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1 Introduction

Coefficient alpha, as introduced in Cronbach (1951), is a frequently used statis-
tic in empirical research involving tests with various items. Under the assump-
tion that the items are parallel, that is, the measurements have identical true
scores and uncorrelated errors having equal variances, see Lord and Novick
(1968), coeflicient alpha can be interpreted as an estimator of the reliability of
the test, see Cortina (1993). As a result of the well-known Spearman-Brown
formula, discussed below, the reliability of the test depends on the true un-
derlying correlation across items and also on the number of items. This com-
plicates a comparison of estimated values of coefficient alpha across multiple

studies or across replications.

In this paper we argue that a simple solution to this complication is to provide
standard errors around estimated differences in values of coefficient alpha.
As we will demonstrate below, these standard errors automatically capture
differences across the number of items. A study related to ours is Iacobucci
and Duhachek (2003), but we follow an alternative route towards formulating
statistical tests. We will show that this route delivers more accurate inference

in practice.

The outline of this paper is as follows. In section 2, we discuss some notation,
the coefficient alpha, and its asymptotic distribution under linearly related
measurements. In section 3, we show how confidence bounds can be derived
for one single alpha. In section 4, we focus on comparing two alpha values cor-
responding to different studies. In section 5, we conclude with a few confidence

intervals for typical practical situations. Proofs are relegated to an appendix.



As a courtesy to the reader, we also provide the relevant computer code in R.

2 Hypothesis and tests

In this section we first outline some notation around coefficient alpha. Next,

we discuss asymptotic results obtained elsewhere in the literature.
2.1 Alpha

In classical test theory, see for example Lord and Novick (1968), Nunnally
and Bernstein (1994), the objective is to approximate a latent - that is, unob-
served - random variable, the true score T', by means of an observable random
variable, the test score Y. It is generally agreed that the quality of the test
score Y as a measurement device for the true score 7T is indicated by the re-
liability p2.-, where pry is the population correlation between T and Y. As
the true score T is latent, the population correlation coefficient pry can not

be estimated in the usual way, and alternative methods are required.

Typically, the test score Y is obtained by summing up a number [k, say] of
item scores X;, each measuring the 7" to some extent. The dependence between

these item scores yields information with respect to the reliability p& .

Cronbach’s alpha, introduced in Cronbach (1951), is defined as
k tr®
a_k—1<1_LTtI’L>’ (1)

where @ is the covariance matrix of the item scores, and ¢ is a p-vector of ones.

When the test is administered to a random sample of subjects, Cronbach’s



alpha is estimated by
k trS
y= [ 2
T ra ( LTSL> ’ 2)

where S is the unbiased estimator of the item score covariance matrix ®.

The estimator & is often encountered in applied statistical work which involves
latent random variables, for example, the evaluation of the quality of a ques-
tionnaire as a measuring device for some latent trait. However, seldom the
distinction is made between the reliability coefficient o defined by (1) and its
estimator & defined by (2). In this paper we therefore examine what & says
about «, and hence about p. We shall see that this turns out to be useful when

comparing various values of & obtained in different studies.

In this paper we focus on the special situation where the items are parallel, that
is, the items have identical true scores and uncorrelated measurement errors.

In this case, the item score covariance matrix ® has compound symmetry,

that is,
Lp-p
p 1
® =g’ (3)
p
pr-opl

Observe that p is the population correlation between two different item scores
X, and X;. Throughout this paper we shall assume that p is non-negative,

which seems useful given the very purpose of the items of a test.



When the items are parallel, coefficient alpha coincides with the general Spearman-

Brown formula, that is,

kp

L+ (k- 1)p’ 4)

o=

see Lord and Novick (1968, page 90) and Winer (1991). As noted before, the
Spearman-Brown formula implies that the reliability of the test depends on
the true underlying correlation across items, and on the number of items.

Tacobucci and Duhachek (2003) show that o approximately satisfies

a = —0.022 + 0.023k + 2.055p — 1.207 (p)?,

but, of course, (4) gives an exact description of the dependence of « on k and

p.

2.2  Asymptotic results

Recently, Iacobucci and Duhachek (2003) derived an asymptotic confidence
interval for o by using that, as n tends to infinity, /n (& — «) tends in
distribution to a normal random variable with expectation 0 and variance
(k/(k — 1))%w, see van Zyl et al. (2000, Equation (21)). Here n denotes the

number of subjects to which the test is administered, and w is given by

2
(T3

w= {(LTtIn) (trtI>2 + tr2tI>) — 2(tr<I>)(LT<I>2L)2} :
see van Zyl et al. (2000, Equation (20)). If the items are parallel, then w

simplifies to

_2(k—1) 1-p \°_ 2k-1) 2
ST (1+<k—1>p>>‘7(1_°‘)’




see van Zyl et al. (2000, Equation (22)). Hence, if the items are parallel, then,
as n tends to infinity, \/n (& — &) tends in distribution to a normal random
variable with expectation zero and variance (2k/(k —1))(1 — «)?), see van Zyl

et al. (2000, Equation (22)).

