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The p-value has long been the figurehead of statistical analysis in biology,

but its position is under threat. p is now widely recognized as providing

quite limited information about our data, and as being easily misinterpreted.

Many biologists are aware of p’s frailties, but less clear about how they might

change the way they analyse their data in response. This article highlights

and summarizes four broad statistical approaches that augment or replace

the p-value, and that are relatively straightforward to apply. First, you can

augment your p-value with information about how confident you are in it,

how likely it is that you will get a similar p-value in a replicate study, or

the probability that a statistically significant finding is in fact a false positive.

Second, you can enhance the information provided by frequentist statistics

with a focus on effect sizes and a quantified confidence that those effect

sizes are accurate. Third, you can augment or substitute p-values with the

Bayes factor to inform on the relative levels of evidence for the null and

alternative hypotheses; this approach is particularly appropriate for studies

where you wish to keep collecting data until clear evidence for or against

your hypothesis has accrued. Finally, specifically where you are using

multiple variables to predict an outcome through model building, Akaike

information criteria can take the place of the p-value, providing quantified

information on what model is best. Hopefully, this quick-and-easy guide

to some simple yet powerful statistical options will support biologists in

adopting new approaches where they feel that the p-value alone is not

doing their data justice.
1. Introduction
The reified position of the p-value in statistical analyses was unchallenged for

decades despite criticism from statisticians and other scientists (e.g. [1–4]). In

recent years, however, this unrest has intensified, with a plethora of new

papers either driving home previous arguments against p or raising additional

critiques (e.g. [5–11]). Catalysed by the part that the p-value has played in

science’s reproducibility crisis, this criticism has brought us to the brink of an

uprising against p’s reign.

Consequently, an analysis power vacuum is forming, with a range of

alternative approaches vying to fill the space. Commentaries that criticize the

p-value often suggest alternative paradigms of statistical analysis, and now a

number of options have taken seed in the field of biology. New statistical

methods typically involve concepts that are counterintuitive to our p-based

training; they represent radically different ways of interrogating data that

involve disparate approaches to generating evidence, different software

packages and a host of new assumptions to understand and justify. The steep

curves for learning new methods could stifle further expansion of their use in

lieu of p-centred statistical analyses in the biological sciences.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsbl.2019.0174&domain=pdf&date_stamp=2019-05-22
mailto:l.halsey@roehampton.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.4498919
https://dx.doi.org/10.6084/m9.figshare.c.4498919
http://orcid.org/
http://orcid.org/0000-0002-0786-7585
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To provide clarity and confidence for biologists seeking to

expand and diversify their analytical approaches, this article

summarizes some tractable alternatives to p-value centricity.

But first, here is a brief overview about the limits of the

p-value and why, on its own, it is rarely sufficient to interpret

our hard-earned data. Along with many other august statis-

ticians, Jacob Cohen and John Tukey have written cogently

about their concerns with the fundamental concept of null

hypothesis significance testing. Because the p-value is predi-

cated on the null hypothesis being true, it does not give us

any information about the alternative hypothesis—the

hypothesis we are usually most interested in. Compounding

this problem, if our p-value is high and so does not reject the

null hypothesis this cannot be interpreted as the null being

true; rather, we are left with an ‘open verdict’ [2]. Moreover,

with a big enough sample size, inevitably the null hypothesis

will be rejected; perversely, a p-value based statistical

result is as informative about our sample as it is about our

hypothesis [12,13].

