C version of Royston's original FORTRAN program is located here.
/*-Algorithm AS 177 * Expected Normal Order Statistics (Exact and Approximate), * by J.P. Royston, 1982. * Applied Statistics, 31(2):161-165. * * Translation to C by James Darrell McCauley, mccauley@ecn.purdue.edu. * * The functions nscor1() and nscor2() calculate the expected values of * normal order statistics in exact or approximate form, respectively. * */ #define NSTEP 721 #define H 0.025 #include <math.h> #include <stdio.h> #include "local_proto.h" /* Local function prototypes */ static double alnfac(int j); static double correc(int i, int n); /* exact calculation of normal scores */ void nscor1(double s[], int n, int n2, double work[], int *ifault) { double ani, c, c1, d, scor; int i, j; *ifault = 3; if (n2 != n / 2) return; *ifault = 1; if (n <= 1) return; *ifault = 0; if (n > 2000) *ifault = 2; /* calculate the natural log of factorial(n) */ c1 = alnfac(n); d = c1 - log((double)n); /* accumulate ordinates for calculation of integral for rankits */ for (i = 0; i < n2; ++i) { ani = (double)n - i - 1; c = c1 - d; for (scor = 0.0, j = 0; j < NSTEP; ++j) scor += work[0 * NSTEP + j] * exp(work[1 * NSTEP + j] + work[2 * NSTEP + j] * i + work[3 * NSTEP + j] * ani + c); s[i] = scor * H; d += log((double)(i + 1.0) / ani); } return; } void init(double work[]) { double xstart = -9.0, pi2 = -0.918938533, xx; int i; xx = xstart; /* set up arrays for calculation of integral */ for (i = 0; i < NSTEP; ++i) { work[0 * NSTEP + i] = xx; work[1 * NSTEP + i] = pi2 - xx * xx * 0.5; work[2 * NSTEP + i] = log(alnorm(xx, 1)); work[3 * NSTEP + i] = log(alnorm(xx, 0)); xx = xstart + H * (i + 1.0); } return; } /*-Algorithm AS 177.2 Appl. Statist. (1982) Vol.31, No.2 * Natural logarithm of factorial for non-negative argument */ static double alnfac(int j) { static double r[7] = { 0.0, 0.0, 0.69314718056, 1.79175946923, 3.17805383035, 4.78749174278, 6.57925121101 }; double w, z; if (j == 1) return (double)1.0; else if (j <= 7) return r[j]; w = (double)j + 1; z = 1.0 / (w * w); return (w - 0.5) * log(w) - w + 0.918938522305 + (((4.0 - 3.0 * z) * z - 14.0) * z + 420.0) / (5040.0 * w); } /*-Algorithm AS 177.3 Appl. Statist. (1982) Vol.31, No.2 * Approximation for Rankits */ void nscor2(double s[], int n, int n2, int *ifault) { static double eps[4] = { 0.419885, 0.450536, 0.456936, 0.468488 }; static double dl1[4] = { 0.112063, 0.121770, 0.239299, 0.215159 }; static double dl2[4] = { 0.080122, 0.111348, -0.211867, -0.115049 }; static double gam[4] = { 0.474798, 0.469051, 0.208597, 0.259784 }; static double lam[4] = { 0.282765, 0.304856, 0.407708, 0.414093 }; static double bb = -0.283833, d = -0.106136, b1 = 0.5641896; double e1, e2, l1; int i, k; *ifault = 3; if (n2 != n / 2) return; *ifault = 1; if (n <= 1) return; *ifault = 0; if (n > 2000) *ifault = 2; s[0] = b1; if (n == 2) return; /* calculate normal areas for 3 largest rankits */ k = (n2 < 3) ? n2 : 3; for (i = 0; i < k; ++i) { e1 = (1.0 + i - eps[i]) / (n + gam[i]); e2 = pow(e1, lam[i]); s[i] = e1 + e2 * (dl1[i] + e2 * dl2[i]) / n - correc(1 + i, n); } if (n2 != k) { /* calculate normal areas for remaining rankits */ for (i = 3; i < n2; ++i) { l1 = lam[3] + bb / (1.0 + i + d); e1 = (1.0 + i - eps[3]) / (n + gam[3]); e2 = pow(e1, l1); s[i] = e1 + e2 * (dl1[3] + e2 * dl2[3]) / n - correc(1 + i, n); } } /* convert normal tail areas to normal deviates */ for (i = 0; i < n2; ++i) s[i] = -ppnd16(s[i]); return; } /*-Algorithm AS 177.4 Appl. Statist. (1982) Vol.31, No.2 * Calculates correction for tail area of noraml distribution * corresponding to ith largest rankit in sample size n. */ static double correc(int i, int n) { static double c1[7] = { 9.5, 28.7, 1.9, 0.0, -7.0, -6.2, -1.6 }; static double c2[7] = { -6.195e3, -9.569e3, -6.728e3, -17.614e3, -8.278e3, -3.570e3, 1.075e3 }; static double c3[7] = { 9.338e4, 1.7516e5, 4.1040e5, 2.157e6, 2.376e6, 2.065e6, 2.065e6 }; static double mic = 1.0e-6, c14 = 1.9e-5; double an; if (i * n == 4) return c14; if (i < 1 || i > 7) return 0.0; else if (i != 4 && n > 20) return 0.0; else if (i == 4 && n > 40) return 0.0; /* else */ an = 1.0 / (double)(n * n); return (c1[i - 1] + an * (c2[i - 1] + an * c3[i - 1])) * mic; }