Now, observe that the asymptotic variance of \/n (& — «) depends on «. This
means that /n (& — «) does not have a stable variance. Generally, this may be
viewed as a shortcoming for statistics from which confidence intervals are to
be derived. Indeed, and not mentioned explicitly, the asymptotic variance @) =
(2k/(k—1))(1 — a)? is estimated by Q = (2k/(k—1))(1—&)? in Tacobucci and
Duhachek (2003). It is well-known that using the estimated asymptotic vari-
ance may well yield anti-conservative confidence intervals. Anti-conservative
confidence intervals have a nominal coverage less than the required coverage -,
and hence may falsely give the impression that « is estimated with sufficient

accuracy.

However, we may obtain a “stable” confidence interval by using other results

in van Zyl et al. (2000), and this is what we advocate in this paper.

If the item scores Xi, Xs,..., X} are parallel, and have a joint multivariate

normal distribution, then the random variable

1-d 1-a
l—a 1-_L2_ ©)
1+(k—1)p

has an F' distribution with n(k — 1) degrees of freedom in the nominator, and
n degrees of freedom in the denominator, see Kristof (1963), Feldt (1965) and
van Zyl et al. (2000, Equation (7)). Hence, it is a pivotal quantity for «, see
Mood et al. (1974, Section 2.3). The equality in (5) follows from the general

Spearman-Brown formula (4). Since p > 0 implies (1 — p)/(1 4+ (k= 1)p) > 0,



we have 1 — & > 0 due to the assumed non-negativeness of p.

The F' distribution with n(k — 1) and n degrees of freedom has expectation

n/(n — 2) and variance

2n2(nk — 2) 2 ( n )Qk—2/n

nk—1)(n—22mn—-4 n—-4\n-2) k-1

see Mood et al. (1974, p. 248), and tends to a normal distribution with expec-
tation 1 and asymptotic variance 2k/n(k — 1). Hence, the fact that (5) has an
F-distribution with n(k—1) and n degrees of freedom implies that /n (& — «)
tends in distribution to a normal random variable with expectation zero and

variance (2k/(k —1))(1 — )?).

Moreover, it follows by applying the z-transformation of Fisher (1967, p. 219)

to the random variable (5) that

@ (% In(1 — &) — Ln(1 — a)) (6)

tends to a standard normal random variable Z in distribution, as n tends to
infinity, see van Zyl et al. (2000, Equation (14)). As its asympotic distribu-
tion does not depend on «, (6) is an asymptotic pivotal quantity for «. The
expression in (6) suggests that for larger n, the confidence intervals become
smaller. However, for fixed values of the n and &, the length of the interval
tends to a non-zero limit as £ becomes large. In section 5 we will examine to

what extent this holds true.



3 Confidence intervals for Cronbach’s alpha

Let 0 < v < 1 be a confidence level, where a common choice for 7 is 95%. Let

z1, and zg be values such that

P(Z<a2)=P(Z<z)=3%(1-7), (7)

with Z denoting a standard normal random variable. The symmetry of the
standard normal distribution around zero implies that z;, = —zg. For v = 0.95,

we have z;, = —1.96 and zy = 1.96.

We start out by presenting the asymptotic 1007%-confidence interval for «
described in Tacobucci and Duhachek (2003), to which we shall refer as the

ID interval. This interval is based on the asymptotic normality of \/n (& — ).

Define
i) — 4~ 2p(1— &) n(%n
(D) _ 4 _ 21— a) n(lff y
Then,
Jim P (agD) <a< aRID)) =7, (8)
(D) . (ID)

that is, the interval with endpoints «; ~ ” and «,  / is an asymptotic 100y%-
confidence interval for «. Note that this confidence interval is symmetric

around &.

Alternatively, which is what we prefer for earlier mentioned reasons, we may

base an asymptotic confidence interval on the asymptotic normality of the



random variable (6), which has stable asymptotic variance. Define

(1— &) exp{—zL n(i}

as-f)zl—

k—1)
o) =1-(1—@)exp {—zR n(k27]i1)} :
Then,
Jim P (o}

(9)

(2)

see Appendix A for a proof. That is, the interval with endpoints «; ' and ag)
is an asymptotic y-confidence interval for cv. Note that this confidence interval

is not symmetric around &, and that it is skewed to the left.

If in addition the item scores X, X5,

., X have a joint multivariate normal
distribution, then it is even possible to construct an exact y-confidence interval

for a.. The exact confidence interval is based on the observation that

(10)
is a pivotal quantity for «, which follows an F-distribution with n(k — 1)
degrees of freedom in the nominator, and n degrees of freedom in the denom-

inator. Let F7, and F'r be values such that

P(F<F)=P(F<Fr)=3(1-7),

(11)
and define
F 1-R F 1-R
ag)zl— F a%)zl— Fr



P (aS—JF) <a<Lap ) =7, (12)

see Appendix A for a proof. That is, the interval with endpoints aE—JF) and ozSRF)

is an exact y-confidence interval for a. In appendix B we provide the relevant

computer code in R, as a courtesy to the reader.

4 Reliability comparisons

In this section we present confidence intervals which allow to assess whether

two independently estimated values of « are significantly different.

The setup is as follows. We consider two independent studies. The first study
reports an estimated Cronbach’s alpha &; for a scale with k; parallel items
which has been administered to a random sample of n; subjects, while the
second study reports an estimated Cronbach’s alpha é&y for a scale with ks

parallel items which has been administered to a random sample of ny subjects.

