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Exploratory factor analysis (EFA) is generally regarded as a technique for large

sample sizes (N), with N D 50 as a reasonable absolute minimum. This study

offers a comprehensive overview of the conditions in which EFA can yield good

quality results for N below 50. Simulations were carried out to estimate the

minimum required N for different levels of loadings (œ), number of factors (f ),

and number of variables (p) and to examine the extent to which a small N solution

can sustain the presence of small distortions such as interfactor correlations, model

error, secondary loadings, unequal loadings, and unequal p/f. Factor recovery was

assessed in terms of pattern congruence coefficients, factor score correlations,

Heywood cases, and the gap size between eigenvalues. A subsampling study was

also conducted on a psychological dataset of individuals who filled in a Big Five

Inventory via the Internet. Results showed that when data are well conditioned

(i.e., high œ, low f, high p), EFA can yield reliable results for N well below 50,

even in the presence of small distortions. Such conditions may be uncommon but

should certainly not be ruled out in behavioral research data.

Exploratory factor analysis (EFA) is one of the most widely used statistical

methods in psychological research (Fabrigar, Wegener, MacCallum, & Strahan,

1999), prompted by the need to go beyond the individual items of tests and

questionnaires to reveal the latent structure that underlies them. Factor analyses
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148 DE WINTER, DODOU, WIERINGA

are generally performed with large sample sizes. A study of the literature

easily shows that applying EFA to small sample sizes is treated with caution.

Researchers are discouraged from using EFA when their sample size (N) is

too small to conform to the norms presented in the state of the art in factor

analysis. Many early recommendations focused on the importance of absolute

sample size. Guilford (1954) recommended a minimum sample size of 200 for

consistent factor recovery. Comrey (1973) suggested a range of minimum sample

sizes, from 50 (very poor) to 1,000 (excellent) and advised researchers to obtain

sample sizes larger than 500. Gorsuch (1974) characterized sample sizes above

200 as large and below 50 as small. Cattell (1978) proposed that 500 would be

a good sample size to aim at, commenting that in the context of most problems,

however, 250 or 200 could be acceptable. Other researchers focused on the

number of cases per variable (N/p) and recommendations range from 3:1–6:1

(Cattell, 1978) to 20:1 (Hair, Anderson, Tatham, & Grablowsky, 1979), with the

latter advising researchers to obtain the highest cases-per-variable ratio possible

in order to minimize the chance of overfitting the data.

Later studies showed that those propositions were inconsistent (Arrindell &

Van der Ende, 1985) and recommendations on absolute N and the N/p ratio

have gradually been abandoned as misconceived (Jackson, 2001; MacCallum,

Widaman, Zhang, & Hong, 1999). Meanwhile, a number of studies have pointed

out that not only sample size but also high communalities (Acito & Anderson,

1980; Pennell, 1968) as well as a large number of variables per factor (p/f ;

Browne, 1968; Tucker, Koopman, & Linn, 1969) contribute positively to factor

recovery. Recently, a steeply increasing number of simulation studies has in-

vestigated the determinants of reliable factor recovery and shown that minimum

sample size is a function of several parameters. There are no absolute thresholds:

minimum sample size varies depending on the level of communalities, loadings,

number of variables per factor, and the number of factors (Gagné & Hancock,

2006; MacCallum, Widaman, Preacher, & Hong, 2001; MacCallum et al., 1999;

Marsh, Hau, Balla, & Grayson, 1998; Velicer & Fava, 1998). A considerable

part of the literature on sample size recommendations has been reviewed by

Velicer and Fava and MacCallum et al. (1999).

MacCallum et al. (1999) developed a theoretical framework for the effects

of sample size on factor recovery and provided a basis for the contention that

there are no absolute thresholds for a minimum sample size. This framework is

based on earlier theoretical analyses presented by MacCallum and Tucker (1991),

subsequently extended by MacCallum et al. (2001). The framework indicates

that factor recovery improves as (a) sample size increases, (b) communalities

increase, and (c) p/f increases; the effect of p/f decreases as communalities

increase, and it may also interact with the sample size. Although the simulations

in MacCallum et al. (1999) and MacCallum et al. (2001) applied a minimum N

of 60, their theoretical framework should be applicable to smaller sample sizes
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FACTOR ANALYSIS WITH SMALL SAMPLE SIZES 149

as well. However, it remains undefined how small a sample size can be and still

yield acceptable solutions.

Only a very limited number of studies on the role of sample size in factor

analysis have investigated real or simulated samples sized smaller than 50,

probably because this is considered a reasonable absolute minimum threshold

(Velicer & Fava, 1998). A few earlier studies recognized that sample sizes of

30 (Geweke & Singleton, 1980, having tested sample sizes as small as 10) or

25 (Bearden, Sharma, & Teel, 1982) can be adequate but, as Anderson and

Gerbing (1984) noted, the latter study was limited and its findings should not be

generalized. In a Monte Carlo study on confirmatory factor analysis (CFA) with

sample sizes ranging from 25 to 400, Boomsma (1982) characterized factor

analyzing sample sizes smaller than 100 as “dangerous” and recommended

using sample sizes larger than 200 for safe conclusions. A subsampling study

of Costello and Osborne (2005) indicated that for a sample size as small as 26,

only 10% of the samples recovered the correct factor structure, whereas 30%

of the analyses failed to converge and 15% had Heywood cases. A study by

Marsh and Hau (1999) specifically devoted to small sample sizes in CFA used

a minimum of 50 and warned that reducing the sample size from 100 to 50

can dramatically increase the number of improper solutions. Sapnas and Zeller

(2002) determined adequate sample sizes for principal component analysis and

suggested that a sample size between 50 and 100 was adequate to evaluate

psychometric properties of measures of social constructs. This study, however,

has been criticized for methodological errors and for failing to explain under

which conditions a small sample EFA may be feasible (Knapp & Sawilowsky,

2005). In a more recent work, Zeller (2006) concluded that a sample size between

10 and 50 was sufficient for two dimensions and 20 variables. A simulation

study by Preacher and MacCallum (2002) on applying EFA in behavior genetics

clearly showed that for communalities between .8 and .9 and two factors EFA

can yield reliable solutions even for sample sizes as small as 10. Another recent

Monte Carlo study by Mundfrom, Shaw, and Ke (2005) also showed that if

communalities are high and the number of factors is small, factor analysis

can be reliable for sample sizes well below 50. Finally, Gagné and Hancock

(2006) found that a sample size of 25 yielded no incidences of nonconvergent

or Heywood cases when loadings were as high as .8 and p/f D 12. The majority

of these studies, however, did not investigate factor recovery when deviating

from a simple structure, a situation most likely to be encountered in real data.

An exception was the study by Preacher and MacCallum, but it included model

error as the sole distortion.

This article aims to offer a comprehensive overview of the conditions in

which EFA can yield good quality results for small sample sizes. A number

of simulations were carried out to examine how the level of loadings and

communalities, the number of factors, and the number of variables influence
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150 DE WINTER, DODOU, WIERINGA

factor recovery and whether a small sample solution can sustain the presence

of distortions such as interfactor correlation, model error, secondary loadings,

unequal loadings, and unequal p/f. Next, we conducted a subsampling study on a

psychological dataset of individuals who filled in the 44-item Big Five Inventory.

The dataset was part of the Gosling-Potter Internet Personality Project studying

volunteers assessed via the Internet (Gosling, Vazire, Srivastava, & John, 2004;

Srivastava, John, Gosling, & Potter, 2003).

SIMULATION STUDIES

The majority of previous Monte Carlo studies that examined the role of sample

size in factor analysis estimated factor recovery for a predefined range of sample

sizes. In contrast, this study estimated the minimum sample size that would

yield a sample solution in good congruence with a population pattern (assuming

a simple population pattern with common factors and equal loadings) for a

combination of determinants (i.e., factor loadings, number of factors, and number

of variables). The study subsequently introduced a number of small distortions

to a population pattern to investigate factor recovery in a realistic context.

