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We are still trying to solve linear equations 
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Geometric interpretation of linear equations 

Problem 
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Solution 
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The ideal case 
Unique and stable solution 
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No Solution 

? 
[-1 1] 

Columns are parallel – matrix not invertible 

“Ill-posed problem” 
No unique solution 
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Geometric interpretation of linear equations 

Problem 
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Infinitely many solutions 
-1*[1 -1] 
 1*[-1 1] 
 
0*[1 -1] 
2*[-1 1] 
 

y=[-2,2] y=[-2,2] 

Columns are parallel – matrix not invertible 

“Ill-posed problem” 
No unique solution 
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30*[-1 1.1] 

y=[1,2] 

Solution 

? 

Matrix invertible – but possibly instable 

“Ill-conditioned problem” 
Unique but unstable solution 
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The “rank” of a matrix 

In order for an equation to have a unique solution,  
the vectors in that equation cannot be parallel, 

i.e. they have to be “linearly independent” 
 

The number of linearly independent (row or column) vectors in a matrix is its 
“rank” 

 
In previous examples: 

 
Ideal case: rank = 2 

Ill-posed case: rank = 1 
Ill-conditioned: rank = 2 



Who cares? 

The similarity of spatial topographies for brain sources 
determines how well they can be separated 

Sources with very different 
(uncorrelated) topographies 
are easy to distinguish 

Sources with highly 
similar (correlated) 
topographies are 
difficult to distinguish 

Thanks to Dr. Matti Stenroos 



Who cares? 

GLM of fMRI Analysis 
The correlation among regressors determines how well 

contrasts can be estimated 



Example 



A problem with rank 

The rank of a matrix does not tell us how independent the vectors in the 
equation are 

 
Shouldn’t these cases (both rank = 2) be different? 
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The idea behind Singular Value Decomposition (SVD) 
don’t worry about the name yet 

Let’s find out how much variation there is among vectors 
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Step 1:  
Find  a vector 1 that “explains as 
much as possible” of all vectors 
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Step 2:  
Find  an orthogonal vector that 

explains as much as possible of 
what vector 1 couldn’t 

 

Which of these vectors is “more important”? 



Step 3:  
Find out how much the two vectors 

contribute relative to each other 
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The idea behind Singular Value Decomposition (SVD) 
don’t worry about the name yet 

If the relative contributions are (more or less equal), then the original vectors 
are very independent 

 
If the relative contributions are very different, then there is some similarity 

among vectors 
 

 



The idea behind Singular Value Decomposition (SVD) 
don’t worry about the name yet 
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The ratio of the contributions of the two (black) vectors tells us something 
about how “separable” the two (red and blue) vectors are. 

 
This will lead to the “condition number” of a matrix. 

 
 



The idea behind Singular Value Decomposition (SVD) 
don’t worry about the name yet 



SVD in Matlab 

Let’s start with a square matrix: 
 

[U, S] = svd(M) 
 

U: “Singular” or “Eigen”-vectors of columns of  M 
S: contains “singular” values” on diagonal 

 
The columns of U correspond to the new (black) vectors in the previous examples. 

The values in S reflect their “relative importance”. 
 

The explained variance of component i is:    
 
 

The ratio between the largest and smallest values in S is the “condition number”. 
If it’s “infinity” then the matrix is not invertible. 

Large values (~> 30) mean the matrix is “unstable”, i.e. inversion may not produce accurate 
results. 

Small values (~1-10) mean the vectors in the matrix are quite independent. 
 

Solutions to unstable problems (i.e. high condition number) are very sensitive to noise – 
removing or damping the instable parts of a solution is called “regularisation” 
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Example 



What if matrices are not square? 
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Rows and columns have different dimensions 
 

There is still one “rank”:  
The maximum number of independent rows and columns is the same 

 
[U, S, V] = svd(M) 

 
U: Eigenvectors of columns M 
V: Eigenvectors of rows of M 

S: contains “singular values” on diagonal 
 

This leads to a very useful decomposition of M: 
 

M = U*S*V’ 
 



Example 



What is this talk about “singular” values… 

( )
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Vectors in U and V are projected onto each other 



What’s this talk about “eigen”values? 

( ) ( ) ( ) ( )
unitary) is  (because
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In other words: 
If you put a column vector of U through C=M*M’,  
then you get the same vector back, multiplied by a factor 
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What’s this talk about “eigen”values? 
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In other words: 
If you put a column vector of U through C=M*M’,  
then you get the same vector back, multiplied by a factor 

ii ii .
2

.* VSVC =



What’s this talk about “eigen”vectors? 

“Eigen” means something like “self” in German 
 

Eigenvectors of a matrix are projected on themselves (or each other) 
 
 

Link to PCA: 
 U and V contain the principal components or eigenvectors,  

and S the factor loadings or S2 the eigenvalues 
 
 



Example 



Why is this useful? 

 
 

Filtering: 
Once you have decomposed your matrix/data/equation into components, you can 

remove those that annoy you 
(this can also be done using PCA or ICA etc.) 



Example 



Problem: 
• We have an equation Mx=y 
• We know M and y 
• We want to know x 

If only we had a matrix M-1 with the property  
M-1*M = I   

(I is the identity matrix) 
 

because then:  
 

M-1*Mx = I*x = x = M-1y 
 

M-1 is the “inverse matrix” of M 
 

(Not every matrix has a unique inverse matrix. If it does, it’s called “invertible”) 
 

Why is this useful? 
Remember the stuff about inverse matrices? 



Why is this useful? 

 
 

Imagine M is square: 
 

M = U*S*V’ 
U and V are “unitary” matrices. Then: 

(this is a bit hairy) 
 

IVVVSSVVSUUSV
VSUUSVVSUVSU

====

=
−−

−−

'*'***'**'***
)'**(*)'**()'**)'*('**(

11

11

In other words:  
Once we have the singular value decomposition, we can simply compute the 

(pseudo)inverse by inverting the individual eigenvalues 
 

Small eigenvalues are dangerous:  
They hardly contribute to M, but their inverse will contribute hugely to M-1.  

If they are not reliable (e.g. modelling errors), they can completely distort any result. 
 

Solution:  
Ignore or “dampen” those eigenvalues that you consider unreliable (“regularisation”). 

 

 



Example 
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