As \/n; (& — o4) tends in distribution to a normal random variable with ex-
pectation zero and variance (2k;/(k; — 1))(1 — ¢;)?, we obtain that the distri-
bution of (& — é&o) — (ey — ap) approximately follows a normal distribution
with expectation zero and variance

2k,

77@(/52 — 1) (1 — a2)2.

2%, ,
— (1 —
T (kl — 1)( al) +

Note that this variance is not stable, as it depends on both «; and as. Hence,

10



we are now forced to use the estimated variance

2k,

2kq
—(1
Tbl(kl - 1)(

ol —1) (1 — éip)?

— &)’ +

instead. That is, we extend the approach in Iacobucci and Duhachek (2003).

Let 0 < v < 1 be a confidence level, and let 27, and zr be as before. Define

5 = (61 — ) + zL\/#kl_l)(l — &)+ %(1 &),
5n = (61 — o) + zR\/%(l — &)+ %(1 _ an).
Then,
lim  P(0, <oy —ay < dg) =7, (13)

min(ni,n2)—00

That is, the interval with endpoints §; and 0z is an asymptotic 100v%-
confidence interval for a;; — as. Note that this confidence interval is symmetric

around &; — éo.
The fact that the random variable In (}:—33) has an F-distribution with n;(k; —
1) and n; degrees of freedom allows us to derive an exact confidence interval

for In (}:—3;) In this respect, observe that the random variable

1-4 1 1-4 1-4
Geln— N —ln( 0‘1) R el R (14)
1—C¥2 1—C¥2 1—C¥1 1—C¥2

is the difference between the logarithms of two independent F'-distributed

random variables. with n;(k; — 1) and n; degrees of freedom.

Relevant percentage points for the distribution of G are given in Tables 1, 2

11



and 3. Let G, and Gg be lower and upper percentage points such that

P(G<GL)=P(G>Gr)=%(1-17), (15)

and define

77, = In (1—a1> — Gp,

1— e

TR=ln<1_a1>—GL

1— o

Then,

1 —
lim P (G 1( )<G)=, 16
nl_glo (L<n1—a2 L Y ( )
That is, the interval with endpoints 77, and 7z is an exact 100v%-confidence

interval for In (ﬂ) Observe that

l—ao

(1'— al)
In R — Qa.
1-— (6%}

In particular, we have

1—
ln( a1)=0©a1—0@=0¢)a1=a2.
1-— (6%)

Thus, we may interpret the absence of the value zero in the exact 1007%

11—y

confidence interval for In (1_a2

) as a rejection of the null hypothesis Hy : o1 =

o using a two-sided test with significance level 1 — 7.

As the random variable In (}:—31) tends in distribution to a normal random
variable with expectation zero and variance 2k;/(k; — 1), we obtain that G

tends in distribution to a normal random variable with expectation zero and

12



variance

2k, n 2k
Tbl(kl — 1) n2(k2 — 1),

and hence

2k, 2k,
GL - ZL\/’I’Ll(kl - 1) + n2(k2 — 1),

2k, 2ko
GR - zR\/nl(kl - 1) + n2(k2 — 1)

In other words, the interval with endpoints

In 1—& 4 2k, n 2k
1-— dg L Tbl(kl — 1) n2(k2 — 1),
1—& \/ 2k, 2k
In — |+ z +
(1—CVQ> R nl(kl—l) n2(k2_1)

is an asymptotic 1007%-confidence interval for In (}:—32)

5 Illustrations

In Tables 4 to 7 we give some 95% confidence intervals for a few values of
&, n and k. As predicted, these intervals get narrower when n increases. So,
the more subjects involved in a study, the more likely it becomes that one
can significantly distinguish estimates alpha values across empirical studies.

k-1

Next, with increasing values of k, these intervals also narrow down, but as *;

approaches 1 for large k, this narrowing becomes less relevant.

The simulated nominal coverages of the intervals are explored in Tables 4

to 7. The ID interval is anti-conservative, especially for £k = 2 and n = 50.

13



The proposed asymptotic interval is less anti-conservative. For the proposed
exact interval, the simulated nominal coverage is approximately equal to the
confidence level v = 0.95. This is confirmed by simulated nominal coverage
levels reported in Tables 8 to 11. For large values of k£ and n, the differences

across methods get smaller.

Figures 1 to 3 shed some additional interesting light on the behavior of the
confidence intervals for a.. In these figures we simulated estimated values of «
for a given “true” value of «, say oy, and recorded the nominal coverage of
the 95% confidence intervals for various other values of «. Ideally, the nominal
coverage of a 95% confidence interval for « should be exactly 0.9500 for a = «y
and should be less than 0.95 (but prefferably as small as possible) for « # ay.
The plots confirm the anti-conservatism of the ID interval, but also reveal
that its nominal coverage exceeds 0.9500 for values of « slightly larger than
«p. In this sense, the ID interval is biased. Our proposed intervals show better
behavior. With respect to the exact interval, the asymptotic proposed interval
is less sensitive than values of « larger than o, and more sensitive for values
of o less than «q. This difference in sensitivity is hardly noticeable for £ = 2,
but becomes larger as k increases. The difference in nominal coverage between
the ID interval and the proposed exact interval becomes smaller as k increases.
Figures constructed for other “true” values o show similar behavior of the

three intervals, but are not reproduced in this paper to save space.