Recently, further concerns have been documented about

p, linking the p-value to problems with experimental replica-

tion [5]. Cumming [7] and Halsey et al. [6] demonstrated that

p is ‘fickle’ in that it can vary greatly between replicates even

when statistical power is high, and argued that this makes

interpretation of the p-value untenable unless p is extremely

small. Colquhoun [8,14] has argued that significant p-values

at just below 0.05 are extremely weak evidence against the

null hypothesis because there is a 1 in 3 chance that the

significant result is a false positive (aka type 1 error). Inter-

preting p dichotomously as ‘significant’ or ‘not significant’

is particularly egregious for many reasons, but most pertinent

here is that this approach encourages failed experiment repli-

cation. Studies are often designed to have 80% statistical

power, meaning that there is an 80% chance that an effect

in the data will be detected. As Wasserstein & Lazar [9]

explain, the probability of two identical studies statistically

powered to 80% both returning p � 0.05 is at best 80% �
80% ¼ 64%, while the probability of one of these studies

returning p � 0.05 and the other not is 2 � 80% � 20% ¼

32%. Together, these papers and calculations demonstrate

that the p-value is typically highly imprecise about the

amount of evidence against the null hypothesis, and thus p
should be considered as providing only loose, first pass

evidence about the phenomenon being studied [6,15,16].

With the broadening realization among biologists that

p-values provide only tentative evidence about our data—

and, indeed, that exactly what this evidence tells us is easy

to misinterpret—it is important that we equip ourselves with

a broad understanding of what statistical options are available

that can clarify, or even supplant, p. While it will be hard to

extricate ourselves from our indoctrinated approach to

interpreting every statistical analysis through the prism of sig-

nificance or non-significance, we can be motivated by the

knowledge that there really are other ways, and indeed more

intuitive ways, to investigate our data. Below, I provide a

quick-and-easy guide to some simple yet powerful statistical

options currently available to biologists conducting standard

study designs. Each distinct statistical approach interrogates

the data through a different lens, i.e. by asking a fundamen-

tally different scientific question; this is reflected in the

subsection headings that follow. We shall start with the

option least disruptive to the p-value paradigm—augmenting

p with information about its variability.
2. p-Value: how much evidence is there against
the null hypothesis?

p provides unintuitive information about your data. However,

perhaps it can best be interpreted as characterizing the evidence

in the data against the null hypothesis [10,17]. And despite its

limitations, the p-value has attractive qualities. It is a single

number from which an objective interpretation about data can

be made. Moreover, arguably that interpretation is context inde-

pendent; p-values can be compared across different types of

studies and statistical tests [18] (though see [10]). Huber [19]

argues that focusing on the p-value is a suitable first step for

screening of multiple hypotheses, as occurs in ‘high throughput

biology’ such as gene expression analysis and genome-wide

association studies.

However, p is let down by the considerable variability it

exhibits between study samples—variability disguised by

the reporting of p as a single value to several decimal

places. Arguably, then, if you want to continue calculating

p as part of your analyses of single tests, you ought to provide

some additional information about this variability, to inform

the reader about the uncertainty of this statistic. One way to

achieve this is to provide a value that is somewhat akin to

the confidence interval around an effect size, which charac-

terizes the uncertainty of your study p-value and is termed

the p-value prediction interval [7]. Another option is to calcu-

late the prediction interval that characterizes the uncertainty

of the p-value of a future replicate study. Lazzeroni et al.
[18] provide a simple online calculator for both [18]. Based

on this calculator, if the p-value from your experiment is,

for example, 0.01, it will have a 95% prediction interval of

5.726 to 0.54. Clearly, this would provide us with little confi-

dence that p is replicable under this experimental scenario. A

p-value of 0.0001 has a 95% prediction interval of 0–0.05. In

this second scenario, the 95% prediction interval of a future

replicate study is 0–0.26. Vsevolozhskaya et al. [20] argue

that the prediction interval around p calculated by this

method returns underestimates of both the lower and upper

bounds. Nonetheless, the width of the prediction interval,

however calculated, will be surprisingly large to those of us

accustomed to seeing the p-value as a naked single value

reported to great precision.

If you have calculated the planned power of your study

and are prepared to quantify the level of belief you had

before conducting the experiment that the null hypothesis

is true, you can augment p with the estimated likelihood

that if you get a significant p-value it is falsely rejecting the

null hypothesis. This is termed the estimated false positive

(discovery) risk, and can be easily estimated from a simple

Bayesian framework (see later) ([9] and the comment by

Altman annexed to [9]):

Estimated false positive risk ¼ p : p0

p : p0 þ (1� b) (1–p0)
,

where p is the p-value of your study, p0 is the probability

that the null hypothesis is true based on prior evidence and

(1 2 b) is study power.

