

Introduction to Matrix Algebra:

Matrices, vectors, and what you can do with them.

Alessandro Tomassini

MRC Cognition and Brain Sciences Unit Alessandro.Tomassini@mrc-cbu.cam.ac.uk

Why Matrix Algebra?

Matrix notation originally invented to express linear algebra relations (*cayley & Sylvester, Cambridge 1858*)

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = y_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{13}x_3 = y_2$

- Compact notation for describing sets of data & sets of linear equations.
- Enhances visualisation and understanding of essentials.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

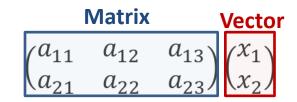
- Efficient for manipulating sets of data & solving sets of linear equations.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}; \ \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}; \ \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix};$$

$$Ax = y$$

- Translates directly to the implementation of linear algebra processes in languages that offer array data structures (e.g. **MATLAB**).

Basics: Taxonomy



Matrix: A collection of numbers ordered by rows and columns.

Example: a 2 rows by 3 columns matrix.

Square matrix
$$\begin{pmatrix} 9 & 1 & 1 \\ 1 & 3 & 7 \\ 5 & 7 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 9 & 1 & 1 \\ 1 & 3 & 7 \\ 5 & 7 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 9 & 1 & 5 \\ 1 & 3 & 7 \\ 5 & 7 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 9 & 1 & 5 \\ 1 & 3 & 7 \\ 5 & 7 & 2 \end{pmatrix} \quad \mathbf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 9 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$I = eye(3,3);$$

Diagonal matrix Identity matrix

$$\begin{pmatrix} 9 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Zero matrix

$$Z = zeros(3,3);$$

All-ones matrix

Vector: In most cases a vector can be defined as a one-dimensional matrix (Matlab always does!).

Column Vector

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$C = [1; 2];$$

Row Vector

$$(x_1 \ x_2)$$

$$V = [1 \ 2];$$

Basics

The dimension (order) of a matrix is given by the number of its rows and columns.

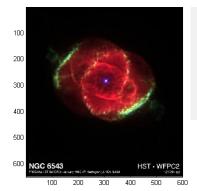
Example: 2 rows x 3colums

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

NOTE: Matlab uses **multidimensional arrays** which are an extension of the normal 2-dimensional matrix

$$\begin{pmatrix} a_{111} & a_{121} & a_{131} \\ a_{211} & a_{221} & a_{231} \end{pmatrix} \quad \begin{pmatrix} a_{112} & a_{122} & a_{132} \\ a_{212} & a_{222} & a_{232} \end{pmatrix} \dots \dots \begin{pmatrix} a_{11n} & a_{12n} & a_{13n} \\ a_{21n} & a_{22n} & a_{23n} \end{pmatrix}$$

Example: colour images in Matlab are 3-D arrays. The 3rd dimension encodes the primary colours (i.e. Red, Green, Blue).



RGB = imread('ngc6543a.jpg'); image(RGB); axis image;

size(RGB)

Try it out

```
GB = RGB; GB(:,:,1)=0;
RB = RGB; RB(:,:,2)=0;
Etc...
image(....); axis image;
```

Operations

Transposition:

$$a_{ij} \rightarrow a_{ji}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 8 \\ 0 & 4 & 2 \end{pmatrix}; \ \mathbf{A}^T = \begin{pmatrix} 1 & 0 \\ 3 & 4 \\ 8 & 2 \end{pmatrix}$$

At = A';

Addition/Subtraction:

Matrices/vectors need to have the **same dimensions** (i.e. nrows & ncols).

$$a_{ij} \pm b_{ij} = r_{ij}$$

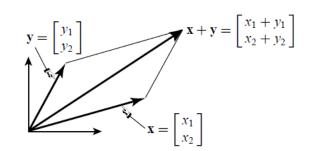
RGB + RGB(:,:,1);%WRONG RGB + RGB(:,:,:);%RIGHT

Properties of addition:

- **Commutative:** A+B=B+A
- **Associative:** A+(B+C) = (A+B)+C;

Geometric interpretation (parallelogram law)

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
; $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$; $x + y$



Operations: Multiplication (& Division)

Multiplication by scalar:

$$c * A = c * a_{11} \dots c * a_{nn}$$
 $3*A = 3*\begin{pmatrix} 1 & 3 & 8 \\ 0 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 9 & 24 \\ 0 & 12 & 6 \end{pmatrix}$

NOTE: **Division** is equivalent to multiplication by 1/c (e.g. 1/3).