In Tables 12, 13 and 14 we list 95% confidence bounds for 6 = a; — ay and
T =1In (}:—3?), given that the estimated Cronbach’s coefficients &; and &,

take the values 0.7 and 0.8. The intervals get narrower when the sample size

ny and ng increase. So, the more subjects involved in a study, the more likely

14



it becomes that one can significantly distinguish estimated alpha values across
empirical studies. The intervals also narrow down with increasing values of &;

and ko, but this narrowing becomes less relevant for large values of k; and ks.

Figure 4 is the two-sample counterpart to Figures 1 to 3, and shows contour
plots of simulated nominal coverage of 95% asymptotic confidence bounds
for reliability comparisons. We simulated estimated values of «; and «y for
given “true” values of oy and vy, say o o and «y, and recorded the nominal
coverage of the 95% confidence intervals for various other values of «; and as.
The 0.96 contour line only emerges in the plots for the asymptotic confidence
interval for 6 = a; — ay, confirming that this interval is indeed conservative.
However, the interval does not seem to suffer from bias, although it is related
to the ID interval. As their contour lines are narrower, the asymptotic and
exact confidence interval for 7 = log(1 — ap) — log(1l — ;) are more sensitive
than the asymptotic confidence interval for § for larger values of o; and as.
Figures constructed for other “true” values o o and ay ¢ show similar behavior

of the three intervals, but are not reproduced in this paper.

Finally, a remark for practical use. The empirical relevance of these confidence
intervals for comparing practical studies can be illustrated by the following
example. Suppose study A has relied on 100 subjects, used a test with 4 items
and reports an estimated alpha of 0.7. Study B, addressing the same topic,
also used 100 (but different) subjects, but used a test with 6 items, reports an
alpha of 0.8. Both confidence intervals for 7 = In (}:—3?) in Table 13 do not
contain the value zero, indicating that there is a significant difference between
the two coefficients. In contrast, the asymptotic confidence for § = o —ap does

contain the value zero, which means that no significant difference between o

15



and as was found.

16



References

Cortina, J. M., 1993. What is coefficient alpha? an examination of theory and
applications. Journal of Applied Psychology 78, 98-104.

Cribari-Neto, F., Zarkos, S. G., 1999. R: Yet another econometric program-
ming environment. Journal of Applied Econometrics 14, 319-329.
URL http://www.interscience.wiley.com/jpages/0883-7252/

Cronbach, L., 1951. Coefficient alpha and the internal structure of tests. Psy-
chometrika 16, 297-334.

Feldt, L., 1965. The approximate sampling distribution of Kuder-Richardson
reliability coefficient twenty. Psychometrika 30, 357-370.

Fisher, R. A., 1967. Statistical methods for research workers, 13th Edition.
Biological monographs and manuals. Oliver and Boyd, Edinburgh.

lacobucci, D., Duhachek, A., 2003. Advancing alpha: measuring reliability
with confidence. Journal of Consumer Psychology forthcoming.

Ihaka, R., Gentleman, R., 1996. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics 5 (3), 299-314.

Kristof, W., 1963. The statistical theory of stepped-up reliability when a test
has been divided into several equivalent parts. Psychometrika 28, 221-238.

Lord, F. M., Novick, M. R., 1968. Statististical theories of mental test scores.
With contributions by Allan Birnbaum. Addison-Wesley, Reading, MA.

Mood, A. M., Graybill, F. A., Boes, D. C., 1974. Introduction to the theory
of statistics, 3rd Edition. McGraw-Hill, Auckland.

Nunnally, J. C., Bernstein, I. H., 1994. Psychometric Theory, 3rd edition.
McGraw-Hill, New York.

van Zyl, J. M., Neudecker, H., Nel, D., September 2000. On the distribution

of the maximum likelihood estimator of cronbach’s alpha. Psychometrika

17



65 (3), 271-280.
Winer, B., 1991. Statistical principles in experimental design. McGraw-Hill,

New York.

18



Appendix A: Proofs

Proof of Equation (9) The convergence in distribution of the random vari-

able (6) to Z implies

lim P (z, < Z(e) < 2r) =7, (17)
where
Z(a) = ”(’“T;l) (In(1 — &) —In(1 — @))

is a [random)] increasing function of . The inverse Z'(2) of this function is

given by
Z2) =1— (1—@&)exp {—z,/2p/n(k - 1)} .

Since Z~!(2) is increasing, (17) yields

lim P (27" (21) < 27" (Z()) < 27" (28)) = 7.

n—0o0

Observing that Z! (z1) = o/, Z71 (Z(a)) = « and Z7 (25) = &\? con-

cludes the proof of Equation (9). O

Proof of Equation (12) We start by observing that (4) implies

1—p

_ TP g
1+ (k—1)p “

As a consequence of Equation (5), we may write

lim P (F, < F(a) < Fg) =7, (18)

n—0o0

19



is a [random] increasing function of . The inverse F'~'(f) of this function is

given by

Since F'~'(f) is increasing function of f, (18) yields

P(F(F) < F7' (F() < ' (Fg)) = 7.

