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Within the context of analysis of variance (ANOVA), it
has been well established that heteroscedasticity, skewness,
and outliers (i.e., a point, or points, far from the central point
in the distribution) can have a devastating effect on both
Type I errors and power. Indeed, even with large sample
sizes, classic homoscedastic techniques can be unsatisfac-

tory. Regarding unequal variances, Keselman, Huberty,
et al. (1998) noted that ratios of largest to smallest variances
of 8:1 are not uncommon in educational and psychological
studies and can have deleterious effects on the performance
of many classical test statistics, especially when paired with
unequal sample sizes. Research has shown that the delete-
rious effects of (co)variance heterogeneity on the usual
omnibus ANOVA F and linear contrast tests (Student’s t),
as well as setting confidence intervals (CIs) around effect
size (ES) statistics, generally can be overcome by adopting
Welch (1938, 1951)-type, or other nonpooled, statistics (see
Brown & Forsythe, 1974; Keselman, Kowalchuk, & Lix,
1998; Kohr & Games, 1974; Lix & Keselman, 1998), that
is, statistics that do not pool across heterogeneous sources of
variability and where error degrees of freedom (df) are
estimated from the sample data.

The biasing effects of nonnormality can also generally be
overcome by adopting robust measures of central tendency
and variability, that is, by using trimmed means and Win-
sorized (co)variances rather than the usual least squares
estimators (see Algina, Keselman, & Penfield, 2005a; Lix &
Keselman, 1998; Wilcox, 1997). Adopting a nonrobust
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measure “can give a distorted view of how the typical
individual in one group compares to the typical individual in
another, and about accurate probability coverage, control-
ling the probability of a Type I error, and achieving rela-
tively high power” (Wilcox, 1995, p. 66; see also Wilcox &
Keselman, 2003). By substituting robust measures of loca-
tion (e.g., trimmed mean) and scale (e.g., Winsorized vari-
ance) for the usual mean and variance, it should be possible
to obtain test statistics which are relatively insensitive to the
combined effects of variance heterogeneity and nonnormal-
ity. Many researchers subscribe to the position that infer-
ences pertaining to robust parameters are more valid than
inferences pertaining to the usual least squares parameters
when they are dealing with populations that are nonnormal
in form (e.g., Hample, Ronchetti, Rousseeuw, & Stahel,
1986; Huber, 1981; Staudte & Sheather, 1990; Wilcox,
2005). Indeed, as Marazzi and Ruffieux (1999) noted, “the
(usual) mean is a difficult parameter to estimate well: the
sample mean, which is the natural estimate, is very nonro-
bust” (p. 79). Tukey (1960) suggested that outliers are a
common occurrence in distributions, and others have indi-
cated that skewed distributions frequently depict psycholog-
ical data (e.g., reaction time data).

When trimmed means are being compared, the null hy-
pothesis pertains to the equality of population trimmed
means, that is, the �ts, not the usual population mean �s.
This is an important point for the reader to remember. Some
readers may not want to compare the �ts; however, as just
noted, strong arguments can be made for abandoning tests
comparing the usual means in favor of methods that com-
pare population trimmed means.

Indeed, a number of articles have demonstrated that one
can generally achieve robustness to nonnormality and (co)-
variance heterogeneity in unbalanced independent and cor-
related groups designs by using robust estimators with het-
eroscedastic test statistics and for setting CIs around ES
parameters (Algina et al., 2005a; Keselman, Algina, Wil-
cox, & Kowalchuk, 2000; Keselman, Kowalchuk, & Lix,
1998). Further improvement in Type I error control is often
possible by obtaining critical values for test statistics and
CIs through bootstrap methods. Such improvement has been
demonstrated with statistics and CIs for independent as well
as correlated groups designs (Algina, Keselman, & Penfield,
2005b, 2006; Wilcox, Keselman, & Kowalchuk, 1998).

We use a benchmark of .025 � �̂ � .075 (�̂ is the
empirical rate of Type I error) to define a robust test, when
the criterion of significance is set at � � .05. That is, for a
particular case of nonnormality and/or variance heterogene-
ity, if the empirical rate of Type I error is contained in this
interval, we, as well as many others, consider the procedure
to be insensitive (i.e., not substantially affected) to the
assumption violation(s). However, this criterion (i.e., the
length of the interval) is not universally accepted, and other
researchers/writers use other criteria to assess robustness,

for example, �2��. That is, the issue of robustness, invari-
ably, involves subjective decisions (e.g., How disparate do
variances have to be before a distortion will occur in the
probability of committing a Type I error? How much power
should be sacrificed in order to ensure the rate of Type I
error is maintained below � � .05?, etc.). Nonetheless, the
robust methods that we present often do provide better Type
I error protection and/or power to detect effects than do the
classical methods and therefore, we maintain, should seri-
ously be considered by applied researchers. As well, we
note that we are not discounting other methods of analy-
sis—nonparametric, rank transformation, quantile distribu-
tion comparisons, and so on.