Geometric interpretation

This operation is also called **scaling of a vector**: the scaled vector points the same way, but its magnitude is multiplied by c.

```
V = [2 5];
C = 2; sV = C*V;
plot([0 V(1)],[0 V(2)],'r');
hold on;
plot([0 sV(1)],[0 sV(2)],'b');
```

If c < 0 the direction of the vector is reversed (reflexion about the origin).

Operations: Multiplication (& Division)

Inner product (or scalar product) of two column vectors (of same order)

$$X^TY = Y^TX = \sum_{i=1}^n x_i y_i$$

$$X^{T}Y = Y^{T}X = \sum_{i=1}^{n} x_{i} y_{i}$$
 $X = {2 \choose 3}; Y = {1 \choose 5}; X^{T}Y = (2 3) {1 \choose 5} = 2x1 + 3x5 = 17$

Properties: Commutative

NOTE: Matlab's ".*" is an **Array operator** that multiplies two vectors of the same order element by element. $XY = Z \rightarrow size(Z) = size(X) = size(Y)$;

Geometric interpretation

The angle in radians between two arbitrary vectors is defined as

$$cos\theta = \frac{(x,y)}{|x||y|}$$
 $cos\theta = 0$

The cosine function is closely related to **covariance**

Example

% generate 3 sinusoids of different phases

Phi = [0, pi/4, pi/2];

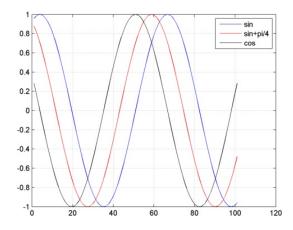
X = [-5:0.1:5]'; %NOTE: transposition

S1 = sin(x+Phi(1)); S2 = sin(x+Phi(2)); S3 = sin(x+Phi(3)); % NOTE: we should have 3 column vectors, check!

 $\cos\theta = \frac{(x,y)}{|x||y|}$

%Plot them

plot(S1,'b');hold on; plot(S2,'r');plot(S3,'k');



% Create an anonymous function to calculate the Euclidean norm

Enorm = @(x) sqrt(sum(x.^2))

%Calculate the cosine between vectors

Operations: Multiplication

Multiplication of matrix with vector:

$$y = Ax; y_i = \sum_{j=1}^{n} a_{ij} x_j i = 1..m$$

$$y = Ax; y_i = \sum_{i=1}^{n} a_{ij} x_j \ i = 1..m$$
3 Columns
$$\binom{1}{2} \frac{1}{2} \frac{1}{2} \times \binom{3}{4} = \binom{1*3}{2*3} + \binom{1*4}{2*4} + \binom{12}{24}$$

Remember that earlier we multiplied row vectors with column vectors? This makes sense now, because vectors are special cases of matrices.

Multiplication of matrix with matrix:

Properties:

$$C = AB$$
; $c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk} i = 1..m, k = 1,..p.$

Every element ik of C is the scalar product of the i-th row of A with the k-th column of B

Operations:

Inverse of a (square) matrix

In scalar algebra, the inverse of a number x is x^{-1} so that $x^*x^{-1} = 1$. In matrix algebra the inverse of a matrix is that matrix that multiplied by the original matrix gives an identity matrix: $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$

A matrix must be square, but not all square matrices have an inverse (e.g. singular matrices).

IA = inv(A)A*IA

Example: simple linear regression

Regression Coefficient
$$y = \beta_0 + \beta_1 x + \mathcal{E}$$
Intercept Error term
$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$$

load accidents

x = hwydata(:,14); %Population of states

X = [ones(length(x),1) x];%add a column of 1s to calculate intercept

Y = hwydata(:,4); %Accidents per state

format long

"\" operator mldivide: solve systems of linear equations Y=BX for B (similar to $X^{-1}Y$)

```
B = X\Y
yCalc = X*b; %NOTE: vector by matrix product

scatter(x,y)
hold on;
plot(x,yCalc,'-')
legend('Data','Fitted function','Location','best');
xlabel('Population of state')
ylabel('Fatal traffic accidents per state')
```