By observing that F~! (F1) = o\, F~1 (F(a)) = o and F~! (Fg) = o,

Equation (12) readily follows. O

20



Appendix B: R code

R, see Thaka and Gentleman (1996) and see also Cribari-Neto and Zarkos
(1999), is a language and environment for statistical computing and graphics.
It is a GNU project which is similar to the S language and environment which
was developed at Bell Laboratories (formerly AT&T, now Lucent Technolo-
gies) by John Chambers and colleagues. R can be considered as a different
implementation of S. There are some important differences, but much code

written for S runs unaltered under R. A Web based interface to R is available.

(ID)

The function alpha.IDci computes the lower bound «; and upper bound
(ID)

ay ' of the ID confidence interval for Cronbach’s coefficient «, see (9). The

arguments are &, k, n and 7.

1 alpha.IDci <- function(R,nitem,nsample,clevel) {
2 pcrit <- 0.5%(1l-clevel)

3 zcritl <- gnorm(pcrit,lower.tail=TRUE)

4+ zcritr <- gnorm(pcrit,lower.tail=FALSE)

5 w <- sqrt(2*nitem/(nsamplex(nitem-1)))

6 IDcil <- R-zcritr*(1-R)*w

7 IDcir <- R-zcritl*(1-R)x*w

s list(lower=IDcil,upper=IDcir)

o }

The function alpha.aci computes the lower bound ozS-f) and upper bound ag)
of the proposed asymptotic confidence interval for Cronbach’s coefficient «,

see (9). The arguments are &, k, n and 7.

1 alpha.aci <- function(R,nitem,nsample,clevel) {

21



2 pcrit <- 0.5*%(1l-clevel)

3 zcritl <- gnorm(pcrit,lower.tail=TRUE)
4+ zcritr <- gnorm(pcrit,lower.tail=FALSE)
5 W <- sqrt(2*nitem/(nsample*(nitem-1)))
6 acil <- 1-(1-R)*exp(zcritr*w)

7 acir <- 1-(1-R)*exp(zcritl#*w)

s list(lower=acil,upper=acir)

o }

The function alpha.xci computes the lower bound aS:F) and upper bound ag)

of the proposed exact confidence interval for Cronbach’s coefficient «, see (12).

The arguments are &, k, n and ~.

1 alpha.xci <- function(R,nitem,nsample,clevel) {
2 pcrit <- 0.5*%(1l-clevel)

3 dfl <- nsample*(nitem-1)

4 df2 <- nsample

5 fcritl <- qf(pcrit,dfl,df2,lower.tail=TRUE)

6 fcritr <- gf(pcrit,dfl,df2,lower.tail=FALSE)

7 xcil <= 1-((1-R)/fcritl)

g xcir <- 1-((1-R)/fcritr)

o list(lower=xcil,upper=xcir)

10 }

The function delta.aci computes the lower bound 47 and upper bound dg
of the asymptotic confidence interval for the difference § = a7 — ay of two

Cronbach’s coefficients, see (13). The arguments are &, kq, n1, Ga, ko, 1o and

.

22



10

11

12

-

10

11

12

delta.aci <- function(R1,niteml,nsamplel,R2,nitem2,nsample2,clevel)

perit <- 0.5*%(1-clevel)

zcritl <- gnorm(pcrit,lower.tail=TRUE)

zcritr <- gnorm(pcrit,lower.tail=FALSE)

wwl <- 2*niteml/(nsamplel*(niteml-1))

ww2 <- 2*nitem2/(nsample2*(nitem2-1))

w <- sqrt(wwl*(1-R1)*(1-R1)+ww2*(1-R2)*(1-R2))
D <- R1-R2

acil <- D-zcritr*w

acir <- D-zcritlx*w

list(lower=acil,upper=acir)

}

The function tau.aci computes the lower bound 77, and upper bound 73 of

the asymptotic confidence interval for 7 = log(1 — az) — log(1 — a4), see (16).

The arguments are &1, ki, n1, &g, ko, N2 and .

t

}

au.aci <- function(R1,niteml,nsamplel,R2,nitem2,nsample2,clevel) {

pcrit <- 0.5%(1-clevel)

zcritl <- gnorm(pcrit,lower.tail=TRUE)
zcritr <- gnorm(pcrit,lower.tail=FALSE)
wwl <- 2*niteml/(nsamplel*(niteml-1))
ww2 <- 2*nitem2/(nsample2*(nitem2-1))
w <- sqrt(wwl+ww2)

G <- log((1-R2)/(1-R1))

acil <- G-zcritr*w

acir <- G-zcritl*w

list(lower=acil,upper=acir)
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The function tau.xci computes the lower bound 77, and upper bound 73 of
the exact confidence interval for 7 = log(1 — ag) — log(1l — @), see (16). The

arguments are &y, ki, ny, Go, ko, no and 7.