At the outset we want to be quite specific about our claim
that by adopting nonpooled test statistics with trimmed
means and Winsorized variances and a bootstrapping meth-
odology researchers will “generally” obtain better Type I
error protection, increased power to detect effects, and more
precise CIs. In particular, we are not saying that the methods
we are about to describe always result in these benefits.
What we are saying though, is that, based on the empirical
literature (as cited in this article), by adopting the proce-
dures enumerated it will be the case that typically these
outcomes will be observed compared with the outcomes
(i.e., inflated or depressed rates of Type I error, decreases in
power to detect effects, and inaccurate probability coverage
for CIs) when pooled statistics and the usual least squares
estimators are used and critical values are obtained from
theoretical sampling distributions. For example, the Type I
error rate for the methods we describe will not always be
equal to .05 (for a 5% significance level), but typically will
be closer to .05 than will the Type I error rate for classical
methods. Furthermore, the empirical literature does not, and
cannot, report results for every imaginable case of variance
heterogeneity and nonnormality that researchers may en-
counter. Nonetheless, the cases that have been examined
(i.e., variances that are quite disparate and cases of nonnor-
mality including symmetric and asymmetric distributions)
have included a diverse set of conditions that may be
encountered in practice.

Other methods of analysis may, for a particular data set,
provide better Type I error control and power to detect
effects. That is, applied researchers have available to them
a plethora of data analytic methods to apply in any one
research investigation: the classical general linear model
methods, nonparametric methods, rank transformation
methods, as well as other robust methods of estimation and
testing, and so on. In the ideal application of data analytic
methods, a careful examination of the data regarding metric
of measurement(s), shape of distribution(s), dispersion of
the data, outlying values, and so on, should be undertaken
by the data analyst—an ideal that we strongly endorse.
However, our experience suggests that, more often than not,
researchers apply a method of analysis that they are familiar
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with, such as omnibus and specific tests from one perspec-
tive of data analysis, for example, omnibus and contrast
tests based on the classical general linear model perspective.
We believe such a strategy is understandable since most
data analysts would certainly not be fluent in the myriad of
analysis strategies that could be applied to their data and
thus would rely on systems that they are most familiar
with—those taught in most introductory graduate-level pro-
grams in psychology and education departments. What we
attempt to accomplish in this article is to present another
framework for data analysis, methods of analysis (i.e., ro-
bust estimation and testing) that, though discussed for many
decades, still are not very familiar to most applied research-
ers. Thus, we present methods that rely on another method
of estimation (i.e., trimmed means) and general test statistic
(i.e., one that does not pool variances). Lastly, we integrate
into this framework a unified approach for setting robust CIs
around ES statistics.

In this article, we elaborate on the benefits of adopting robust
estimators and test statistics instead of the classical methods for
testing hypotheses and for setting intervals around robust ES
statistics, and we indicate when bootstrap methods are superior
to classical methods for determining critical values for test
statistics and/or for setting CI limits. These topics are discussed
both for independent and correlated groups designs. We illus-
trate through a series of online resources (see the supplemental
materials and http://home.cc.umanitoba.ca/�lixlm/home.cc.
umanitoba.ca/�lixlm/) how researchers can obtain numeric
results by using a new SAS program. As a further resource,
Wilcox (2005) presents a nontechnical exposition of robust
estimation and testing, by using R and S� software.

Comparing Two Independent Groups

Hypothesis Testing

To introduce the ideas in a simple context, we consider an
example in which subjects are randomly assigned to two
experimental treatments designed to affect beliefs about
constructivist approaches to teaching mathematics. The data
(the Yis; i � 1, . . . , nj) are scores on a measure of subjects’
engagement in the reading materials that constitute the
treatments.

A commonly used approach for comparing the means for
two different groups is the independent samples t test. The
test is based on the following assumptions:

1a. The data used to estimate the mean for one group
are statistically independent of the data used to
estimate the mean for the other group.

1b. Within each of the groups, the data contributed
by different sampling units are statistically inde-
pendent of one another.

