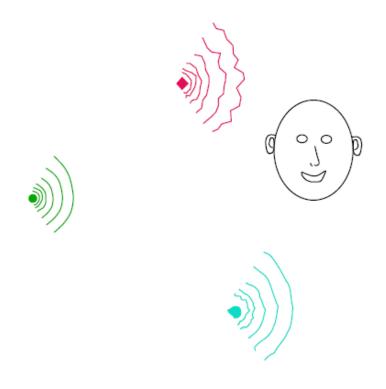
Learning Machine Learning – Meeting 5

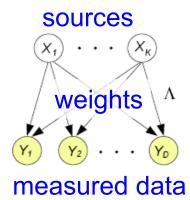
Independent Components Analysis (ICA): Theory and Application to MEG Data

Jason Taylor

MRC Cognition and Brain Sciences Unit
jason.taylor <at> mrc-cbu.cam.ac.uk

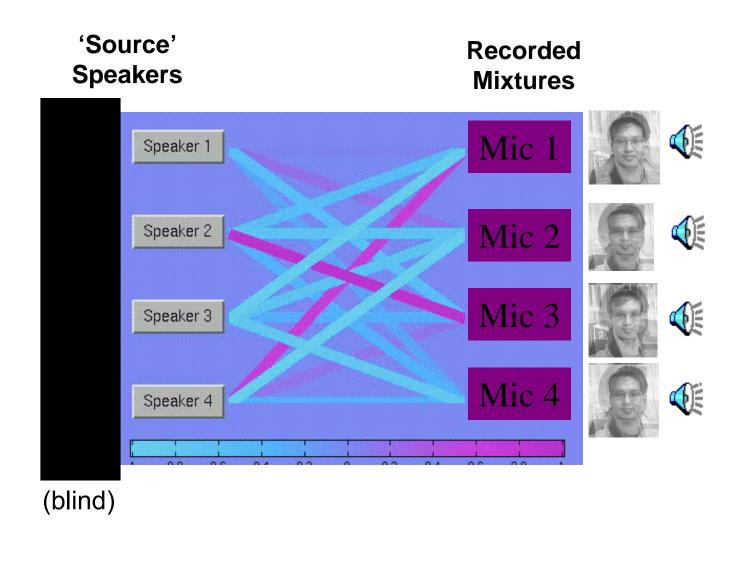
Blind Source Separation

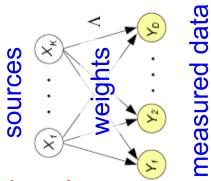




Example: Audio decomposition

Adapted from Scott Makeig [http://sccn.ucsd.edu/~scott/icademo/index.html]





See Makeig's website for a functional copy of the demo!

Measured data are a linear mixture of independent non-gaussian sources.

$$y = \Lambda x$$
 (data = mixing matrix * sources)

ICA finds the 'unmixing' matrix (W) to recover sources

$$x = Wy$$
 (sources = $unmixing matrix * data$)
 $W = \Lambda^{-1}$

A mixture of non-gaussian sources tends towards gaussian (Central Limit Theorem)

Iterative algorithm begins with random weights, computes estimate of x, adjusts weights to increase non-gaussianity of source estimates

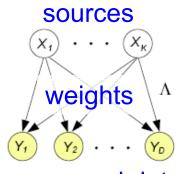
Strategies:

- Increase (absolute) Kurtosis
- Increase Entropy
- Decrease Mutual Information (infomax)

$$kurt(y) = E\{y^4\} - 3(E\{y^2\})^2$$

$$H(Y) = -\sum_{i} P(Y = a_i) \log P(Y = a_i)$$

$$I(y_1, y_2, ..., y_m) = \sum_{i=1}^m H(y_i) - H(y).$$

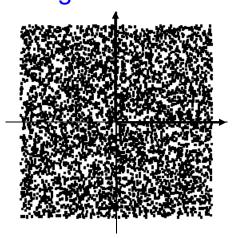


measured data

Aapo Hyvärinen:

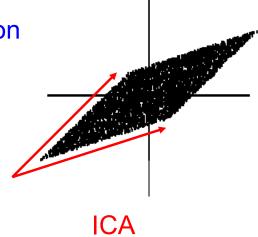
http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/IJCNN99_tutorial3.html

Two non-gaussian 'sources'

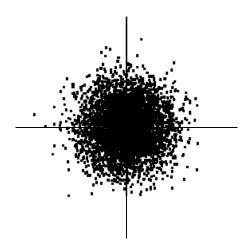


Linear transformation

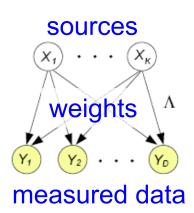
$$\mathbf{A}_0 = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$$



Two gaussian 'sources'