For example, if you have powered your study to 80% and

before you conduct your study you think there is a 30% possi-

bility that your perturbation will have an effect (thus p0 ¼

0.7), and then having conducted the study your analysis

returns p ¼ 0.05, the estimated false positive risk is 13%.

That is, many replicates of this experiment would indicate a
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statistically significant effect of the perturbation and be

wrong in doing so about 13% of the time. Bear in mind, how-

ever, that given the aforementioned fickleness of p, this

estimate of false positive risk could be equally capricious.

This concern can be circumvented for high throughput

studies, replacing p in the equation above for a (the signi-

ficance threshold of the statistical test), and estimating p0

from observed p-values [9,21].

For those not conducting high throughput studies and

who do not like the idea of subjectively quantifying their

a priori expectations about the veracity of their experimental

perturbation, the calculations can be flipped such that your

p-value is accompanied by a calculation of the prior expec-

tation that would be needed to produce a specified risk (e.g.

5%) of a significant p-value being a false positive ([8]; and

the author provides an easy-to-use web calculator for this pur-

pose: http://fpr-calc.ucl.ac.uk/). This provides an alternative

way of assessing the likelihood that a significant p-value is a

true positive. If, for example, your p-value is 0.03 for a study

powered to about 70%, to limit the risk of a false positive to

5% your prior expectation that the perturbation will have an

effect would need to be 77% (based on the ‘p-equals’ case; [8]).
3. Effect size and confidence interval: how much
and how accurate?

A statistically significant result tells us relatively little about

the phenomenon we are studying—only that the null hypoth-

esis of no ‘effect’ in our data (which we already knew wasn’t

true to some level of precision; [13]) has been rejected [22].

Instead of the p-value scientific question ‘is there or isn’t

there an effect?’, considerably more information is garnered

by asking ‘how strong is the effect in our sample?’ coupled

with the question ‘how accurate is that value as an estimate

of how strong the population effect is?’.

The most straightforward way to analyse your data in order

to answer these two questions is to calculate the effect size in the

sample along with the 95% confidence intervals around that

estimate [6,7,23–26]. Fortunately, the effect size is often easy

to calculate or extract from statistical outputs, since it is typically

the mean difference between two groups or the strength of the

correlation between two variables. And while the definition of a

confidence interval is complex, Cumming & Calin-Jageman [27]

compellingly argue that it is reasonable to interpret a confidence

interval as an indication of the accuracy of the effect size

estimate; it is the likely error estimation.

The calculations of confidence intervals and p-values

share the same mathematical framework [28,29], but this

does not detract from the fact that focusing interpretation

of data on effect sizes and their confidence intervals is a

fundamentally different approach from that of focusing

interpretation on whether or not to reject the null hypothesis

[11]. These two procedures ask very different questions about

the data and elicit distinct answers [30]. For example, a study

on the effects of two different ambient temperatures on

paramecium diameter returning an effect size of 20 mm and

a p-value of 0.1, if centred on p-value interpretation would

conclude ‘no effect’ of temperature, despite the best sup-

ported effect size being 20, not 0. An interpretation based

on effect size and confidence intervals could, for example,

state: ‘Our results suggest that paramecium kept at the

lower temperature will be on average 20 mm larger in size,
however a difference in size ranging between 24 and

50 mm is also reasonably likely’. As Amrhein et al. [11]

point out, the latter approach acknowledges the uncertainty

in the estimated effect size while also ensuring that you do

not make a false claim either of no effect if p . 0.05, or an

overly confident claim. And if all the values within the

confidence interval are biologically unimportant, then a

statement that your results indicate no important effect

can also be made [11]. (This is an example of where focus-

ing on effect size and uncertainty also allows clear yes/no

interpretations if desired; see also [31].)

