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What is mathematical optimisation? 
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Local and Global Minima 
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Finding an Analytic Solution 
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What about…? 

-6 -4 -2 0 2 4 6

-200

-150

-100

-50

0

50

100

150

200

sight.in  extremum nobut 
 - 0 is  of slope The f(x)

“saddle point” 

3)( xxf =



How To Distinguish Saddle Points from Extrema 
The Second Derivative 
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How To Distinguish Saddle Points from Extrema 
The Second Derivative 
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To Make It More Confusing - Inflection Points 
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Least-Squares Estimation 

)(ˆ
i.e. m, from d predicts that model forward a and

 m, parameters model some d, data some haveyou  i.e.
 measures, fit"-of-goodness" are functionscost common most   theArguable

mfd =

F()function cost  some  toaccording
) ))m̂f(-F(d min(m̂

:tmeasuremen and predictionbetween  difference  theminimises that m find oYou want t
→

) ))m̂f(-(d min(m̂
:tmeasuremen and predictionbetween 

 difference squares-least  theisfunction cost common most  The

2→

)) ))m̂(f-(d min(m̂
: vectora is  If

i

2
ii∑→

d



Overfitting 

We already talked about linear estimation in the context of the 
General Linear Model and matrix (pseudo)inversion  
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Overfitting 

Not enough parameters:  
You may leave more data unexplained than necessary –  

you don’t get as much as you deserve. 
 

Too many parameters: 
You may get a close fit of your data – but some of it is noise. 

You may get more than you asked for - “overfitting”. 
 

We need a criterion that weighs the amount of data explained 
against the number of parameters used. 
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Avoiding Overfitting 
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Non-linear Optimization 
If your optimisation problem does not have an analytic solution (using derivatives 
etc.), or cannot be formulated as a GLM, then one can use iterative search 
procedures. 
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“Gradient Descent” 
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Be aware of multiple local minima, 
you may have to use multiple seeds 

These methods require some information about the structure of your data, e.g. 
smoothness and multiple local minima.  



If Nothing Else Works… 

If your optimisation problem is very complex, or you don’t know much/anything 
about the structure of your cost function, then you can apply “clever random 
search” approaches: 
 
• Monte Carlo Markov Chain (MCMC) 
• Genetic algorithms 
• Simulated annealing 
• … 
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