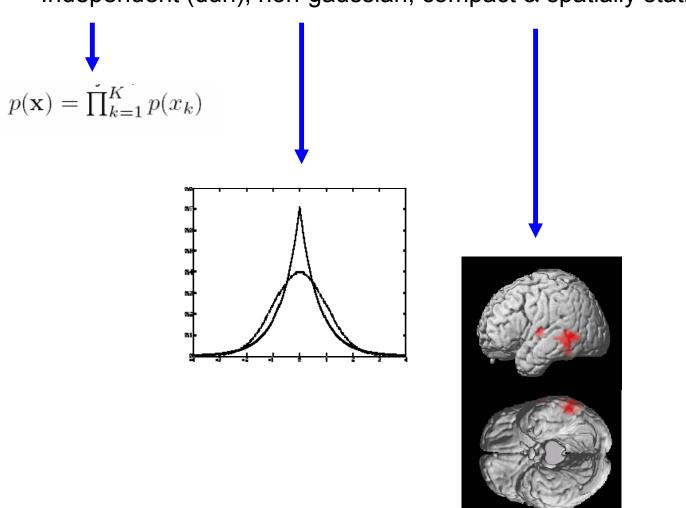


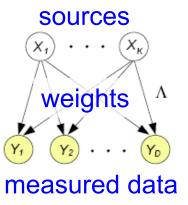
Doesn't work



Time-varying (tICA) sources are assumed to be:

Independent (duh), non-gaussian, compact & spatially static





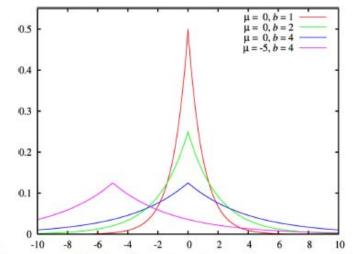
Kurtosis

The kurtosis (or excess kurtosis) measures how "peaky" or "heavy-tailed" a distribution is.

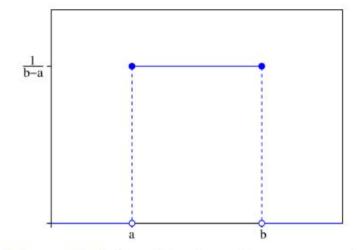
$$K = \frac{E((x-\mu)^4)}{E((x-\mu)^2)^2} - 3$$

where $\mu = E(x)$ is the mean of x.

Gaussian distributions have zero kurtosis.



Heavy tailed distributions have positive kurtosis (leptokurtic).



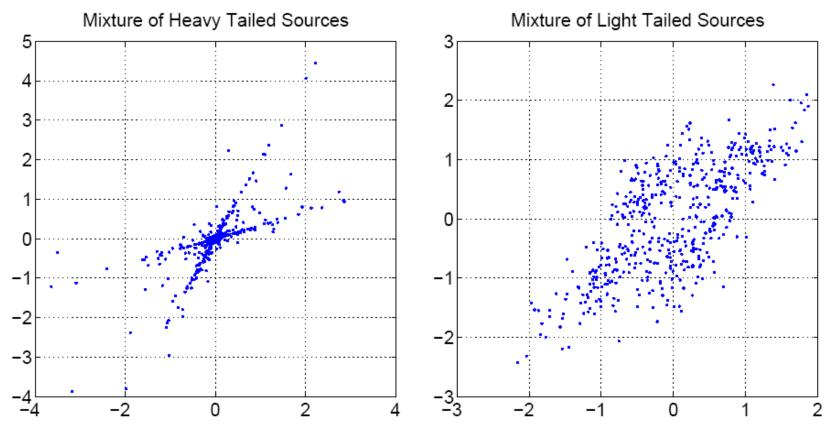
Light tailed distributions have negative kurtosis (platykurtic).

ICA models often use heavy-tailed distributions.

Why are heavy-tailed distributions interesting?

Generating data from an ICA model

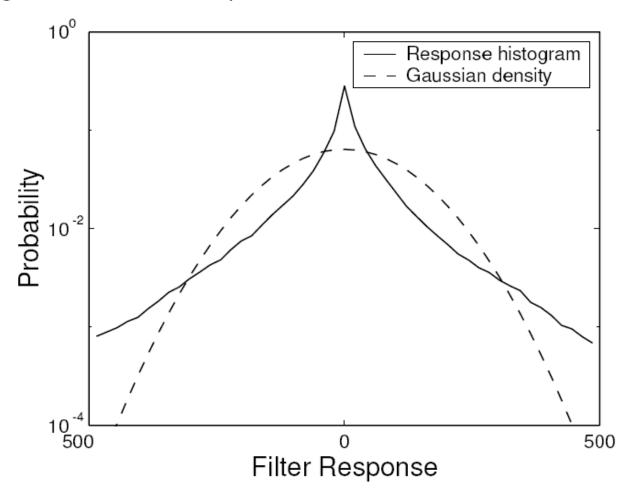
To understand how ICA works it's useful to show data generated from it (K = D = 2).



ICA (with heavy tailed noise) tries to find the directions with outliers.

Natural Scenes and Sounds

Experiment: take some local linear filter (e.g. Gabor wavelet) and run it on some natural sounds or images. Measure filter output.



Natural Scenes

Interesting fact: ICA models seem to learn representations (x given y) that look very similar to responses of neurons in primary visual cortex of the brain.