MINIMUM SAMPLE SIZE AS A FUNCTION

OF DETERMINANTS

Method

The minimum sample size was estimated for population conditions with varying

factor loadings (œ D :2; :4; :6; :8; :9), number of factors (f D 1; 2; 3; 4; 8), and

number of variables (p D 6; 12; 24; 48; 96), except for p < 2f . The numerical

ranges of the factors and variables were chosen to be representative for general

factor analytical practice in psychological research (Henson & Roberts, 2006).

For each of the conditions under investigation, population solutions were

defined to exhibit a simple pattern with equal loadings, as equal a number

of loading variables per factor as possible, no secondary loadings, orthogonal

factors, and no model error.1 See Table 1 for an example.

The minimum sample size for each condition was estimated by means of

a proportional controller. A Tucker’s congruence coefficient (K) of .95 was

considered the minimum threshold for “good agreement” (Lorenzo-Seva & Ten

1This article defines simple structure as a special case of Thurstonian simple structure, also

called independent cluster structure or ideal simple structure.
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FACTOR ANALYSIS WITH SMALL SAMPLE SIZES 151

TABLE 1

Example of Population Pattern

(œ D .8, f D 3, p D 24)

.8 0 0

.8 0 0

.8 0 0

.8 0 0

.8 0 0

.8 0 0

.8 0 0

.8 0 0

0 .8 0

0 .8 0

0 .8 0

0 .8 0

0 .8 0

0 .8 0

0 .8 0

0 .8 0

0 0 .8

0 0 .8

0 0 .8

0 0 .8

0 0 .8

0 0 .8

0 0 .8

0 0 .8

Berge, 2006).2 The controller tuned N so that K converged to the .95 threshold.

More precisely, the following procedure was repeated 5,000 times:

1. Based on the population solution, a sample observation matrix (Nxp) was

generated, using a method described by Hong (1999).

2. The Pearson correlation matrix of the sample observation matrix was

submitted to principal axis factoring (maximum number of iterations:

9,999; iterative procedure continues until the maximum absolute difference

of communalities was smaller than 10�3) and oblique direct quartimin

rotation (i.e., oblimin with gamma D 0; Bernaards & Jennrich, 2005)

by extracting f factors. To prevent optimism bias by screening solutions,

unscreened data were used, that is, solutions that yielded Heywood cases

2Lorenzo-Seva and Ten Berge (2006) suggest the .95 threshold for good agreement on the basis

of judgments of factor similarity by factor analytic experts. Note that others have used a .92 threshold

for good and .98 for excellent agreement (MacCallum et al., 2001).
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152 DE WINTER, DODOU, WIERINGA

(one or more variables with communalities equal to or higher than 1) were

included in further analysis.

3. To recover the order and sign of the loadings, the Ks for the factor

combinations .f � f / between the sample solution and the population

solution were calculated. Next, the reordering procedure of the sample

solution started with the highest absolute K of the f � f calculated Ks

and proceeded toward the lowest K until the sign and order of all factors

were recovered.

4. K was calculated between each reordered sample solution and the popu-

lation pattern.

5. A new N was calculated as N.i C 1/ D N.i/ � N.i/ � .K � :95/, rounding

away from N.i/. In other words, if K > :95, N was reduced, whereas,

if K < :95, N was increased. Initial N, that is N.1/, was set at 1,000. A

minimum N of 5 was set for controller stabilization. If N exceeded 10,000,

the controlling phase was terminated and no estimated N was provided.

After the 5,000th repetition, the mean N of the last 4,500 repetitions was

calculated, hereafter referred to as Nestimate. The first 500 iterations were omitted

so that Nestimate was based on the Ns after the controller had stabilized.

The quality of Nestimate was assessed during a verification phase. That is,

for 5,000 new repetitions, median K, mean K, 5th percentile of K, the mean

factor score correlation coefficient (FSC), and the proportion of sample solu-

tions exhibiting one or more Heywood cases were calculated. The factor score

correlation coefficient was inspired by the comparability coefficient described by

Everett (1983). Bartlett factor scores based on the sample solution and Bartlett

factor scores based on the population pattern were calculated. FSC was then

defined as the correlation between the sample factor scores and the population

factor scores, averaged over the f factors. Heywood variables were omitted when

calculating the factor scores of the sample solution. Finally, Cohen’s d effect size

(ES) was calculated between the fth and .f C 1/th eigenvalues of the unreduced

correlation matrix as a descriptive measure of the size of their “gap”.3 An ES D

4 was considered a gap of adequate size; assuming two independent normally

distributed eigenvalues with equal standard deviations and applying a threshold

3The ES index in this article was calculated from the eigenvalues of the unreduced correlation

matrices (UCM, with 1s in the diagonal). It has been argued that it is more conceptually sensible

to use the eigenvalues of the reduced correlation matrix (RCM, with communality estimates in the

diagonal) when the goal is to identify the number of common factors (Fabrigar et al., 1999; Preacher

& MacCallum, 2003). We have repeated the subsampling study with ES based on the RCM (with

communality estimates based on squared multiple correlations). Results showed that the difference

in ES based on the UCM and the ES based on the RCM was always smaller than 10% and that

overall average ES was higher for the UCM as compared with the RCM.
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FACTOR ANALYSIS WITH SMALL SAMPLE SIZES 153

in the middle (i.e., ES D 2 from both means) implies that the correct number

of factors can be identified in 95.5% of the solutions.

Results

The results in Table 2 show that factor recovery can be reliable with sample sizes

well below 50. In agreement with the theoretical framework of MacCallum et al.

(1999), lower sample sizes were needed when the level of loadings (œ; therefore

the communalities) was high, the number of factors (f ) small, and the number

of variables (p) high. For loadings higher than .8 and one factor, even sample

sizes smaller than 10 were sufficient for factor recovery. The level of loadings

was a very strong determinant. For example, when loadings were as high as

.9, and even with a high number of factors .f D 4/ and a limited number of

variables .p D 12/, a sample size of 12 sufficed.

A larger number of variables improved factor recovery, particularly when

loadings were low. No practical objection for performing EFA was found in

conditions where the number of variables exceeded the sample size. In fact,

increasing the number of variables reduced the minimum N, also when p > N .

Table 2 shows that for constant mean K, ES was lowest when high œ was

combined with low p and low N, indicating that researchers should be cautious

when deciding on the number of factors, particularly under such circumstances.

In most conditions, however, ES was greater than 4. The highest ES was found

in patterns with low œ, high p, and high N. Increasing p was beneficial for ES,

even when N was decreased.

Table 2 also reveals the different tendencies of the factor recovery indices.

Although the mean/median K was kept constant at .95, the 5th percentile of K

systematically increased with an increase of p, signifying a favorable distribu-

tional change of K. FSC consistently and strongly improved with an increase

of p, profiting from the additional information provided by extra variables. The

proportion of sample solutions exhibiting Heywood cases reduced with higher

p, whereas it increased for higher œ. This phenomenon can be attributed to the

fact that increased œ elevates the risk of communalities higher than 1, due to

sampling error. Note that the presence of Heywood cases was not detrimental

to the recovery of the population pattern per se, as high K and high FSC could

still be obtained in the unscreened solutions.