1 tau.xci <- function(Rl,niteml,nsamplel,R2,nitem2,nsample2,clevel,m) {
2 pcrit <- 0.5*%(1l-clevel)

3 qcrit <- 1-pcrit

4+ g8im <- sort(G.random(m,nitem2,nsample2,niteml,nsamplel))

5 Geritl <- 0.5*%(sim[floor (m*pcrit)]+sim[ceiling(m*pcrit)])

6 Geritr <- 0.5*(sim[floor(m*qcrit)]+sim[ceiling(m*qcrit)])

7 G <- log((1-R2)/(1-R1))

s xcil <- Gecritr-G

9 xcir <- Gcritl-G

10 list(lower=xcil,upper=xcir)

11}

The function alphah.random uses the representation (5) to generate a vector

of m random values of &. The arguments are m, «, k and n.

1 alphah.random <- function(m,alpha,nitem,nsample) {
2 dfl <- nsamplex(nitem-1)

3 df2 <- nsample

4+ 1-(1-alpha)*rf(m,df1,df2)

5

The function G.random uses the representation (14) to generate a vector of m

random values of G. The arguments are m, k1, ni, ko and ns.

1 G.random <- function(m,niteml,nsamplel,nitem2,nsample2) {

2 dfll <- nsamplel*(niteml-1)
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df12 <- nsamplel
df21 <- nsample2+*(nitem2-1)
df22 <- nsample2

log(rf(m,df11,df12))-log(rf(m,df21,d£22))
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Table 1

Percentage points of G, for &y = 2 and n; = 100.

v =0.95 v =10.95 v =0.95

ky  mo G, Gg G, Gg G.  Gg
2 50 | -0.5748 0.5737 | -0.6856 0.6841 | -0.9018 0.9021
100 | -0.4686 0.4669 | -0.5580 0.5565 | -0.7337 0.7330
200 | -0.4041 0.4042 | -0.4823 0.4822 | -0.6345 0.6367
4 50 |-0.4881 0.5234 | -0.5828 0.6241 | -0.7656 0.8207
100 | -0.4180 0.4349 | -0.4991 0.5187 | -0.6573 0.6823
200 | -0.3779 0.3853 | -0.4506 0.4591 | -0.5928 0.6046

6 50 | -0.4701 0.5120 | -0.5613 0.6101 | -0.7389 0.8032
100 | -0.4078 0.4289 | -0.4868 0.5109 | -0.6420 0.6700
200 | -0.3723 0.3812 | -0.4441 0.4545 | -0.5855 0.5989
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Table 2

Percentage points of G, for &y = 4 and n; = 100.

v =0.95 v =10.95 v =0.95

ky  mo G, Gg G, Gg G.  Gg
2 50 | -0.5487 0.5332 | -0.6533 0.6381 | -0.8589 0.8422
100 | -0.4358 0.4185 | -0.5190 0.5004 | -0.6818 0.6594
200 | -0.3653 0.3477 | -0.4357 0.4146 | -0.5733 0.5444
4 50 |-04577 0.4790 | -0.5451 0.5724 | -0.7160 0.7537
100 | -0.3812 0.3809 | -0.4546 0.4550 | -0.5983 0.5985
200 | -0.3353 0.3248 | -0.3998 0.3868 | -0.5264 0.5074

6 50 | -0.4380 0.4675 | -0.5211 0.5573 | -0.6853 0.7376
100 | -0.3703 0.3747 | -0.4415 0.4462 | -0.5808 0.5865
200 | -0.3290 0.3191 | -0.3930 0.3802 | -0.5175 0.5008
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Table 3

Percentage points of G, for &y = 6 and n; = 100.

v =0.95 v =10.95 v =0.95

ky  mo G, Gg G, Gg G.  Gg
2 50 | -0.5443 0.5249 | -0.6492 0.6279 | -0.8562 0.8297
100 | -0.4281 0.4087 | -0.5095 0.4875 | -0.6684 0.6408
200 | -0.3572 0.3366 | -0.4257 0.4010 | -0.5610 0.5265
4 50 |-0.4521 0.4708 | -0.5385 0.5617 | -0.7060 0.7414
100 | -0.3732 0.3709 | -0.4442 0.4414 | -0.5833 0.5821
200 | -0.3259 0.3126 | -0.3888 0.3727 | -0.5128 0.4887

6 50 | -0.4323 0.4575 | -0.5148 0.5467 | -0.6737 0.7229
100 | -0.3623 0.3625 | -0.4319 0.4318 | -0.5683 0.5705
200 | -0.3191 0.3073 | -0.3811 0.3666 | -0.5025 0.4832
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Table 4
95% Confidence bounds for Cronbach’s coefficient «, given that its estimator & takes

the value 0.6

D Proposed Proposed

Asymptotic bounds Asymptotic bounds  Exact bounds

n k Lower Upper Lower Upper Lower Upper

50 2 0.3783 0.8217 0.3037 0.7702 0.2992 0.7717

4 0.4189 0.7811 0.3710 0.7456 0.3848 0.7532

6 0.4282 0.7718 0.3855 0.7396 0.4022 0.7487

100 2 0.4432 0.7568 0.4080 0.7297 0.4067 0.7303

4 0.4720 0.7280 0.4491 0.7096 0.4555 0.7137

6 0.4785 0.7215 0.4581 0.7047 0.4658 0.7097

200 2 0.4891 0.7109 0.4722 0.6968 0.4718 0.6971

4 0.5095 0.6905 0.4984 0.6810 0.5014 0.6832

6 0.5141 0.6859 0.5042 0.6773 0.5078 0.6800
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Table 5
95% Confidence bounds for Cronbach’s coefficient «, given that its estimator & takes