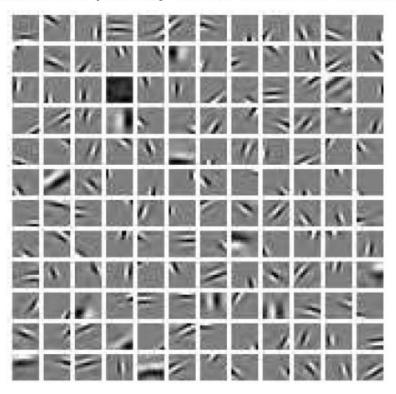


Figure 7: Example basis functions derived using sparseness criterion see (Olshausen & Field 1996).

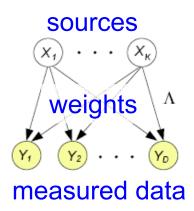
Time-varying (tICA) sources are assumed to be: Independent (duh), non-gaussian, compact & spatially static

Limitations:

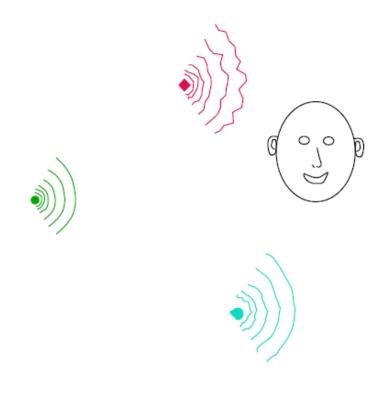
- Can't have all gaussian sources
- Can't have non-linear mixture
- Can only recover as many sources as you have observations (Beware: components can be wasted on modelling noise)

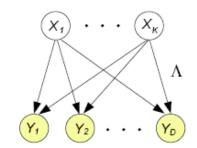
Quirks:

- Each component accounts for a small percentage of variance (typically 0-5%; unlike PCA)
- Order of output components is random (can order by e.g. PVA)
- Sign of output components is arbitrary(2 local minima, one +, one -)



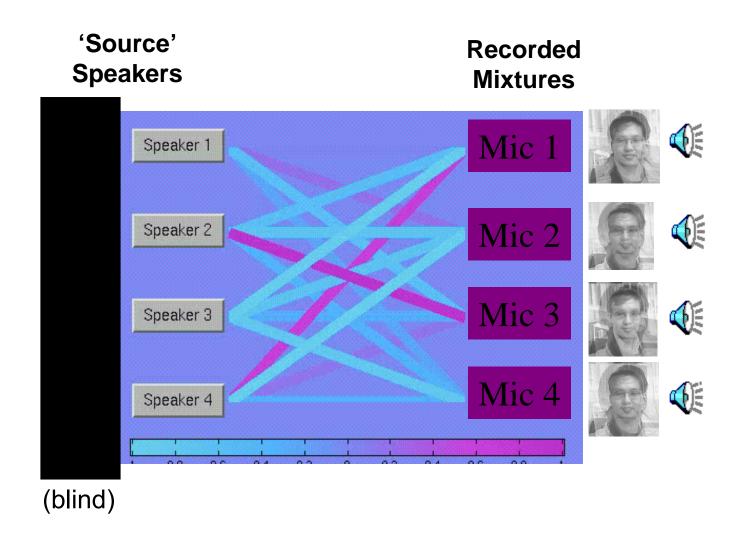
Blind Source Separation





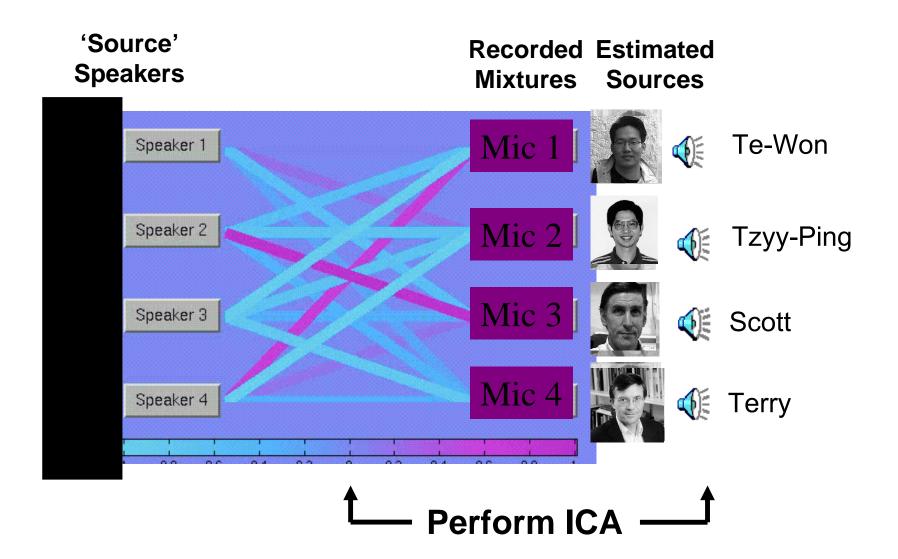
Example: Audio decomposition

Adapted from Scott Makeig [http://sccn.ucsd.edu/~scott/icademo/index.html]



Example: Audio decomposition

Adapted from Scott Makeig [http://sccn.ucsd.edu/~scott/icademo/index.html]