A more detailed analysis was conducted to gain insight into the interactions

between the determinants. Mean K, mean FSC, and ES were calculated for a

wide range of f (between 1 and 8) and p (logarithmically spaced between 10

and 200), except for p < 2f , for six combinations of sample sizes (small:

N D 25, medium: N D 100, and high: N D 1,000) and levels of loadings

(low: œ D :4 and high: œ D :9). The results are shown in Figure 1. Increasing N

was always beneficial. Also apparent is that f had a relatively strong influence,
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154 DE WINTER, DODOU, WIERINGA

TABLE 2

Estimated N for Satisfactory Factor Recovery for Different Factor Loadings (œ), Numbers

of Factors (f ), and Numbers of Variables (p). For Each Condition, the Median, Mean, and

5th Percentile (P5) of Tucker’s Congruence Coefficient (K ), the Mean Factor Score

Correlation Coefficient (FSC), the Proportion of Sample Solutions Exhibiting One or More

Heywood Cases, and Cohen’s d Effect Size (ES) Between the f th and (f C 1)th

Eigenvalues Are Shown

œ f p Nestimate

Median

K

Mean

K P5 K

Mean

FSC

Heywood

Cases ES

.2 1 6 1,524 .961 .950 .879 .952 .000 6.23

12 752 .955 .950 .902 .960 .000 6.36

24 470 .953 .951 .919 .970 .000 7.53

48 339 .952 .950 .927 .980 .000 8.98

96 274 .951 .950 .933 .987 .000 10.43

2 6 5,849 .958 .950 .883 .949 .000 6.78

12 2,571 .954 .950 .916 .955 .000 6.91

24 1,438 .952 .950 .927 .962 .000 8.38

48 918 .950 .950 .934 .971 .000 10.61

96 676 .950 .950 .939 .981 .000 13.47

3 12 5,363 .953 .950 .914 .952 .000 6.88

24 2,829 .951 .950 .931 .959 .000 8.33

48 1,732 .950 .950 .937 .967 .000 11.16

96 1,197 .950 .950 .942 .976 .000 14.96

4 24 4,602 .950 .950 .932 .956 .000 7.94

48 2,750 .950 .950 .939 .964 .000 11.24

96 1,827 .950 .950 .942 .973 .000 15.57

8 48 8,695 .950 .950 .942 .957 .000 10.18

96 5,390 .950 .950 .945 .964 .000 15.75

.4 1 6 102 .963 .950 .871 .954 .004 5.31

12 64 .955 .948 .890 .968 .000 5.16

24 52 .953 .949 .905 .982 .000 5.66

48 46 .952 .949 .915 .990 .000 6.05

96 44 .952 .950 .919 .995 .000 6.46

2 6 370 .960 .950 .874 .946 .015 6.61

12 186 .954 .950 .911 .963 .000 6.16

24 134 .951 .949 .924 .976 .000 7.02

48 112 .951 .950 .931 .986 .000 8.21

96 101 .950 .950 .936 .992 .000 9.26

3 6 1,159 .953 .949 .888 .938 .001 8.84

12 353 .954 .950 .916 .958 .001 6.27

24 234 .951 .950 .929 .972 .000 7.48

48 186 .951 .950 .936 .983 .000 9.28

96 163 .950 .950 .939 .990 .000 10.80

4 12 589 .954 .950 .913 .953 .006 6.40

24 349 .951 .950 .932 .969 .000 7.28

48 270 .950 .950 .938 .980 .000 9.63

96 230 .950 .950 .941 .988 .000 11.94

(continued )
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FACTOR ANALYSIS WITH SMALL SAMPLE SIZES 155

TABLE 2

(Continued )

œ f p Nestimate

Median

K

Mean

K P5 K

Mean

FSC

Heywood

Cases ES

.4 8 24 977 .951 .950 .934 .958 .001 6.53

48 678 .950 .950 .942 .972 .000 9.34

96 541 .950 .950 .944 .982 .000 13.62

.6 1 6 18 .965 .940 .813 .946 .046 4.42

12 15 .961 .943 .844 .969 .004 4.39

24 13 .955 .940 .840 .982 .001 4.46

48 12 .952 .938 .847 .991 .000 4.61

96 12 .951 .940 .860 .995 .000 4.69

2 6 59 .960 .950 .877 .945 .120 5.35

12 39 .955 .948 .896 .968 .001 5.15

24 34 .952 .948 .913 .983 .000 5.66

48 31 .951 .948 .920 .991 .000 6.19

96 30 .951 .948 .923 .995 .000 6.43

3 6 208 .950 .949 .903 .913 .404 8.42

12 67 .954 .949 .910 .964 .009 5.26

24 55 .951 .949 .924 .981 .000 5.94

48 50 .949 .948 .929 .989 .000 6.77

96 49 .951 .950 .934 .994 .000 7.72

4 12 99 .952 .949 .911 .956 .051 5.20

24 78 .951 .950 .929 .978 .000 5.97

48 71 .950 .949 .935 .988 .000 7.31

96 68 .950 .950 .938 .993 .000 8.56

8 24 179 .951 .950 .933 .967 .004 5.36

48 156 .950 .950 .941 .983 .000 7.59

96 146 .950 .950 .943 .990 .000 10.15

.8 1 6 6 .984 .935 .686 .955 .331 4.95

12 6 .983 .948 .786 .975 .176 4.93

24 6 .982 .954 .822 .987 .099 5.06

48 6 .982 .957 .840 .994 .048 5.24

96 6 .981 .959 .850 .997 .025 5.24

2 6 12 .960 .941 .815 .948 .542 3.75

12 11 .956 .940 .843 .972 .134 3.85

24 10 .949 .937 .856 .983 .044 3.80

48 10 .949 .940 .876 .990 .008 4.07

96 10 .949 .941 .882 .993 .002 4.32

3 6 21 .958 .949 .886 .901 .845 3.73

12 17 .952 .942 .873 .969 .181 3.64

24 17 .952 .947 .907 .985 .011 4.08

48 17 .952 .949 .916 .992 .000 4.53

96 17 .952 .949 .922 .995 .000 4.84

4 12 24 .954 .948 .900 .967 .325 3.61

24 23 .952 .948 .919 .984 .010 4.11

(continued )
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156 DE WINTER, DODOU, WIERINGA

TABLE 2

(Continued )

œ f p Nestimate

Median

K

Mean

K P5 K

Mean

FSC

Heywood

Cases ES

.8 4 48 23 .951 .949 .927 .991 .000 4.72

96 23 .950 .949 .929 .994 .000 5.15

8 24 45 .950 .949 .927 .977 .105 3.71

48 47 .951 .950 .938 .989 .000 5.10

96 47 .950 .950 .939 .993 .000 6.31

.9 1 6 5 .996 .961 .837 .978 .442 7.19

12 5 .996 .978 .895 .989 .338 7.07

24 5 .996 .978 .901 .994 .247 7.00

48 5 .996 .981 .914 .997 .183 7.11

96 5 .995 .978 .905 .998 .135 7.22

2 6 7 .974 .951 .816 .968 .771 3.37

12 6 .958 .931 .748 .976 .704 3.07

24 6 .955 .934 .806 .984 .567 3.17

48 6 .954 .935 .814 .988 .457 3.19

96 6 .954 .937 .835 .991 .344 3.24

3 6 8 .954 .929 .769 .896 .938 2.56

12 9 .955 .939 .838 .975 .660 2.83

24 9 .952 .940 .867 .985 .350 2.91

48 9 .950 .941 .878 .989 .149 3.05

96 9 .949 .941 .886 .991 .064 3.17

4 12 12 .956 .944 .861 .974 .772 2.72

24 12 .951 .943 .887 .985 .277 2.92

48 12 .949 .945 .904 .990 .061 3.14

96 12 .948 .944 .908 .992 .016 3.32

8 24 23 .953 .947 .919 .982 .532 2.84

48 24 .950 .949 .930 .990 .017 3.50

96 25 .951 .951 .936 .993 .000 4.11

Note. All solutions were based on 5,000 repetitions.

with mean K and mean FSC reducing when f increased. The effect of p, on the

one hand, depended on œ: for low œ, increasing p resulted in higher mean K

and ES, whereas, for high œ, increasing p had a much smaller positive effect.

For FSC, on the other hand, a higher p was beneficial for both high and low œ.