The approach of focusing on effect size estimation is usually

accompanied by an emphasis on visualization of the data to

support their evaluation. A strong graphical format that

achieves this involves a main panel showing the raw data and

side panels helping to illustrate the estimated effect size [32].

Refer to the electronic supplementary materials for an example

plot (figure S1). Such plots, while intuitive, are not typically

available in statistical packages and not easy to code in pro-

gramming languages. However, Ho and colleagues [32] have

recently developed ‘Data Analysis with Bootstrap-coupled

ESTimation’ (DABEST), available in versions for Matlab,

Python and R, and also as a webpage https://www.estimation-

stats.com/#/. All versions have user-friendly, rote instructions

to produce graphs that allow full exploration of your data.

Scientific research seeks to home in on ‘answers’, and esti-

mated effect sizes and their confidence intervals are central to

this goal. In biology at least, homing in on an answer almost

inevitably requires multiple studies, which then need to be

analysed together, through meta-analysis. Effect sizes and

confidence intervals are the vital information for this process

(e.g. [33]), providing another good argument for their

thorough reporting in papers. Typically, the confidence inter-

vals around an effect size calculated from a meta-analysis are

much smaller than those of the individual studies [34], thus

giving a much clearer picture about the true, population-

level effect size (figure 1). However, meta-analyses can be

deeply compromised by the ‘file drawer phenomenon’,

where non-significant results are not published [36], either

because researchers do not submit them, or journals will

not accept them [37]. Fortunately, attitudes of science fun-

ders, publishers and researchers are starting to change

about the value and importance of reporting non-significant

results; this momentum needs to continue.
4. Bayes factor: what is the evidence for one
hypothesis compared to another?

In contrast to the p-value providing only information about

the likelihood that the null hypothesis is true, the Bayes

factor directly addresses both the null and the alternative

hypotheses. The Bayes factor quantifies the relative evidence

in the data you have collected about whether those data are

better predicted by the null hypothesis or the alternative

hypothesis (an effect of stated magnitude). For example, a

Bayes factor of 5 indicates that the strength of evidence is

five times greater for the alternative hypothesis than the

null hypothesis; a Bayes factor of 1/5 indicates the reverse.

The Bayes factor is a simple and intuitive way of under-

taking the Bayesian version of null hypothesis significance

testing. Only recently have Bayes factors been made tractable

for the practising biologist, and these are now easily calculable

http://fpr-calc.ucl.ac.uk/
http://fpr-calc.ucl.ac.uk/
https://www.estimationstats.com/%23/
https://www.estimationstats.com/%23/
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Figure 1. Standard and cumulative meta-analyses of studies investigating antibiotic prophylaxis for colon infection compared to the control of no treatment. In the
left panel, the effect size and 95% confidence interval are shown for each study, which are displayed chronologically. Risk ratios (effect size) less than 1 favour a
prophylactic; greater than 1 favours no treatment. n represents study sample size. The pooled result from all studies is shown at the bottom. Note that the studies
where the confidence interval intersects 1 (coloured blue) would be interpreted as statistically non-significant (no efficacy of the prophylaxis); otherwise (black) as
statistically significant (the prophylaxis is worth administering). Interpretation of all these studies based on the p-value alone would not provide any clarification
about the value of an antibiotic prophylaxis with treatment of colon infection, with around half the studies reporting statistical significance. The right panel rep-
resents a cumulative meta-analysis of the same studies (n represents cumulative sample size). This shows that some degree of efficacy of antibiotic prophylaxis for
treatment in colon infection could have been identified as early as 1972, and the efficacy effect size was fairly clear well before the final study. Figure (adapted) and
some caption text taken from Ioannidis & Lau [35].
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for a range of standard study designs. The Bayes factors for

many designs can be run on web-based calculators (e.g.

http://pcl.missouri.edu/bayesfactor) and are also available

as a new package for R called BayesFactor() [38].