2. The data in each group are drawn from a normal
distribution.

3. The two populations from which the samples are
drawn have equal variances.

Histograms of the data for the two groups are presented in
Figure 1, and various descriptive statistics are presented in
Table 1. These results suggest several important features of
the data. First, both the plots and the skew and kurtosis
statistics indicate the data are not drawn form normal dis-
tributions. Second, both plots suggest the presence of out-
lying data points. (Users can also use box plots to identify
outliers. See also Wilcox, 2005, pp. 99–101, for other
outlier detection procedures.) Third, the standard deviations
suggest the treatments affected the variability of the data.
Thus, it appears that both the second and third assumptions
have been violated.

Violation of the equal variance assumption can negatively
impact the Type I error rate of the test (Ramsey, 1980). That
is, when the sample sizes are equal but small, perhaps seven
or fewer, and the null hypothesis is true, violating the equal
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Figure 1. Histograms of percent correct scores for the control
and experimental groups.
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variance assumption can result in a spuriously large t sta-
tistic and, consequently, the Type I error rate of the test can
be larger than the alpha level used to assess the test for
statistical significance. If the sample sizes are not equal, the
null hypothesis is true, and the equal variance assumption is
violated, then t tends to be spuriously large in magnitude
when the larger sample size is drawn from the less variable
population and spuriously small when the smaller sample
size is drawn from the more variable population. These
effects occur regardless of whether the sample sizes are
small or large.

Violation of the normality assumption can also have a
deleterious effect on the Type I error rate of the independent
samples t test. Although the Type I error rate is widely
viewed as being relatively unaffected by nonnormality,
Bradley (1980) has pointed out conditions in which this is
not true. Perhaps more important, when the data are drawn
from nonnormal distributions, power can be increased by
using an appropriate alternative to the independent samples
t test. It seems shortsighted to use a familiar test (i.e., the t
test) when another will provide more power.

Although the formula for the t statistic is well known, we
report it here for purposes of comparison with another
approach we will consider. The formula is

t �
�̂1 � �̂2

��̂P
2� 1

n1
�

1

n2
�, (1)

where

�̂P
2 �

�n1 � 1	�̂1
2 � �n2 � 1	�̂2

2

N � 2
(2)

is the pooled estimate of error variance, nj, �̂j, and �̂j
2 are the

sample size (N � 
jnj), sample mean, and sample variance,
respectively, for the jth treatment (j � 1, 2). Given the
characteristics of the data in the present example, it is
unlikely that the t statistic is a correct approach for analyz-
ing the data. Nevertheless, for illustrative purposes, we
conducted the test and found t(43) � 1.79, p � .08, indi-
cating that the evidence is not sufficient to conclude there is
a treatment effect.

An alternative to the independent sample t test that might
be considered for these data is the Welch (1938)–James
(1951) test, which is designed to address inequality of
variance. For the two-group situation, the formula for the
test statistic is

tWJ �
�̂1 � �̂2

��̂1
2

n1
�

�̂2
2

n2

. (3)

The denominator for tWJ allows for the possibility that the
samples may have been drawn from populations with un-
equal variances. Comparison of the formulas for t and tWJ

indicates the difference between the two statistics is in the
way the sample variances enter the statistics.

Several authors have presented methods for obtaining the
df for tWJ (Aspin, 1947; Welch, 1938, 1947). None of the
formulas provide absolutely correct dfs, and, thus, they are
referred to as approximate df (ADF). The formula that is
most widely used is due to Welch (1938):

� �

��1
2

n1
�

�2
2

n2
� 2

�1
4

n1
2�n1 � 1	

�
�2

4

n2
2�n2 � 1	

. (4)

In practice, sample variances are substituted for the popu-
lation variances. For the current example, tWJ(32.9) � 1.79,
p � .08. Both the test statistic and the p value are very
similar to those for the independent samples t test. This
occurs because the sample sizes for the two groups are
nearly equal.

If the equal variance assumption is violated but the data
are sampled from normal distributions, the Welch (1938)–
James (1951) statistic should provide a more adequate anal-
ysis than does the independent samples t test. However,
which analysis is likely to be better when both assumptions
are met? Although the independent samples t test has a
slight advantage in terms of both the Type I error rate and
power, the performance of the two tests is very similar. This
is important because it has been shown (Wilcox, Charlin, &
Thompson, 1986) that tests for variance homogeneity often
do not have enough power to detect situations in which
there is an advantage to using the Welch–James test (see
also Wilcox, 2003, p. 298). Thus, if nonnormality were not
a concern, we would argue that the Welch–James procedure
should always be used in place of the independent samples
t test.