These findings agree with the theoretical framework presented by MacCallum

et al. (1999), demonstrating that a high p/f is advantageous to factor recovery

and that this effect diminishes with increasing œ. However, the present results

also showed that p/f is not a comprehensive measure, as p and f have clearly

distinct effects on factor recovery.
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FIGURE 1 Main effects and interactions among the determinants of factor analysis. The

plots show the factor recovery indices (mean Tucker’s congruence coefficient (K), mean

factor score correlation coefficient (FSC), and the Cohen’s d effect size (ES) between the

f th and .f C 1/th eigenvalues) as functions of a wide range of f and p, and two levels of

loadings (œ D :4 and œ D :9). Three levels of sample size are shown in each plot, that is,

N D 25 (black), 100 (grey), and 1,000 (white).

THE ROLE OF DISTORTIONS

Method

In reality, models rarely exhibit a perfectly simple structure. Moreover, models

are imperfect, leaving a part of reality undepicted. For this reason, we sys-

tematically evaluated the role of various distortions (divided into 13 groups

of four conditions each) in a baseline population solution with a small N
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but large œ, low f, and large p .N D 17; œ D :8; f D 3; p D 24/. The

corresponding pattern solution is shown in Table 1. Iterative principal factor

analysis was performed with oblimin rotation for all the investigated groups of

distortions. Sufficient repetitions were performed for each condition so that the

95% confidence interval of the mean K was narrower than .001. The design of

the simulation is summarized in Table 3. As an example, Table 4 shows the first

population pattern of each investigated group.

Group 1: Interfactor correlation (ifc D .1, .3, .5, .7) for one pair of

factors. This group examined the effect of various levels of ifc between two

factors.

Group 2: Interfactor correlation (ifc D .1, .3, .5, .7) between all factors.

Same as Group 1, but here all three combinations of factors were correlated,

providing a more severe test case.

Group 3: Model error, altering the amount of variance. To investigate

whether model error plays a role in factor recovery for small N, random model

error was introduced for every repetition by means of 200 minor factors ex-

plaining (a) .05, (b) .1, (c) .15, and (d) .2 of the variance. The data generation

parameter determining the distribution of successive minor factors was set at

© D :1.

Group 4: Model error, altering the distribution of the minor factors. In

this group, the distribution of minor factors explaining .2 of the variance was

altered by varying © from .05 to .15, .25, and .35. Larger values of © causes

the contribution of the minor factors to be more skewed in favor of the earlier

factors in the sequence (MacCallum & Tucker, 1991).

Group 5: Low loadings (.6) added. The simulation results in Table 2 on

the factor analytic determinants showed that the addition of variables improved

factor recovery. Adding low loading variables, however, inevitably decreases

average communalities among all variables. Considering that both communalities

and the number of variables are important determinants of factor recovery, the

question is whether the addition of variables improves factor recovery, even

when the added variables reduce average communalities. For this reason, the

behavior of population patterns with a number (6, 12, 24, 96) of extra variables

with low loadings (.6) was studied.4

4A loading of .6 was considered low for the sample size .N D 17/ under investigation. This

was based on the findings of the first part of the simulations (Table 2): for œ D :6, f D 3, p D 24,

the required minimum N for good agreement .K D :95/ was 55.
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TABLE 3

Design of the Simulation Study Investigating

the Role of Distortions

Group 1: Interfactor Correlation for

One Pair of Factors

Group 8: Unequal Loadings

Between Factors

Small (.1) Small deviations (.85/.8/.75)

Medium (.3) Medium deviations (.9/.8/.69)

Large (.5) Large deviations (.95/.8/.61)

Very large (.7) Very large deviations (.99/.8/.55)

Group 2: Interfactor Correlation

Between All Factors

Group 9: Unequal Loadings

Within Factors

Small (.1) Small deviations (.85/.75)

Medium (.3) Medium deviations (.9/.69)

Large (.5) Large deviations (.95/.61)

Very large (.7) Very large deviations (.99/.55)

Group 3: Model Error; Altering

the Amount of Variancea

Group 10:

Secondary Loadings

Small (.05) 2 variables; loadings .2/-.2

Medium (.10) 2 variables; loadings .4/-.4

Large (.15) 4 variables; loadings .2/-.2

Very large (.20) 4 variables; loadings .4/-.4

Group 4: Model Error; Altering

the Distribution of Minor Factorsa

Group 11: Random

Distortions of All Loadingsa

© D small (.05) Small (range .05)

© D medium (.15) Medium (range .10)

© D large (.25) Large (range .15)

© D very large (.35) Very large (range .20)

Group 5: Low

Loadings (.6) Added

Group 12: Unequal p=f

(One Weak Factor)b

Adding 6 variables p=f D 8, 8, 6

Adding 12 variables p=f D 8, 8, 4

Adding 24 variables p=f D 8, 8, 3

Adding 96 variables p=f D 8, 8, 2

Group 6: Low Loadings (.6)

Replacing High Loadings

Group 13: Unequal p=f

(Two Weak Factors)b

Replacing 3 variables p=f D 8, 6, 6

Replacing 6 variables p=f D 8, 4, 4

Replacing 12 variables p=f D 8, 3, 3

Replacing 18 variables p=f D 8, 2, 2

Group 7: Altering the

Number of Variables

p D 12
p D 15

p D 18
p D 48

aA different population pattern was produced for each repetition for all

conditions of groups 3, 4, and 11. b The numbers refer to the variables per factor

with a .8 loading.
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160 DE WINTER, DODOU, WIERINGA

TABLE 4

Population Patterns Used in the Simulations

Group 5 Group 6 Group 7

.8 0 0 .8 0 0 .8 0 0

.8 0 0 .8 0 0 .8 0 0

.8 0 0 .8 0 0 .8 0 0

.8 0 0 .8 0 0 .8 0 0

.8 0 0 .8 0 0 0 .8 0

.8 0 0 .8 0 0 0 .8 0

.8 0 0 .8 0 0 0 .8 0

.8 0 0 .6 0 0 0 .8 0

0 .8 0 0 .8 0 0 0 .8

0 .8 0 0 .8 0 0 0 .8

0 .8 0 0 .8 0 0 0 .8

0 .8 0 0 .8 0 0 0 .8

0 .8 0 0 .8 0

0 .8 0 0 .8 0

0 .8 0 0 .8 0

0 .8 0 0 .6 0

0 0 .8 0 0 .8

0 0 .8 0 0 .8

0 0 .8 0 0 .8

0 0 .8 0 0 .8

0 0 .8 0 0 .8

0 0 .8 0 0 .8

0 0 .8 0 0 .8

0 0 .8 0 0 .6

.6 0 0

.6 0 0

0 .6 0

0 .6 0

0 0 .6

0 0 .6

Group 8 Group 9 Group 10

.85 0 0 .85 0 0 .8 .2 0

.85 0 0 .747 0 0 .8 -.2 0

.85 0 0 .85 0 0 .8 0 0

.85 0 0 .747 0 0 .8 0 0

.85 0 0 .85 0 0 .8 0 0

.85 0 0 .747 0 0 .8 0 0

.85 0 0 .85 0 0 .8 0 0

.85 0 0 .747 0 0 .8 0 0

(continued )
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TABLE 4

(Continued )

