For a web interface to the code tree: http://projects.scipy.org/neuroimaging/ni/browser/ni/trunk
Useful examples (not quite quick start): http://projects.scipy.org/neuroimaging/ni/browser/ni/trunk/examples/quickstart
For a basic introduction to setting up designs:
http://projects.scipy.org/neuroimaging/ni/browser/ni/trunk/examples/quickstart/design_models.py
http://projects.scipy.org/neuroimaging/ni/browser/ni/trunk/examples/quickstart/design_regressors.py
To run an example script where we are, start ipython --pylab, then:
run /home/ian/devel_trees/nipy/examples/quickstart/design_models.py
(you need the ipython --pylab option to allow matplotlib to keep producing figures without locking the console).
The generic models code is in scipy.sandbox.models - to find where this is on the system (ipython):
import scipy.sandbox.models scipy.sandbox.models.__file__
How to estimate a model on data
See: http://projects.scipy.org/scipy/scipy/browser/trunk/Lib/sandbox/models/regression.py for an example, and the models directory in general for the models code.
At interactive prompt, after running the example script above, you have a 'design' variable - which is just a design matrix:
import numpy as N import scipy.sandbox.models as SSM # Make some random data n_time_points = design.shape[1] rY = N.random.normal(size=(n_time_points,)) # Estimate the model # Note FMRI design needs transpose to standard rows = timepoints orientation pain_glm = SSM.glm(design.T) pain_results = pain_glm.fit(rY)
See also: http://imaging.mrc-cbu.cam.ac.uk/svn/cbumethods/parameters/trunk/scripts/run_models.py for live data example.