Table 2 summarizes several approaches, including the
Welch (1938)–James (1951) test that could be used to
analyze the data in our example. As indicated by the table,
the four alternatives differ in terms of whether least squares
means and variances or trimmed means and Winsorized
variances are used, and in terms of whether the t distribution

Table 1
Descriptive Statistics by Group

Group

Group

Control Experimental

N 23 22
M 59.7 68.0
SD 10.8 19.1
Skew 2.0 –0.6
Kurtosis 8.0 0.1
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or bootstrap methodology is used to compute the p value. In
Table 2, a least squares mean refers to the common method
for calculating a sample mean,

�̂j �

�
i�1

nj

Yij

nj
(5)

and a least squares variance refers to the common method
for computing a variance

�̂j
2 �

�
i�1

nj

�Yij � �̂j	
2

nj � 1
. (6)

On the other hand, to compute a trimmed mean, one re-
moves an a priori determined percentage of the largest and
smallest observations and computes the mean from the
remaining observations.1 If the target percentage to be re-
moved is 2c, the number of observations removed from each
tail of the distribution is the integer that is just smaller than
c � nj. Denote this integer by gj. The smallest gj observa-
tions are removed, as are the largest gj observations. We
denote a sample trimmed mean by �̂tj and refer to it as the
c% trimmed mean. A common trimming percentage is 20%,
meaning that, in total, 40% of the data is trimmed. Based on
various considerations, we recommend, and use as the de-
fault option in our SAS program, 20% symmetric trimming;
see Wilcox (2005, p. 57) for a justification of 20% trim-
ming.

When trimmed means are introduced to researchers, a
common reaction is that one throws away data when the
trimmed means are used and therefore the trimmed mean
cannot be a better choice than the usual least squares mean.
However, the fact of the matter is that the trimmed mean has
advantages that the least squares mean does not. Consider a
situation in which the sampled distribution is symmetric.
Then both the trimmed mean and least squares mean esti-
mate the same parameter, the population mean, and an
important criterion for selecting between the two estimators
is the standard error. It can be shown that when the data are
sampled from a long-tailed distribution, the trimmed mean
will have a smaller standard error than does the mean.

Granted, if the data are sampled from a short-tailed or
normal distribution, the mean will have a smaller standard
error. However, the advantage for the mean under these
conditions is often not large, whereas the advantage for the
trimmed mean can be substantial when the data are sampled
from a long-tailed distribution. Thus, one argument for the
trimmed mean is that it can have a substantial advantage in
terms of accuracy of estimation when sampling from long-
tailed symmetric distributions, although it has a slight dis-
advantage when sampling from normal and short-tailed
distributions.

Additionally, the trimmed mean is preferable when the
data are subject to outliers. In contrast, the mean is not
resistant to outliers and a single outlying observation can
destroy its effectiveness as an estimator. A 20% trimmed
mean will work well provided that fewer than 40% of the
observations are outliers. If the distribution from which the
data are sampled is skewed, the argument against the mean
is that it is not a good indicator of the central point of the
distribution because the extreme scores drag it away from
the center. Because the trimmed distribution will be more
nearly symmetric than is the nontrimmed distribution, the
trimmed mean will be a better indicator of the center of the
distribution. We find these arguments for using the trimmed
mean, rather than the mean, persuasive. Nevertheless, some
may not. However, researchers who use the mean should be
aware that they are using an estimator that has poor accu-
racy (in some situations), is not resistant to outliers, and
may not be a good indicator of the center of the distribution.

To compute a Winsorized variance, the smallest non-
trimmed score replaces the scores trimmed from the lower
tail of the distribution, and the largest nontrimmed score
replaces the scores removed from the upper tail. The non-
trimmed and replaced scores are called Winsorized scores.
A Winsorized mean is calculated by applying the usual
formula for the mean to the Winsorized scores, and a
Winsorized variance is calculated as the sum of squared
deviations of Winsorized scores from the Winsorized mean
divided by nj – 1. The Winsorized variance is used because
it can be shown that the standard error of a trimmed mean
is a function of the Winsorized variance (Wilcox, 2005). We
denote a sample Winsorized variance by �̂Wj

2 . See Wilcox
(2003) for formulas corresponding to our verbal descrip-
tions of the trimmed mean and Winsorized variance.

1 Note that the class of trimmed means contains the median as
a special case. However, a concern about the median is that it trims
too much, possibly resulting in relatively low power. This occurs
under normality and has the potential of occurring when outliers
tend to be rare. By trimming 20%, good power is obtained under
normality, and power can remain relatively high when sampling
from heavy-tailed distributions.