Group 8 Group 9 Group 10

0 .8 0 0 .85 0 0 .8 0

0 .8 0 0 .747 0 0 .8 0

0 .8 0 0 .85 0 0 .8 0

0 .8 0 0 .747 0 0 .8 0

0 .8 0 0 .85 0 0 .8 0

0 .8 0 0 .747 0 0 .8 0

0 .8 0 0 .85 0 0 .8 0

0 .8 0 0 .747 0 0 .8 0

0 0 .747 0 0 .85 0 0 .8

0 0 .747 0 0 .747 0 0 .8

0 0 .747 0 0 .85 0 0 .8

0 0 .747 0 0 .747 0 0 .8

0 0 .747 0 0 .85 0 0 .8

0 0 .747 0 0 .747 0 0 .8

0 0 .747 0 0 .85 0 0 .8

0 0 .747 0 0 .747 0 0 .8

Group 11 Group 12 Group 13

.791 -.019 -.011 .8 0 0 .8 0 0

.807 .002 .004 .8 0 0 .8 0 0

.805 .017 -.012 .8 0 0 .8 0 0

.778 -.013 .014 .8 0 0 .8 0 0

.819 -.024 -.018 .8 0 0 .8 0 0

.811 -.018 .014 .8 0 0 .8 0 0

.776 -.001 .001 .8 0 0 .8 0 0

.812 .019 .004 .8 0 0 .8 0 0

-.010 .818 .001 0 .8 0 0 .8 0

.013 .825 -.018 0 .8 0 0 .8 0

-.020 .813 -.009 0 .8 0 0 .8 0

-.014 .819 .018 0 .8 0 0 .8 0

-.001 .793 -.003 0 .8 0 0 .8 0

.019 .811 -.022 0 .8 0 0 .8 0

.004 .789 .019 0 .8 0 0 0 .8

-.004 .815 -.012 0 .8 0 0 0 .8

.016 -.015 .789 0 0 .8 0 0 .8

.010 -.004 .786 0 0 .8 0 0 .8

-.003 .006 .805 0 0 .8 0 0 .8

-.002 .003 .803 0 0 .8 0 0 .8

.019 -.013 .818 0 0 .8

.007 .008 .786 0 0 .8

-.018 -.018 .790

-.014 .001 .804

Note. The first condition described in the text is shown for each group.
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162 DE WINTER, DODOU, WIERINGA

Group 6: Low loadings (.6) replacing high loadings. A number (3, 6, 12,

18) of high loading variables were replaced with low loading (.6) variables. This

was expected to cause a stronger distortion than Group 5 because the number

of high loading variables was also reduced.

Group 7: Altering the number of variables. The number of variables

was altered from 24 to 12, 15, 18, and 48 in order to investigate whether a

discontinuity appears in factor recovery when factor analyzing samples in which

the number of variables exceeds the sample size.

Group 8: Unequal loadings between factors. The level of the loadings

among the three factors was varied in such a way that the average communalities

of all variables remained equal to the baseline condition (i.e., .64). The following

four combinations were investigated: (a) .85/.8/.75 (D
p

:82 � .:852 � :82/),

(b) .9/.8/.69, (c) .95/.8/.61, and (d) .99/.8/.55.

Group 9: Unequal loadings within factors. The loadings within each of

the three factors were alternated in such a way that the average communalities

were equal to those in the baseline condition. The following four combinations of

alternate nonzero loadings were investigated: (a) .85/.75 (D
p

:82 � .:852 � :82/),

(b) .9/.69, (c) .95/.61, and (d) .99/.55.

Group 10: Secondary loadings. The effect of adding two or four sec-

ondary loadings of low (.2) as well as high (.4) level was examined. Alternating

signs of the secondary loadings were used to prevent rotation toward a different

solution.

Group 11: Random distortions of all loadings. In reality, population

patterns are not homogeneous. Therefore, random distortions of all loadings

were introduced. More precisely, four levels of uniform random loadings (ranges

.05, .1, .15, and .2) were added to the baseline.

Group 12: Unequal p/f (one weak factor). Equal p/f rarely occurs in

reality. Therefore the third factor was weakened by decreasing the number of

variables that loaded on this factor.

Group 13: Unequal p/f (two weak factors). Factors 2 and 3 were weak-

ened by decreasing the number of variables that loaded on these factors. This

group tested the impact of weakening two out of three factors on factor recovery.
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FACTOR ANALYSIS WITH SMALL SAMPLE SIZES 163

Results

Figure 2 shows the mean K, mean FSC, the proportion of sample solutions

exhibiting Heywood cases, and ES for each of the 13 groups.

Groups 1–2: Interfactor correlation. When one pair of factors was very

strongly (.7) correlated or all factors were strongly (.5) correlated, mean K

and mean FSC deteriorated considerably. Small interfactor correlation (up to

.3) disturbed K and FSC to a far lesser extent. The proportion of sample

solutions exhibiting Heywood cases increased slightly when all three factors

were strongly correlated. Correlated factors negatively affected ES more than

any other distortion did.

Groups 3–4: Model error. Model error slightly worsened factor recovery.

This effect was seen in all four indices. Introducing a large model error (.2)

across a more skewed distribution of minor factors (© D .25 or .35) caused a

relatively strong degradation of factor recovery as compared with the effect of

a less skewed distribution.

Groups 5–6: Low loadings (.6) added or replacing high loadings.

Adding low loading variables worsened mean K. Mean FSC slightly decreased

for a small number of added low loadings but recovered for a larger (96) number

of added low loadings. This can be explained by the fact that K takes into

account all (low as well as high) loadings, whereas FSC is based on factor

scores, obtaining the information from all the manifest variables. In other words,

FSC benefited from (or at least stayed unaffected by) additional information.

On the other hand, as an index of factor loadings similarity, K was more easily

disturbed by the presence of variables of low quality. The deterioration of K was

even more dramatic when low loading variables replaced high loading variables,

whereas FSC degraded mainly when 18 out of the 24 variables had been replaced

by low loadings. The proportion of sample solutions exhibiting Heywood cases

reduced when low loading variables were added but increased when low loading

variables replaced high loading variables. Appending low loadings influenced ES

only slightly. However, this index degraded when low loadings replaced high

loadings.

Group 7: Altering the number of variables. An increased number of

variables slightly improved mean K, considerably improved mean FSC, and

strongly suppressed the proportion of sample solutions exhibiting Heywood

cases. In an additional test, driven more by theoretical interest rather than a

realistic approach, factor recovery was estimated for 600 variables, a level at

which mean FSC reached near unity (.997). In accordance with the first series of
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164 DE WINTER, DODOU, WIERINGA

(a)

(b)

FIGURE 2 Factor recovery for the 13 investigated groups: (a) mean Tucker’s congruence

coefficient (K), (b) mean factor score correlation coefficient (FSC), (c) proportion of sample

solutions exhibiting one or more Heywood cases, and (d) the Cohen’s d effect size (ES)

between the third and fourth eigenvalues. The horizontal line represents the average factor

recovery for the baseline condition. (continued )
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(c)

(d)

FIGURE 2 (Continued ).
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166 DE WINTER, DODOU, WIERINGA

simulations, increasing the number of variables increased ES. The results of this

group also showed that there was no discontinuity whatsoever with respect to

factor recovery at the point where the number of variables exceeded the sample

size.

Groups 8–9:. Unequal loadings between or within factors. For unequal

loadings between factors (Group 8), the recovery of factors with high loadings

improved (with the FSC of the first factor reaching .999 in the fourth condition),

whereas the recovery of factors with low loadings deteriorated. Unequal loadings

within factors (Group 9) strongly increased the likelihood of Heywood cases.

However, this did not deteriorate factor recovery: mean K remained constant

while mean FSC increased up to near unity (.995) in the fourth condition, which

had a very large proportion of Heywood cases. ES decreased with unequal

loadings between factors (Group 8) but was less sensitive to unequal loadings

within factors (Group 9).

Group 10: Secondary loadings. Secondary loadings hardly influenced

factor recovery. Only when the number and level of secondary loadings were

the highest tested did mean FSC slightly decrease. Mean K, on the other hand,

slightly increased when secondary loadings were high (.4). Moreover, secondary

loadings were beneficial to ES.

Group 11: Random distortions of all loadings. Randomly distorted load-

ings hardly influenced factor recovery, signifying that the positive effect of the

presence of high loadings compensated for the negative effect of random low

loadings.