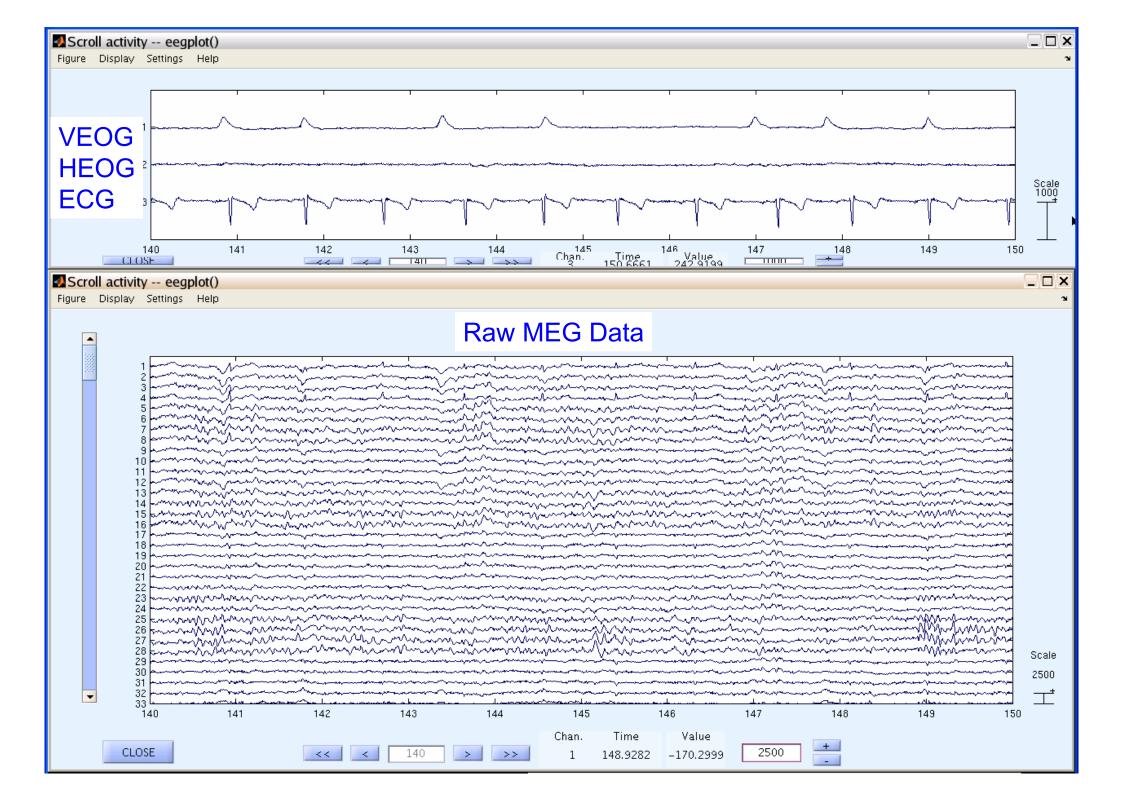


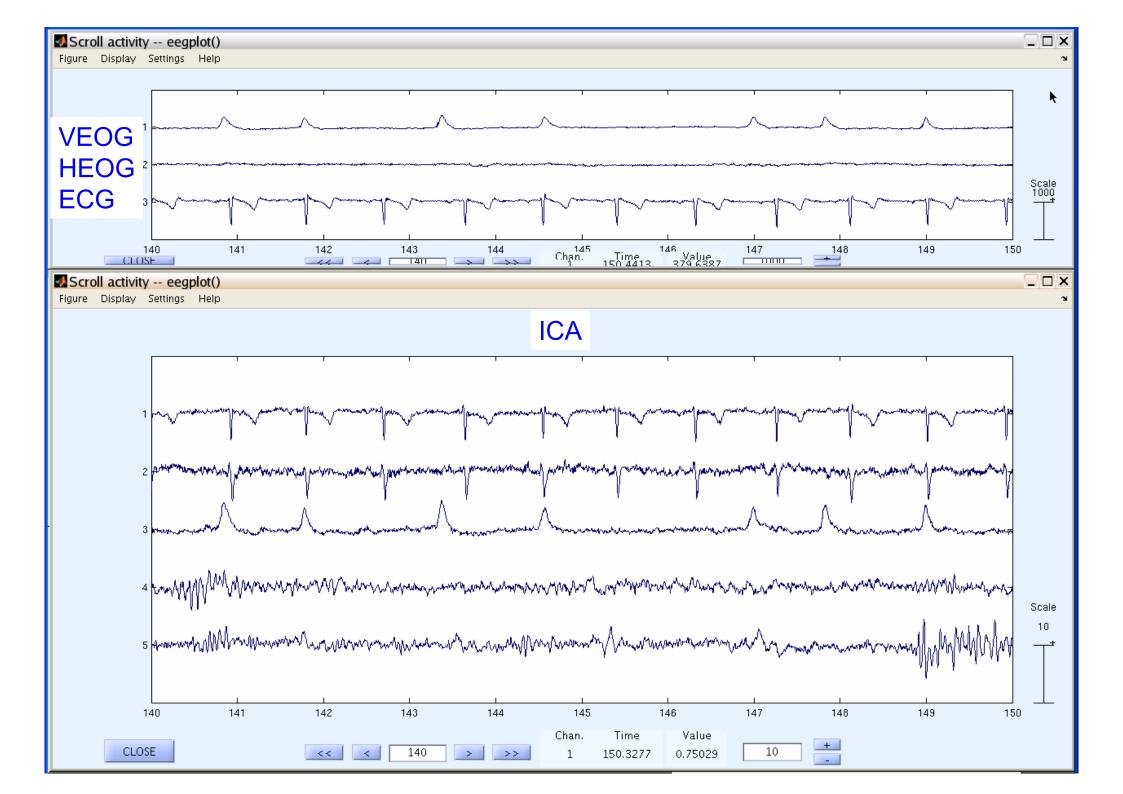
Applications of ICA and Related Methods

- Separating auditory sources
- Analysis of EEG data
- Analysis of functional MRI data
- Natural scene analysis