A controversy of the Bayesian approach is the need for

you to specify your strength of belief in the effect being

studied before the experiment takes place (the prior

distribution of the alternative hypothesis) [39]. Thus, your

somewhat subjective choice of ‘prior’ influences the outcome

of the analysis. Schönbrodt et al. [40] argue that this criticism

of Bayesian statistics is often exaggerated because the influ-

ence of the prior is limited when a reasonable prior

distribution is used. You can assess the influence of the

prior with a simple sensitivity analysis whereby the analysis

is run using a bounded range of realistic prior probabilities

[41]. There is also a default prior that you can use in the

common situation when you have little pre-study evidence

for the expected effect size.

Nonetheless, undertaking Bayesian analyses is more

involved than null hypothesis significance testing, and
specifying the prior undoubtedly adds some degree of subjec-

tivity. Fortunately, there is a single, simple formula that you

can apply to convert a p-value to a form of the Bayes factor

without any other information. This simplified Bayes factor,

termed the upper bound, states the most likely it is that the

alternative hypothesis is true rather than the null hypothesis

over any reasonable prior distribution (comment by Benjamin

and Berger annexed to [9] and Goodman [42]):

Bayes factor upper bound � –1

e:p:ln(p)
:

For example, if your data generate a p-value of 0.07

(sometimes termed a ‘trend’), the Bayes factor upper bound

is 1.98 and you can conclude that the alternative hypothesis

is at most twice as likely as the null hypothesis. A p-value

of 0.01 indicates the alternative hypothesis is at most 8

times as likely as the null. Benjamin and Berger argue that

this approach is an easily-interpretable alternative to p,

which should satisfy both practitioners of Bayesian statistics

http://pcl.missouri.edu/bayesfactor
http://pcl.missouri.edu/bayesfactor
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Figure 2. A demonstration of variability in the p-value as data from a study are collected and analysed after each new addition to the sample. This can result in a
study being stopped under the mistaken belief that as soon as a significant p-value is obtained, this reflects a real effect. A computer simulates samples drawn at
random from two identical, randomly distributed populations (standard deviation ¼ 10), thus the null hypothesis is true. A Student’s t-test is conducted after five
samples are drawn from the two populations. Subsequently, each time one further sample is taken for each population the t-test is re-run. The evolution of the p-
value as sample size increases is presented in the three panels (black line), the upper panel showing the first 50 samples, the middle the first 1000, and the lower
panel showing up to 10 000 samples being drawn. The p-value varies considerably; another demonstration of its ‘fickleness’ [6]. In each panel, the red line rep-
resents the effect size (mean difference between the samples). Although the p-value should typically be high under these circumstances, reflecting a lack of evidence
against the null, when the sample size is small it can easily decrease temporarily to below 0.05 (denoted by the dashed line), suggesting that the populations from
which the samples are drawn are different. If the sampling is stopped when this happens, p will be unrepresentative of reality and return a false positive. (Note that
in this simulation, p does not tend towards 0 as the sample size becomes very large because as sample size increases the effect size tends towards 0 and thus
statistical power does not systematically increase (observed power is inversely related to p; [44])).
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and practitioners of null hypothesis significance testing

(comment by Benjamin and Berger annexed to [9]).

Schönbrodt et al. [40] make the case that the Bayes factor

can be used to inform when a study has secured a sufficient

sample size and can be halted. Effective stopping rules in

research can be invaluable for controlling time and financial

costs while increasing study replicability, and are ethically

important for certain animal studies or intrusive human

studies; the use of subjects should be minimized while ensur-

ing that the experiments are robust and reproducible

(https://www.nc3rs.org.uk/the-3rs; [43]). Arguably, stop-

ping rules should be used a lot more than they currently

are, and can be a far more effective method for targeting a

suitable sample size than power analysis. A big mistake

often made, however, is to implement the p-value in the stop-

ping rule; the study is stopped when the data thus far

collected return a statistically significant p-value. The under-

lying assumption is that increasing the sample size further

would probably decrease p further. A simple model demon-

strates this thinking to be spurious and thus that it drives

very bad practice (figure 2). For those of us basing our

study on the p-value, it is far preferable to continue a study

until a pre-determined sample size is reached that has been
decided by a priori power analysis [45]. However, this

approach is greatly influenced by the associated a priori effect

size estimate we have provided and there can be a strong

temptation to increase sample size beyond the pre-determined

number; researchers longing for a statistically significant result

can easily succumb to the temptation of collecting extra data

points when their p-value is 0.06 or 0.07 [46].