Groups 12–13: Unequal p/f (one or two weak factors). Low p/f had a

negative effect on the recovery of the corresponding factor. The mean FSC of

the worst condition (p/f D 2) was still higher than .85, so even for a very weak

factor, factor recovery was not necessarily grossly wrong in a small N scenario.

The recovery of the strong factors improved in terms of K. A low p/f increased

the proportion of sample solutions exhibiting Heywood cases and weakened ES,

diminishing the odds of correctly estimating the number of factors.

Group summary. The investigated baseline (N D 17, œ D :8, f D 3,

p D 24) was noticeably robust against single small distortions. Each of the

indices (mean K, mean FSC, Heywood cases, and ES) was sensitive to different

distortions. The most serious degradation of factor recovery was caused by

a highly unequal distribution of variables between factors (unequal p/f ). In

addition, ES was highly sensitive to interfactor correlations. Replacing high
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with low loadings or having unequal loadings between factors also negatively

influenced ES.

SUBSAMPLING STUDY

A subsampling study was carried out to investigate whether the findings of the

simulation study are realistic and hold for actual data. An empirical dataset with

a large sample size was used, acting as a population. The dataset consisted of

280,691 participants (mean age D 30.4, SD D 8.5 years, 54% women) who

filled in the 44-item Big Five Inventory (Gosling et al., 2004; Srivastava et al.,

2003). All selected participants indicated that they were filling in the inventory

for the first time. Only participants who filled in the English version of the

inventory, answering all items without giving identical answers to all 44 items,

were included. Subsamples were drawn from the population sample, and factor

recovery was assessed between the subsampling and the population solution.

Method

Factor recovery was estimated for a range of 25 subsample sizes spaced log-

arithmically between 10 and 200. For each subsample size, 10,000 random

subsamples were drawn from the population and factor analyzed as in the

simulation study. To investigate the role of the number of factors as a determinant

of factor analytic performance, factor recovery was assessed when retaining from

one up to five factors. Variables were selected so that each factor contained

the 8 to 10 variables representing the corresponding personality trait. Table 5

summarizes the results of the five population patterns. Communalities were wide.

Interfactor correlations were low, so these should hardly affect factor recovery,

according to the simulations. Factor recovery was evaluated using mean K, mean

FSC, the proportion of solutions exhibiting a Heywood case, and ES.

Results

Figure 3 shows the factor recovery results. For one extracted factor, a sample

size around 13 and 17 was adequate for satisfactory FSC and K (D .95), whereas

f D 2 required a sample size between 30 (for FSC D .95) and 50 (for K D

.95). When retaining all factors of the Big Five .f D 5/, a considerably larger

sample size (80 to 140) was needed. For all numbers of factors, the proportion

of solutions exhibiting a Heywood case was below .05 for sample sizes greater

than 17. For one extracted factor, a sample size of 10 was sufficient for ES D 4.

In contrast, when all five factors were retained, a larger sample size (140) was

required to guarantee an adequate ES.
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TABLE 5

Mean, Minimum, and Maximum of Primary Loadings, Secondary Loadings,

Communalities, and Interfactor Correlations of the Population Solutions

for the Investigated Number of Factors

f p

Mean of

Primary

Loadings

(Min–Max)

Mean of

Secondary

Loadings

(Min–Max)

Mean

Communalities

(Min–Max)

Mean Interfactor

Correlation

(Min–Max)

1 (E) 8 .64(.50–.77) — .42(.25–.59) —

2 (E, O) 18 .58(.23–.79) .10(.02–.28) .37(.08–.60) .17(.17–.17)

3 (E, O, C) 27 .58(.24–.80) .11(.03–.27) .38(.08–.62) .14(.12–.16)

4 (E, O, C, N) 35 .59(.23–.81) .13(.05–.28) .40(.10–.63) .14(.05–.24)

5 (E, O, C, N, A) 44 .57(.24–.80) .15(.07–.27) .39(.10–.62) .12(.01–.20)

Note. All numbers are based on the absolute values of the pattern matrix and absolute values

of the interfactor correlations. E D extraversion; O D openness; C D conscientiousness; N D

neuroticism; A D agreeableness.

The subsampling study confirmed the findings of the simulation study with

respect to the fact that a larger sample size is needed when extracting a larger

number of factors. It should be noted that the subsampling study yielded mod-

erately higher estimates of N compared with the simulations. For example, for

(mean) œ D :58, f D 3, and p D 27, the subsampling study yielded an N D 73,

whereas the respective value (œ D :6, f D 3, and p D 24) in the simulations

(Table 2) was 55. This discrepancy can be attributed to the presence of model

error as well as to the 5-point Likert scale data: to obtain reliable correlations

between variables, Likert scale data require a larger sample size than continuous

normally distributed data.

DISCUSSION AND RECOMMENDATIONS

The goal of this article is to offer a comprehensive overview of the conditions in

which EFA can yield good quality results for small N. The simulations showed

that, for the circumstances under which EFA is mostly applied (i.e., low to

medium loadings, communalities, and a relatively large number of factors), a

large sample size is required. However, when the data are well conditioned

(i.e., high œ, low f, high p), EFA can yield reliable solutions for sample sizes

well below 50. In some conditions, sample sizes even smaller than 10 (beyond

the smallest sample size of previous simulation studies) were sufficient. For

example, when œ D :8, f D 1, p D 24, and the structure was simple, N D 6

was adequate. A small sample solution (N D 17, œ D :8, f D 3, p D 24) was

markedly robust against single small distortions. Weakly determined factors and
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(a)

(b)

FIGURE 3 Subsampling factor recovery for the Big Five Inventory: (a) mean Tucker’s

congruence coefficient (K), (b) mean factor score correlation coefficient (FSC), (c) proportion

of sample solutions exhibiting one or more Heywood cases, and (d) the Cohen’s d effect size

(ES) between the f th and .f C 1/th eigenvalues. The horizontal line represents a threshold

for satisfactory factor recovery (K D .95, FSC D .95, Heywood cases D .05, ES D 4).

Abbreviations: E D extraversion, O D openness, C D conscientiousness, N D neuroticism,

A D agreeableness. (continued )
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(c)

(d)

FIGURE 3 (Continued ).
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strong interfactor correlations negatively affected factor recovery, but even in

the worst cases tested, factor recovery was still possible. The subsampling study

confirmed the findings of the simulations with respect to the fact that a larger

sample size is required when extracting a larger number of factors. For one

extracted factor, a very small sample size (10–17) was adequate for satisfactory

factor recovery.

An important issue when factor analyzing small samples is whether it is

possible to correctly estimate the number of factors. The simulations showed

that when the structure is simple, in most conditions, small sample sizes can

guarantee an adequate ES > 4. However, when deviating from a simple structure,

researchers should be extra cautious when deciding on the number of factors,

particularly if these factors are correlated.

This article emphasizes that researchers should certainly not be encouraged

to strive for small sample sizes. Large sample sizes are always beneficial and

inevitably required when communalities are low. However, when factors are

well defined or their number is limited, small sample size EFA can yield

reliable solutions. Thus, a small sample size should not be the sole criterion

for rejecting EFA. Inversely, if one prefers, subjecting a small sample to EFA

can be worthwhile and may possibly reveal valuable latent patterns. Considering

that models are useful unless they are grossly wrong (MacCallum, 2003) and

a small sample size factor analytic model is not per definition grossly wrong,

applying factor analysis in an exploratory phase is better than rejecting EFA

a priori. Obviously, the reliability and theoretical soundness of the solutions

should be very carefully assessed.

DEVIATIONS FROM A SIMPLE STRUCTURE

This study investigated factor recovery when deviating from a simple structure,

a situation most likely to occur in real data but which had not previously been

systematically investigated. Past studies usually focused on one kind of distortion

and on sample sizes larger than 50.