the value 0.7

D Proposed Proposed

Asymptotic bounds Asymptotic bounds  Exact bounds

n k Lower Upper Lower Upper Lower Upper

50 2 0.5337 0.8663 0.4778 0.8277 0.4744 0.8288

4 0.5642 0.8358 0.5283 0.8092 0.5386 0.8149

6 0.5712 0.8288 0.5391 0.8047 0.5516 0.8115

100 2 0.5824 0.8176 0.5560 0.7973 0.5550 0.7977

4 0.6040 0.7960 0.5868 0.7822 0.5916 0.7853

6 0.6089 0.7911 0.5936 0.7786 0.5993 0.7823

200 2 0.6168 0.7832 0.6042 0.7726  0.6039 0.7728

4 0.6321 0.7679 0.6238 0.7608 0.6261 0.7624

6 0.6356 0.7644 0.6282 0.7580 0.6309 0.7600
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Table 6
95% Confidence bounds for Cronbach’s coefficient «, given that its estimator & takes

the value 0.8

D Proposed Proposed

Asymptotic bounds Asymptotic bounds  Exact bounds

n k Lower Upper Lower Upper Lower Upper

50 2 0.6891 0.9109 0.6518 0.8851 0.6496 0.8858

4 0.7095 0.8905 0.6855 0.8728 0.6924 0.8766

6 0.7141 0.8859 0.6927 0.8698 0.7011 0.8744

100 2 0.7216 0.8784 0.7040 0.8649 0.7033 0.8652

4 0.7360 0.8640 0.7246 0.8548 0.7277 0.8569

6 0.7393 0.8607 0.7290 0.8524 0.7329 0.8549

200 2 0.7446 0.8554 0.7361 0.8484 0.7359 0.8485

4 0.7547 0.8453 0.7492 0.8405 0.7507 0.8416

6 0.7571 0.8429 0.7521 0.8386 0.7539 0.8400
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Table 7
95% Confidence bounds for Cronbach’s coefficient «, given that its estimator & takes

the value 0.9

D Proposed Proposed

Asymptotic bounds Asymptotic bounds  Exact bounds

n k Lower Upper Lower Upper Lower Upper

50 2 0.8446 0.9554 0.8259 0.9426 0.8248 0.9429

4 0.8547 0.9453 0.8428 0.9364 0.8462 0.9383

6 0.8571 0.9429 0.8464 0.9349 0.8505 0.9372

100 2 0.8608 0.9392 0.8520 0.9324 0.8517 0.9326

4 0.8680 0.9320 0.8623 0.9274 0.8639 0.9284

6 0.8696 0.9304 0.8645 0.9262 0.8664 0.9274

200 2 0.8723 0.9277 0.8681 0.9242 0.8680 0.9243

4 0.8774 0.9226 0.8746 0.9203 0.8754 0.9208

6 0.8785 0.9215 0.8761 0.9193 0.8770 0.9200
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Table 8
Simulated nominal coverage of confidence bounds for Cronbach’s coefficient, for

a = 0.6, vy =0.95 and m = 1000000

Proposed  Proposed

n k 1D asymptotic exact

50 2 0.936090 0.947198  0.949839

4 0.947737 0.947275 0.949793

6 0.949625 0.946946  0.950016

100 2 0.943031 0.948515  0.949760

4 0.948857 0.948626  0.949817

6 0.949864 0.948383  0.949853

200 2 0.946771 0.949647 0.950294

4 0.949407 0.949021 0.949674

6 0.949877 0.949202  0.949880
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Table 9
Simulated nominal coverage of confidence bounds for Cronbach’s coefficient, for

a=0.7, vy =0.95 and m = 1000000

Proposed  Proposed

n k 1D asymptotic exact

50 2 0.936591 0.947551 0.950162

4 0.947779 0.947558  0.950036

6 0.949616 0.947638 0.950170

100 2 0.943381 0.948784  0.950040

4 0.948878 0.948872  0.949910

6 0.949929 0.948603 0.950136

200 2 0.946555 0.949397  0.950050

4 0.949627 0.949437 0.950118

6 0.949689 0.949071  0.949703
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Table 10
Simulated nominal coverage of confidence bounds for Cronbach’s coefficient, for

a = 0.8, vy =0.95 and m = 1000000

Proposed  Proposed

n k 1D asymptotic exact

50 2 0.936454 0.947304 0.949892

4 0.947517 0.947521 0.949816

6 0.950001 0.947494  0.950279

100 2 0.943408 0.948710  0.950105

4 0.948548 0.948351  0.949498

6 0.949769 0.948179  0.949617

200 2 0.946416 0.949229  0.949938

4 0.949023 0.949150 0.949759

6 0.949752 0.949058 0.949881
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Table 11
Simulated nominal coverage of confidence bounds for Cronbach’s coefficient, for

a=0.9, v=0.95 and m = 1000000

Proposed  Proposed

n k 1D asymptotic exact

50 2 0.936012 0.946971  0.949687

4 0.947452 0.947068 0.949676

6 0.949292 0.946881  0.949430

100 2 0.943171 0.948546  0.949857

4 0.948488 0.948159  0.949487

6 0.949843 0.948416  0.949917

200 2 0.946480 0.949235 0.949895

4 0.949236 0.949174 0.949719

6 0.949093 0.948529  0.949206
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Table 12
95% Confidence bounds for comparing two Cronbach’s coefficients, given that their
estimators &; and éo take the values 0.7 and 0.8, respectively. Here é denotes a1 —ao,

and 7 denotes In (i:—zf)