The Bayes factor is much more appropriate here. It pro-

vides evidence for the null, and with a large enough

sample the Bayes Factor will converge on 0 (the null is

true) or infinity (the alternative is true). If the Bayes Factor

of your data reaches 10 or 1/10, this almost certainly

represents the true situation and your study can stop. Alter-

natively, if your study must be stopped for logistical

reasons then the final Bayes Factor can still be interpreted,

for example a Bayes factor of 1/7 would indicate moderate

evidence for the null hypothesis. Moreover, you are entitled

to continue sampling if you feel the data are not conclusive

enough; if the results are unclear, collect more data. All

such decisions do not affect interpretation of the Bayes

Factor [40]. A final big motivation for employing the Bayes

factor over the p-value in stopping procedures is that in the

long run, the former uses a smaller sample while at the

https://www.nc3rs.org.uk/the-3rs
https://www.nc3rs.org.uk/the-3rs
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same time generating fewer interpretation errors. A general

consensus has not yet been reached about the most

suitable priors for each situation, and tractable Bayes factor

procedures have thus far only been produced for some

experimental designs. But do not let this put you off. Instead

of the Bayes factor, the Bayes factor upper bound, as

described above, can be used.
ing.org/journal/rsbl
Biol.Lett.15:20190174
5. Akaike information criterion: what is the best
understanding of the phenomenon being
studied?

If your study involves measuring an outcome variable and

multiple potential explanatory variables, then you have

many possible models you could build to explain the var-

iance in your data. Stepwise procedures of model building

often focus on p-values, by holding onto only those explana-

tory variables associated with a low p. Aside from the general

concerns about p, specific criticisms of p-value-based model

building include the inflated risk of type 1 errors [47,48].

An alternative approach to model assessment is the Akaike

information criterion (AIC), which can be easily calculated

in statistical software packages, and in R using AIC() [49].

The AIC provides you with an estimate of how close your

model is to representing full reality [50], or in other words

its predictive accuracy [51]. Couched within the principle of

simplicity and parsimony, a fundamental aspect of the AIC

is that it trades off a model’s goodness of fit against that

model’s complexity to insure against over-fitting [52].

Let’s imagine you have generated three models, returning

AICs of 443 (model 1), 445 (model 2) and 448 (model 3). Your

preferred model in terms of relative quality will be the one

that returns the minimum AIC. But you should not necess-

arily discard the other models. With the AIC calculated for

multiple models, you can easily compute the relative likeli-

hood that each of those models is the best of all presented

models given your data, i.e. the relative evidence for each

of them. For example, the preferred model will always have

a relative evidence of 1, and in the current example the

second best model, model 2, has relative evidence 0.37, and

model 3 has 0.08. Finally, you can then compute an evidence

ratio between any pair of models; following the above

example, the evidence for model 1 over model 2 is 1/

0.37 ¼ 2.7, i.e. the evidence for model 1 is 2.7-times as

strong. In this scenario, although model 1 has the absolute

lowest AIC, the evidence that model 1 rather than model 2

is the best from those generated is not strong, and with

some explanatory variables present in only one of the

models, the most suitable response could be to make your

inferences based on both models [50]. The AIC approach

encourages you to think hard about alternative models and

thus hypotheses, in contrast to p-value interpretation that

encourages rejecting the null when p is small, and supporting

the alternative hypothesis by default [53]. More broadly,

the AIC paradigm involves dropping hypotheses judged

implausible, refining remaining hypotheses and adding

new hypotheses—a scientific strategy that Burnham et al.
[50] argue promotes fast and deep learning about the

phenomenon being studied.