A number of studies (Boomsma & Hoogland, 2001; Gagné & Hancock,

2006; Gerbing & Anderson, 1987; Marsh et al., 1998) introduced an ifc of .3

in their simulation studies without, however, investigating the effect of different

levels of ifc. Anderson and Gerbing (1984) examined two levels of ifc but only

with respect to improper solutions. It is surprising that the effect of ifc has not

been exhaustively studied yet, considering that interfactor correlations are often

present in psychological models. The current simulations investigated a range

of ifc and revealed that a small N solution was able to sustain small interfactor

correlations; factor recovery deteriorated considerably, however, when factors

were strongly correlated.
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Model error is usually considered as having no or only a small effect on

factor recovery (MacCallum et al., 2001). The present results showed that when

model error was small it was indeed of only little influence. A large model error,

however, had a strong negative effect on factor recovery, particularly when its

distribution was skewed in favor of the earlier factors in the sequence.

Gagné and Hancock (2006) found that when replacing higher with lower

loadings (in an equal manner between factors), the number of improper solutions

increased; appending loadings, on the other hand, was beneficial. These findings

are in agreement with the present simulations. Additionally, the present study

showed that, when replacing high with low loadings, all four investigated indices

deteriorated. When appending low loadings, on the other hand, the indices ex-

hibited various tendencies, indicating the importance of assessing factor recovery

by means of more than one index.

Past studies showed that unequal loadings within factors may cause an in-

creased number of improper solutions (Anderson & Gerbing, 1984) and a less

rapid improvement of factor recovery as N increases (Velicer & Fava, 1998).

The current simulations showed that in the presence of unequal loadings within

factors K and ES remained unaffected, whereas FSC increased up to near unity

despite an increased likelihood of solutions exhibiting a Heywood case. The

robustness of the small N solution to unequal loadings with respect to K and ES

and the improvement of FSC are of interest because such conditions resemble

real data.

Beauducel and Wittmann (2005) investigated factor recovery in the presence

of secondary loadings and found that secondary loadings did not influence abso-

lute indices of model fit but negatively affected incremental indices. The present

study showed that factor recovery was robust against secondary loadings and

that ES can even improve. This is an important result because small secondary

loadings are inevitably present in real data and researchers consistently use the

presence of secondary loadings as a reason to disregard items during the process

of scale construction. It should be noted, however, that scale developers may

still prefer simple structures to ensure that individual items do not end up in

multiple subscales and subscale correlations do not risk becoming inflated.

Beauducel (2001) and Briggs and MacCallum (2003) investigated patterns

with weak factors but both studies focused more on comparing the perfor-

mance of various factor analytic methods rather than examining factor recovery.

Ximénez (2006) investigated the recovery of weak factors using CFA and found

that the recovery of weak factors may be troublesome if their loadings are

small and the factors orthogonal. The present simulations investigated the effects

of weak factors by means of unequal loadings between factors as well as by

means of unequal p/f. When loadings were unequal, weak factors did not inhibit

the recovery of the strong factors. For unequal p/f, the recovery of factors

with low p/f deteriorated considerably. On the other hand, the recovery of the
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strong factors improved in terms of K (even if p/f of the strong factor was

unchanged).

In summary, this study investigated the effect of a wide range of single small

distortions on EFA performance and showed that although a small N solution

was relatively robust against distortions, factor recovery deteriorated strongly

when factors were correlated or weak.

THE EFFECTS OF p, f, p/f, and p/N

The simulations showed that an increased p improved factor recovery, raising

K, FSC, and ES and reducing Heywood cases. An increased p was particularly

beneficial for low œ patterns. A large number of references in the literature

consider p/f a strong factor analytic determinant. The present simulations confirm

that p/f is an important criterion; lowering p/f had a negative influence on

factor recovery. When p/f was equal between factors, however, p and f had

clearly distinct effects on the quality of the factor solutions (see Figure 1);

therefore the p/f ratio should not be considered a comprehensive measure. For

example, in a simple structure and for the same level of loadings (.8), two

factors and 12 variables (i.e., p/f D 6) required a minimum sample size of

11, whereas with eight factors and 48 variables this minimum increased to

47. MacCallum et al. (2001) described a similar effect. They noticed that the

effect of overdetermination on their empirical data was considerably weaker than

in their Monte Carlo data. The difference was that in the empirical study the

nature and number of factors were kept constant while the number of variables

varied, whereas in the Monte Carlo study the number of variables was kept

constant while the number of factors varied. The present study indicates that

when p/f is equal, one should evaluate p and f separately instead of their

ratio.

In some simulation conditions and in the subsampling study, the number of

variables exceeded the sample size. Many factor analytic studies (e.g., Aleamoni,

1976), statistical packages, and factor analysis guidelines claim that the number

of variables should never exceed the sample size. Contrary to this popular belief,

Marsh and Hau (1999) reported no discontinuities in their simulation results

when surpassing the p D N barrier and suggested that there might be nothing

special about such a barrier. The present simulations and the subsampling study

concur with this view for all the investigated ranges of p and N. In fact, increasing

the number of variables was beneficial, including when p > N . Moreover, in

recent work, Robertson and Symons (2007) proved that p > N is valid for

maximum likelihood factor analysis. This method usually considers p > N

impossible because the covariance matrix turns nonpositive definite. Besides, as

Bollen (2002) noted,
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Resolution of this indeterminacy is theoretically possible under certain conditions

: : : (a) when the sample size (N ) goes to infinity, (b) when the number of observed

variables goes to infinity, and (c) when the squared multiple correlation for the

latent variable goes to one and the predictors are observed variables. (p. 616)

In other words, increasing the number of variables originates from the same

striving for reducing factor indeterminacy as increasing the sample size. This is

of importance for small sample sizes: when increasing N is not possible, one

can attempt to append good quality variables, no matter if such a strategy may

lead to a p > N condition.

The simulations show that adding low loading variables considerably affected

Tucker’s congruence coefficient (K). This may then imply that only variables

expected to load highly on a factor should be considered. Such a recommendation

is only partially true as it could lead to the pitfall of “bloated specific” factors

because highly loading variables can be also highly redundant (Boyle, 1991).

Such variables lead to factors that are internally consistent but have low validity

because they mask the presence or power of other factors and contaminate the

entire factor structure.5 In fact, the selected variables should be such that they

assure validity while being sufficiently diverse. The present simulations show

that the FSC considerably improved when many variables were added, even

when those variables had low factor loadings. In conclusion, we recommend

increasing the number of variables as much as possible but only as long as this

does not undermine the overall quality of the set.

INDICES FOR ASSESSING FACTOR RECOVERY

Indices used to evaluate the quality of factor solutions were K, FSC, Heywood

cases, and ES. These indices exhibited varying tendencies and were sensitive

to different determinants and distortions. The difference in the behavior of K

and FSC is attributed to their inherent nature. As an index of factor loadings

similarity, K is influenced both by high and low loadings. FSC, on the other

hand, is an index of similarity of factor scores that are a weighted sum of

the manifest variables. FSC monotonically increases with p because it benefits

from added information in general. We conclude that K and FSC evaluate

5Cronbach’s ’ was calculated for two conditions of the first simulation series (low loadings:

œ D :2, f D 2, p D 24, N D 1,438 and high loadings: œ D :9, f D 2, p D 24, N D 6),

Although factor recovery was identical in those two conditions (see Table 2), average Cronbach’s a

among variables loading on the factor was .332 for the low loadings and .968 for the high loadings.

This demonstrates that high internal consistency is not necessary for good factor recovery. A more

detailed discussion of this issue can be found in Boyle (1991).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
i
n
t
e
r
,
 
d
e
]
 
A
t
:
 
1
7
:
2
9
 
1
4
 
A
p
r
i
l
 
2
0
0
9



FACTOR ANALYSIS WITH SMALL SAMPLE SIZES 175

different aspects of factor recovery and recommend using them complemen-

tarily.