Asymptotic Asymptotic Ezact

bounds for & bounds for T bounds for T

n1 ng ko  Lower Upper Lower Upper Lower  Upper

2 50 2 -0.2616 0.0616 -1.0844 0.2735 1.0929 -0.2708

50 4 -0.2413 0.0413 -0.9598 0.1489 0.9442 -0.1490

50 6 -0.2300 0.0300 -0.8856 0.0746 0.8927 -0.0795

100 2 -0.2484 0.0484 -1.0042 0.1933 1.0359 -0.1785

100 4 -0.2339 0.0339 -0.9115 0.1006 0.9278 -0.1028

100 6 -0.2260 0.0260 -0.8581 0.0472 0.8553 -0.0428

200 2 -0.2456 0.0456 -0.9869 0.1760 1.0032 -0.1545

200 4 -0.2324 0.0324 -0.9013 0.0904 0.9284 -0.0789

200 6 -0.2252 0.0252 -0.8524 0.0415 0.8629 -0.0309
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Table 13
95% Confidence bounds for comparing two Cronbach’s coefficients, given that their

estimators &1 and éo take the values 0.7 and 0.8, respectively.

Asymptotic Asymptotic Ezact

bounds for § bounds for T bounds for T

ny ng ke  Lower Upper Lower  Upper Lower  Upper

4 50 2 -0.2467 0.0467 -1.0456 0.2347 1.0479 -0.2452

50 4 -0.2240 0.0240 -0.9115 0.1006 0.9144 -0.1113

50 6 -0.2109 0.0109 -0.8289 0.0179 0.8031 -0.0380

100 2 -0.2320 0.0320 -0.9598 0.1489 0.9769 -0.1352

100 4 -0.2154 0.0154 -0.8581 0.0472 0.8508 -0.0469

100 6 -0.2062 0.0062 -0.7975 -0.0135 0.7916 0.0126

200 2 -0.2288 0.0288 -0.9410 0.1301 0.9611 -0.1122

200 4 -0.2136 0.0136 -0.8466 0.0357 0.8475 -0.0326

200 6 -0.2052 0.0052 -0.7909 -0.0201 0.7900 0.0176
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Table 14
95% Confidence bounds for comparing two Cronbach’s coefficients, given that their

estimators &1 and éo take the values 0.7 and 0.8, respectively.

Asymptotic Asymptotic Ezact

bounds for § bounds for T bounds for T

ny ng ke  Lower Upper Lower  Upper Lower  Upper

6 50 2 -0.2435 0.0435 -1.0375 0.2266 1.0417 -0.2583

50 4 -0.2202 0.0202 -0.9013 0.0904 0.8958 -0.1060

50 6 -0.2066 0.0066 -0.8166 0.0057 0.7968 -0.0290

100 2 -0.2284 0.0284 -0.9505 0.1396 0.9818 -0.1352

100 4 -0.2113 0.0113 -0.8466 0.0357 0.8392 -0.0336

100 6 -0.2017 0.0017 -0.7842 -0.0268 0.7770 0.0268

200 2 -0.2252 0.0252 -0.9314 0.1204 0.9508 -0.1021

200 4 -0.2095 0.0095 -0.8349 0.0239 0.8292 -0.0429

200 6 -0.2007 0.0007 -0.7773 -0.0336 0.7792 0.0262
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Fig. 1. Simulated nominal coverage of 95% confidence bounds for Cronbach’s
reliability coeflicient o for a test with & = 2 items, administered to n = 50
subjects, when the “true” reliability of the test is 0.6. The solid, the dashed and
the dotted lines indicate the coverage of the ID bounds, the proposed asymptotic
bounds, and the proposed exact bounds. Observe that the dashed and dotted

lines more or less coincide.
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Fig. 2. Simulated nominal coverage of 95% confidence bounds for Cronbach’s
reliability coeflicient o for a test with & = 4 items, administered to n = 50
subjects, when the “true” reliability of the test is 0.6. The solid, the dashed and
the dotted lines indicate the coverage of the ID bounds, the proposed asymptotic

bounds, and the proposed exact bounds.
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Fig. 3. Simulated nominal coverage of 95% confidence bounds for Cronbach’s
reliability coeflicient o for a test with & = 6 items, administered to n = 50
subjects, when the “true” reliability of the test is 0.6. The solid, the dashed and
the dotted lines indicate the coverage of the ID bounds, the proposed asymptotic

bounds, and the proposed exact bounds.
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Fig. 4. Contour plot of simulated nominal coverage of 95% asymptotic confidence
bounds, where the “true” a; = 0.6, k1 = 2, nqy = 100, the “true” ag = 0.7, ko = 2,
ng = 50. Top: asymptotic confidence bounds for § = a1 — ag. Center: asymptotic
confidence bounds for 7 = log(1l — ag) — log(1 — «1). Bottom: exact confidence

bounds for 7.
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