Although the AIC is mathematically related to the p-value

(they are different transformations of the likelihood ratio;
[29]), the former is far more flexible in the models it can com-

pare. The AIC is a strong option for choosing between

multiple models that you have generated to explain your

data, i.e. to choose what model represents your best

understanding of the phenomenon you have measured,

particularly when the observed data are complex and

poorly understood and you do not expect your models to

have particularly strong predictive power [54].

A key limitation of the AIC is that it provides a relative,

not absolute, test of model quality. It is easy to fall into the

trap of assuming that the best model is also a good model

for your data; this may be the case, or instead the best

model may have only half an eye on the variance in your

data while all other models are blind to it. Quantifying the

absolute quality of your best model(s) requires calculation

of the effect size, as discussed earlier (in the case of models,

typically R2 is suitable).
6. Conclusion
Good science generates robust data ripe for interpretation.

There are several broad approaches to the statistical analysis

of data, each interrogating the collected variables through a

distinct line of questioning. Popper [55] argued that science

is defined by the falsifying of its theories. Taking this

approach to science, p-values might be the rightful centre-

piece of your statistical analysis since they provide evidence

against the null hypothesis [10,17]. Building on this para-

digm, you can easily enhance interpretation of the p-value

by augmenting p with a prediction interval and/or an esti-

mate of the false positive risk—information about p’s

reliability. A counter argument, however, is that because

the p-value does not test the null hypothesis nor the alter-

native hypothesis you can never use it to actually falsify a

theory [56]. Converting the p-value into a Bayes factor attends

to this concern, providing relative evidence for one hypoth-

esis or the other. But many have argued that hypothesis

testing by any approach is superseded by focusing on the

effect in the data—specifically both its magnitude and accu-

racy—because your best estimate of the magnitude of the

phenomenon you are studying is ultimately what you want

to know. And if you conduct multi-variate analysis, particu-

larly when the phenomenon under study is poorly

understood, you can be well served by the AIC, which

encourages consideration of multiple hypotheses and their

gradual refinement.

It is important to emphasize that these manifold approaches

are not all mutually exclusive; for example, many would argue

that effect size estimates are an essential component of most

analyses. Indeed, Goodman et al. [57] go so far as to recommend

the use of a hybrid for decision making that requires a low p-

value coupled with an effect size above an a priori determined

minimum to be relevant/important in order to reject the null

hypothesis. p-values can also be presented alongside Bayes fac-

tors for each statistical test conducted (‘a B for every p’).

Continuing to present p-values as part of your statistical

output while diluting their interpretive power by including

other statistical approaches should ensure your submission is

not jeopardized, and indeed this approach is probably the

best way to nudge reviewers and editors towards accepting—

even encouraging—the application of alternative inferential

paradigms (and see Box 2 in [43]). Whatever your chosen
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statistical approach, it is important that this has been deter-

mined before data collection. Arming oneself with more

statistical options could risk the temptation of trying different

approaches until an exciting result is achieved; this must

be resisted.

Regardless of the statistical paradigm you employ to

investigate patterns in your data, many have recommended

that the outputs from statistical tests should always be

considered as secondary interrogations. Primarily, the argu-

ment goes, you should prioritize interpretation of graphical

plots of your data, where possible, and treat statistical ana-

lyses as supporting or confirmatory information [25,58–60].

A plot that does not appear to support the findings of your

statistical analysis should not be automatically explained

away as a demonstration that your analysis has uncovered

patterns that are deeper than can be visualized.

Finally, while I hope that this review might help readers

feel a little more informed, and confident, about some of

the additional and alternative statistical options to the

p-value, it is worth reminding ourselves of Sir Ronald Fisher’s

pertinent words from his Presidential Address to the First
Indian Statistical Congress in 1938 [61]: ‘To call in a statis-

tician after the experiment is done may be no more than

asking him to perform a post-mortem examination: he may

be able to say what the experiment died of.’ Without a

good dataset, none of the statistical tools mentioned here

will be effective. Moreover, even a good dataset represents

just a single study, and it must not be forgotten that a

single study provides limited information. Ultimately,

replication is key to refining, and having confidence in, our

understanding of the biological world.
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