A number of studies have discussed the effects of sample size and p/f on

the proportion of sample solutions exhibiting a Heywood case (or improper

solutions; e.g., Gerbing & Anderson, 1987; Marsh et al., 1998; Velicer & Fava,

1998). According to Velicer and Fava, Heywood cases are more likely to occur

when the sample size is small, p/f is limited, and the loadings are low. Boomsma

and Hoogland (2001) noticed that high factor loadings can also lead to Heywood

cases. In the present study, the Heywood cases occurred indeed when loadings

were high. However, Heywood cases were not detrimental to factor recovery, as

high K and high FSC could still be obtained in the unscreened solutions. This

agrees with MacCallum et al. (1999) and MacCallum et al. (2001), who carried

out their simulations twice, once by screening out samples that yielded Heywood

cases and again with unscreened data, and showed that there was virtually no

difference in the results.

The present study not only included the Heywood cases but also used them

as an index of factor recovery. Similarly, Briggs and MacCallum (2003) studied

the behavior of Heywood cases when comparing different methods of factor

analysis. Gagné and Hancock (2006) used nonconvergent and Heywood cases

as a primary index of model quality. Based on the results of the present study,

we recommend using the proportion of solutions exhibiting Heywood cases as

an additional index because it offers valuable information about the effect of

determinants and distortions.

An important question when factor analyzing small samples is whether the

sample will consistently yield a correct decision as to the number of factors.

Considering that none of the current methods for determining the number of

factors is infallible (Fabrigar et al., 1999), ES was used to represent the size

of the gap between the f th and .f C 1/th eigenvalues. When making the

simplifying assumption of normally distributed independent eigenvalues with

equal standard deviations, an ES D 4 corresponds to a maximum of 95.5%

correct classifications. To illustrate the eigenvalue gap size in real data, Figure 4

shows the scree plot of the subsampling study for N D 39 and f D 2. Here,

between the second and third eigenvalue, ES was 4.04. Applying the threshold at

the optimal location (2.34) allowed for 96.5% correct estimations of f D 2. A

caveat is in order: ES does not identify the most appropriate number of factors,

nor does it tell where the “large gap” or the “elbow” can be found in the scree

plot. Rather, ES is a between-samples measure.

DECIDING THE NUMBER OF FACTORS

Deciding the “correct” number of factors has been the subject of many studies.
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FIGURE 4 Scree plot of the subsampling study for N D 39 and f D 2 with the 5th,

50th, and 95th percentiles of the eigenvalues. The Cohen’s d effect size (ES) between the

second and third eigenvalue was 4.04. Applying the threshold at the optimal location (2.34)

allowed for 96.5% correct estimations of f D 2. This figure is based on 100,000 repetitions.

As Bentler (2000) indicated,

Inevitably, due to the variety of possible criteria and methods of evaluating this

question, in any empirical application there will never be precise unanimity among

all researchers. This does not worry me too much because various models always

fit in degrees : : : and perhaps there may not even be a “true” model. (p. 86)

In other words, it is better to think in terms of “most appropriate” than “cor-

rect” number of factors. Yet, even when the common factor model holds exactly

in the population and ES > 4 (such as in most current simulations), automatically

estimating the correct number of factors is a challenge. We made several attempts

to estimate the correct number of factors in the first series of simulations by using

Velicer’s Minimum Average Partial (O’Connor, 2000), a Bayesian Information

Criterion (Hansen, Larsen, & Kolenda, 2001), an automatic scree test (Zhu &

Ghodsi, 2006), and parallel analysis (O’Connor, 2000; data not shown). Each

of these methods was effective in many conditions, but none was successful in

all conditions. A directly related topic is the effect of over- and underextraction

(e.g., Fava & Velicer, 1992, 1996): although it has been reported that the effect

of overextraction can be stronger when N is small and œ low (Lawrence &

Hancock, 1999), one may question whether factor misspecification is a small
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N problem per se or a matter of well- or ill-conditioned data. More research is

needed on the strengths and weaknesses of procedures to determine the most

appropriate number of factors.

STUDY LIMITATIONS

This study is not free of caveats or limitations. First, the simulation sample

matrices were generated by a method described by Hong (1999), which produces

normally distributed data and uses certain assumptions to generate model error

(e.g., distribution of minor factors). Hong’s method is a state-of-the-art procedure

for introducing model error and interfactor correlations in a correlation matrix,

based on the more commonly used Tucker-Koopman-Linn model (Tucker et al.,

1969). Because of the normally distributed data, the simulations may have pro-

vided somewhat overoptimistic values for the minimum sample size compared

with empirical data, as was also found in the subsampling study. Moreover, as

Table 2 shows, the estimated minimum sample size would have been higher had

factor recovery been assessed by using the 5th percentile of Tucker’s congruence

coefficient instead of its mean.

Second, although the simulated conditions corresponded to the ranges of

determinants and distortions in psychological batteries, the conditions were of

course far from exhaustive and might not be fully representative for all small

sample conditions. For instance, one may conceive of structures that include

combinations of distortions. Nonetheless, that factor recovery is possible in the

presence of small distortions remains important for real applications.

Third, all correlation matrices were subjected to principal axis factoring and

all loading matrices to oblique direct quartimin rotation. Different model fit

procedures and rotations can have different effects on factor recovery. It is also

possible that differently distorted matrices may have different favorable rotations.

Those are issues that deserve further investigation.

Fourth, it should be noted that not just the factor recovery determines the

quality of the factor analytic solution. As in any statistical analysis, the nature

of both the sample and the variables involved remains among the most criti-

cal decisions (Fabrigar et al., 1999). A sample insufficiently representative of

the population will distort the factor structure. Redundant variables can lead

to bloated specific factors, obscuring the presence of more important factors.

Irrelevant variables can also lead to spurious common factors (Fabrigar et al.,

1999) and additional model error. Moreover, when the sample size is small, one

should expect the standard error of loadings to be larger, which involves the risk

of spurious high loadings.

Fifth, generalizing the findings to CFA should be done with great care.

Although the communalities in CFA are usually higher due to variable selection
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(MacCallum et al., 2001), particular caution should be taken with respect to mis-

specification and stronger sources of model error. The presence of model error

may alter the minimum required sample size for CFA. However, as MacCallum

et al. (2001) noted, one can expect to find similar tendencies and determinants

for CFA.

Finally, one may doubt that real data can satisfy the constraints of high

communalities and loadings or few factors. Moderate to weak communalities

ranging between .4 and .7 (Costello & Osborne, 2005) or moderate to weak

loadings ranging between .3 and .5 (Lingard & Rowlinson, 2006) are more

common in behavioral or social data. The Big Five dataset of the subsampling

study showed how indispensable a sufficiently large sample size is in such

circumstances. However, cases involving high loadings do exist, for example,

in neuroscience or psychosomatic research (e.g., Bailer, Witthöft, & Rist, 2006;

Gaines, Shapiro, Alt, & Benedict, 2006; Yuasa et al., 1995; with loadings up to

.90 or .95). One-factor structures are not uncommon in scientific literature either,

such as in psychometrics, psychiatry, or epidemiology (e.g., general intelligence

factor, self-concept, general distress factor, metabolic syndrome factor). Animal

behavior and behavioral genetics (Preacher & MacCallum, 2002) as well as

evolutionary psychology (Lee, 2007) often offer data with high communalities

and few factors. Outside the field of behavioral sciences, physics and chemistry

can feature data with high reliability. Paradoxically, when high quality data are

likely to occur, researchers seem to think there is no need to resort to latent

structures and prefer deductive reasoning and mathematical modeling instead.

The question is whether dismissing EFA in those cases is not accompanied by

a weaker representation of the reality (Haig, 2005) when neglecting the latent

pattern of the data. EFA is indeterminate by nature, but so is the empirical world.
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