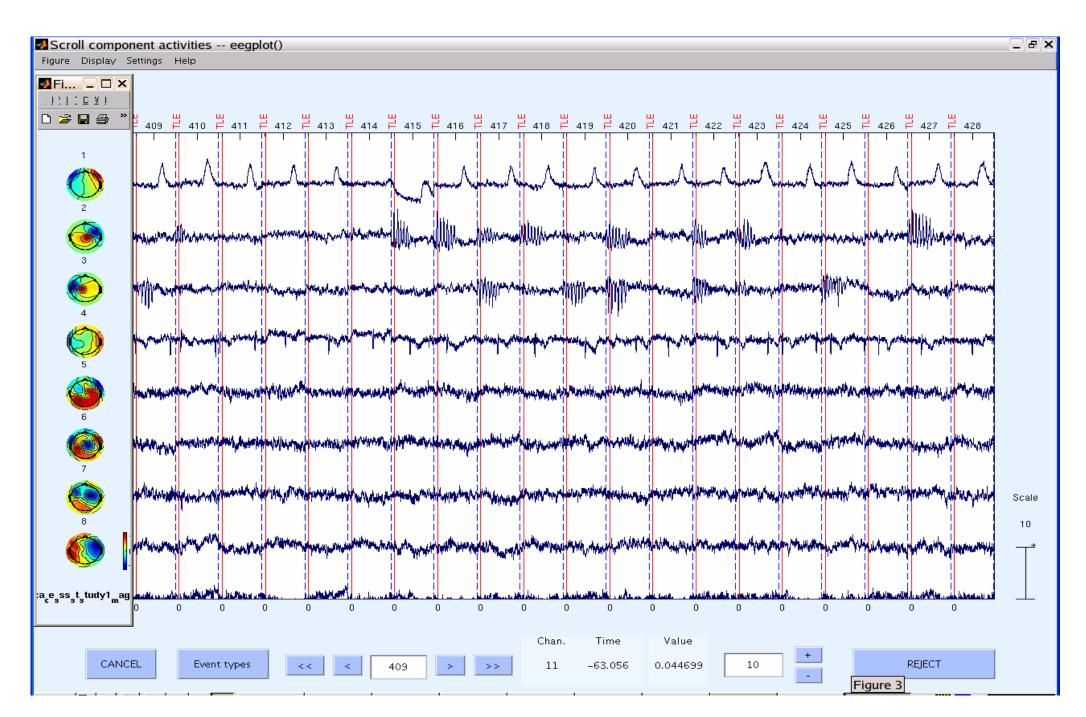
• ...

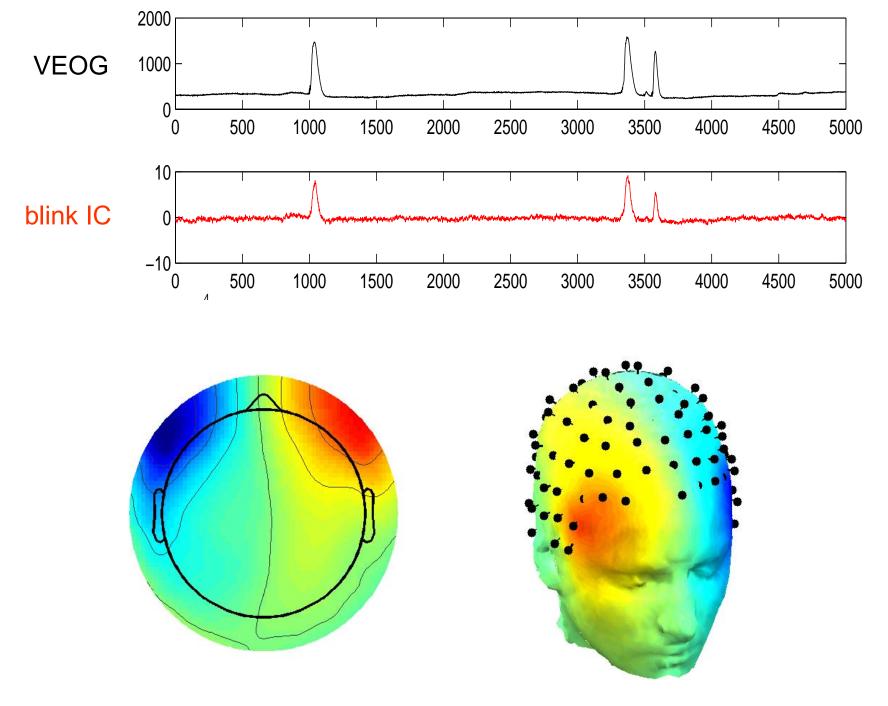
Examples from MEG data





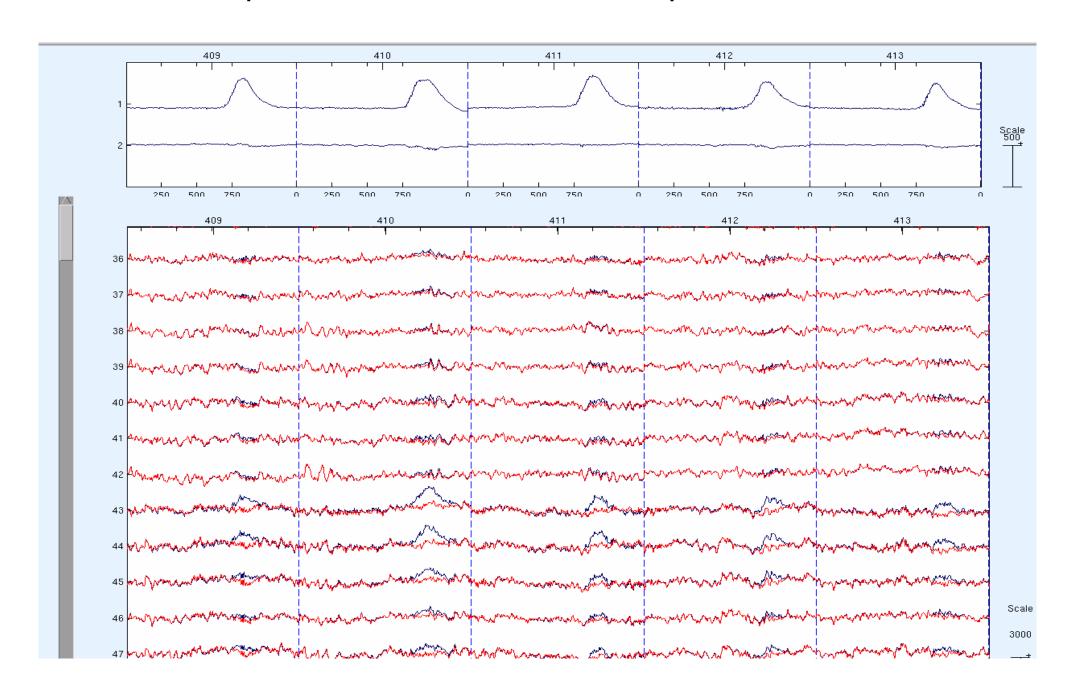
ICA – 65 components (reduced from 306 by PCA)

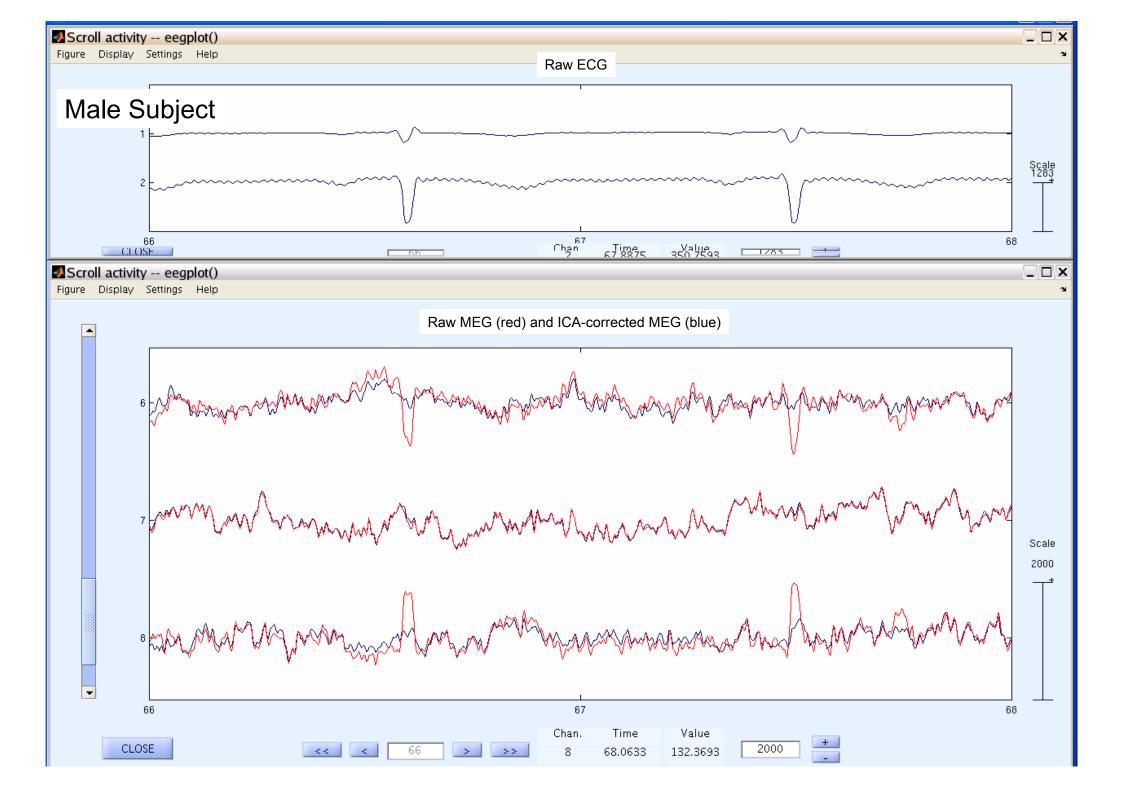




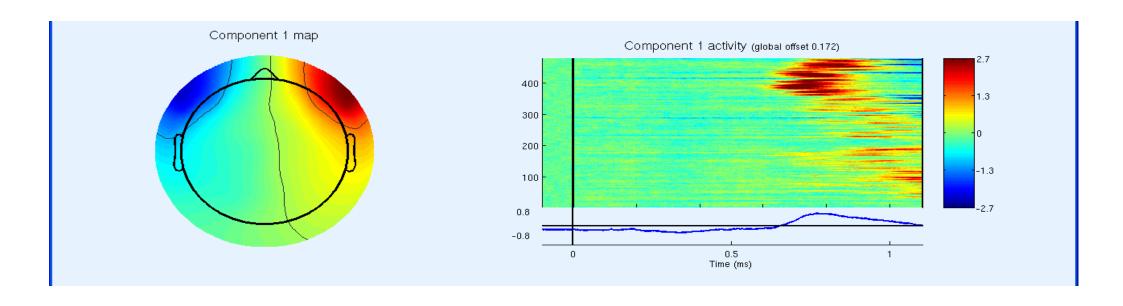
Scalp Topography of blink IC

Artefact Correction using ICA: Raw epochs before/after blink component is removed

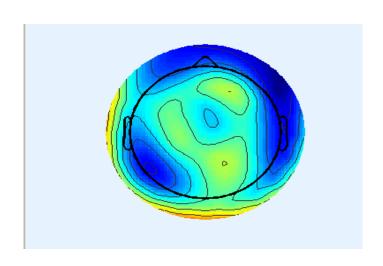


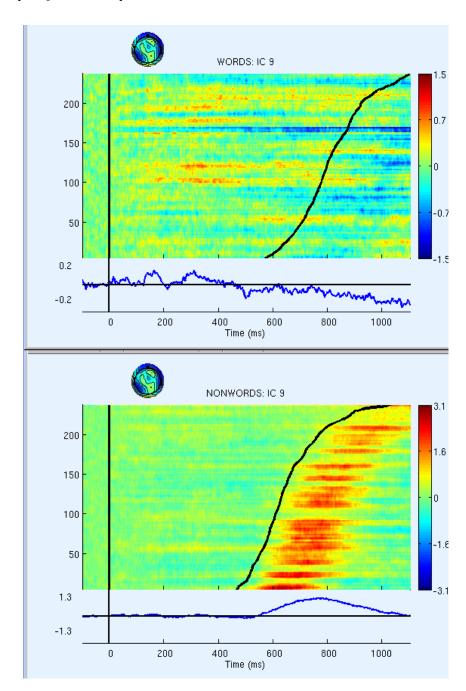


ICA – Event (Epoch) Related Plots



ICA – Event (Epoch) Related Plots

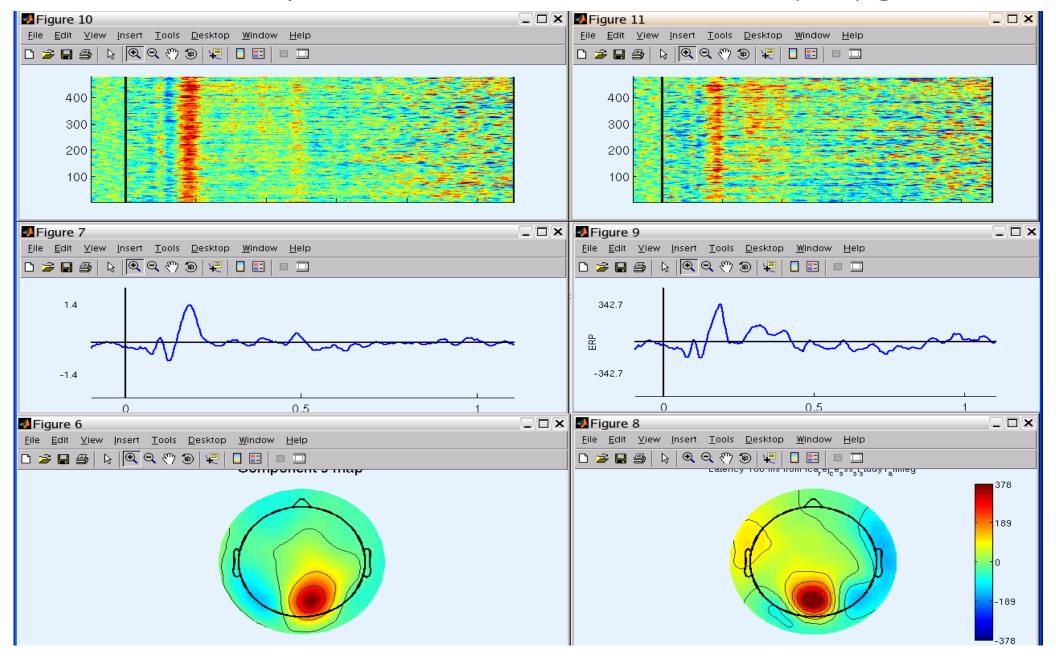




ICA – Event (Epoch) Related Plots

ICA – Component 9

MEG - Sensor 76 (2021) @ 186ms



Further Info:

A fantastic tutorial:

Aapo Hyvärinen:

http://www.cis.hut.fi/aapo/papers/IJCNN99_tutorialweb/IJCNN99_tutorial3.html

A demo of blind source separation applied to voice recordings: Scott Makeig

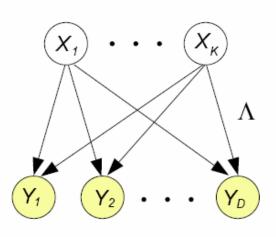
http://sccn.ucsd.edu/~scott/icademo/index.html

Lecture 5 in this Machine Learning course deals with ICA: Zoubin Ghahramani

http://learning.eng.cam.ac.uk/zoubin/ml06

Appendix

Independent Components Analysis



- Just like Factor Analysis, hidden factors in ICA are independent: $p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k)$
- **But**, their distribution $p(x_k)$ is **non-Gaussian**:

$$y_d = \sum_{k=1}^K \Lambda_{dk} \ x_k + \epsilon_d$$

• We can call the special case of K=D, with invertible Λ and zero observation noise, standard ICA. This was the originally proposed model (analogous to PCA) and has been studied extensively¹:

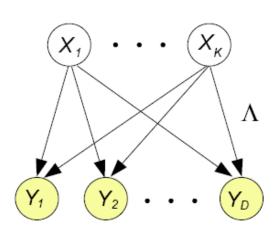
$$\mathbf{y} = \Lambda \mathbf{x}$$
 which implies $\mathbf{x} = W \mathbf{y}$ where $W = \Lambda^{-1}$

where x are the independent components (factors), y are the observations, Λ is the mixing matrix, and W is the unmixing matrix.

• Inferring x given y and learning Λ is easy in standard ICA.

¹See: http://www.cnl.salk.edu/~tony/ica.html

ICA: Choosing non-Gaussian hidden factor densities



- Just like Factor Analysis, hidden factors in ICA are independent: $p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k)$
- But, their distribution $p(x_k)$ is non-Gaussian:

$$y_d = \sum_{k=1}^K \Lambda_{dk} \ x_k + \epsilon_d$$

There are many possible continuous non-Gaussian densities for the hidden factors $p(x_k)$ from which we can choose.

A major distinction between univariate distributions is whether they are heavy tailed or light tailed.

This is defined in terms of the kurtosis.

How ICA Relates to Factor Analysis and Other Models

- Factor Analysis (FA): Linear latent variable model which assumes that the factors are Gaussian, and Gaussian observation noise.
- Probabilistic Principal Components Analysis (pPCA): Assumes isotropic observation noise: $\Psi = \sigma^2 I$ (PCA: $\Psi = \lim_{\sigma^2 \to 0} \sigma^2 I$).
- Independent Components Analysis (ICA): Assumes that the factors are non-Gaussian.
- Mixture of Gaussians: A single discrete-valued "factor": $x_k = 1$ and $x_j = 0$ for all $j \neq k$.
- Linear Gaussian State-space Model (Linear Dynamical System): Time series model in which the factor at time t depends linearly on the factor at time t-1, with added Gaussian noise.

ICA can and has been extended in several ways: fewer sources than "microphones", time varying mixing matrices, combining with convolution with linear filters, discovering number of sources...

Appendix: Matlab Code for Standard ICA

```
% ICA using tanh nonlinearity and batch covariant algorithm
% (c) Zoubin Ghahramani
% function [W, Mu, LL]=ica(X,cyc,eta,Winit);
% X - data matrix (each row is a data point), cyc - cycles of learning (default = 200)
% eta - learning rate (default = 0.2),
                                          Winit - initial weight
% W - unmixing matrix, Mu - data mean, LL - log likelihoods during learning
function [W, Mu, LL] = ica(X,cyc,eta,Winit);
if nargin<2, cyc=200; end;
if nargin<3, eta=0.2; end;
[N D] = size(X);
                               % size of data
Mu=mean(X); X=X-ones(N,1)*Mu;
                               % subtract mean
                               % initialize matrix
if nargin>3, W=Winit;
else, W=rand(D,D); end;
LL=zeros(cyc,1);
                               % initialize log likelihoods
for i=1:cyc,
  U=X*W';
  logP=N*log(abs(det(W)))-sum(sum(log(cosh(U))))-N*D*log(pi);
  W=W+eta*(W-tanh(U')*U*W/N);
                                              % covariant algorithm
  % W=W+eta*(inv(W)-X'*tanh(U)/N)';
                                              % standard algorithm
  LL(i)=logP; fprintf('cycle %g log P= %g\n',i,logP);
end;
```