Table 2
Approaches to Data Analysis Based on Least Squares and Robust
Estimators and Theoretical and Bootstrap Critical Values

Means and variances

p value

t distribution Bootstrap

Least squares tWJ t*WJ

Trimmed means and Winsorized
variances tWJt

t*
WJt
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Let

�̃Wj

2 �
�nj � 1	�̂Wj

2

hj � 1
(7)

be the scaled Winsorized variance, where hj stands for the
effective sample size, that is, the size after trimming the
data. In computing the robust Welch–James statistic with
robust estimators, the quantity �̃Wj

2 plays the role that �̂j
2

plays in computing the Welch (1938)–James (1951) statistic
based on least squares estimators. Specifically, the robust
Welch–James statistic is

tWJt �
�̂t1 � �̂t2

��̃w1

2

h1
�

�̃w2

2

h2

. (8)

If the t distribution is used to compute the p value, then the
estimated dfs are

v̂t �

��̃W1

2

h1
�

�̃W2

2

h2
�2

�̃W1

4

h1
2�h1 � 1	

�
�̃W2

4

h2
2�h2 � 1	

. (9)

We emphasize that the approach adopted here is based on an
a priori trimming percentage. Inspecting the data for outli-
ers, deleting the data points identified as outliers, and then
using a procedure such as the independent samples t test or
the Welch–James test is likely to result in misleading infer-
ences because the procedure fails to take into account the
post hoc nature of the trimming. In particular, the standard
errors of the mean differences (i.e., the denominator of t or
tWJ) will be incorrect because these standard errors were
developed for situations in which trimming does not take
place.

The trimmed means (�̂tj),Winsorized standard deviations
(�̂Wj

), and scaled Winsorized standard deviations (�̃Wj
), for

the data shown in Figure 1, are reported in Table 3. The
mean difference is 68.0 – 59.7 � 8.3 and the trimmed mean
difference is 69.8 – 59.8 � 10.0. Thus, trimming results in
a larger estimate of the treatment effect (expressed on the
scale for the data). In addition, the Winsorized variances are
smaller than the least squares variances, primarily because

trimming removed the influence of the outliers in the data.
When tWJt

is used and the p value is computed by using the
t distribution, tWJt

(15.52) � 2.68 and p � .02. Thus, using
trimmed means and scaled Winsorized variances (i.e., tWJt

)
results in sufficient evidence to conclude there is a treatment
effect, whereas using tWJ did not. This result is consistent
with results in the literature demonstrating superior power
when trimmed means and Winsorized variances are used.2

Thus far we have illustrated inferential procedures that
differ in terms of the means and variances used to compute
the t statistic but which use the theoretical t distribution to
obtain the p value. The other two alternatives enumerated in
Table 2 also differ in terms of the means and variances used
to compute the t statistic, but in each a nonparametric
bootstrap is used to compute the p value. The strategy
behind our use of the bootstrap in hypothesis testing is to
shift the sample distributions of the scores for each group
and variable by subtracting the group mean (least squares or
trimmed) from each score and using the shifted empirical
distributions to estimate an appropriate critical value. In
particular, for each j, obtain a bootstrap sample by randomly
sampling with replacement nj observations from the shifted
values, yielding Y*

1, . . . , Y*
nj

. Let t* be the value of a test
statistic (tWJ or tWJt

) based on the bootstrap sample. For a
two-tailed test, the B values of �t*�, where B represents the
number of bootstrap simulations, are put in ascending order,
that is, �t*

(1)� � . . . � �t*
(B)�, and an estimate of an appro-

priate critical value is �t*
WJt(q)

�, q � (1 – �)B, rounded to the
nearest integer. One will reject H0: �1 � �2 or H0: �t1 � �t2

when �t� � �t*
(q)�, where �t� is the value of the heteroscedastic

statistic (tWJ or tWJt
) based on the original nonbootstrapped

data. Recall that tWJ � 1.79 and tWJt
� 2.68. Applying the

bootstrap procedure to compute the p value for tWJ � 1.79
yields p � .08, the same as was obtained by using the t
distribution. Applying the bootstrap procedure to tWJt

yields
p � .01. Thus, for tWJt

, the p value is smaller when com-
puted by the bootstrap than when obtained by using the
theoretical t distribution (see Footnote 2).

To sum up, applying the independent samples t test or the
Welch (1938)–James (1951) test resulted in nonsignificant
evidence for a treatment effect. For the Welch–James test,
this result was obtained both when the p value was obtained
by using the t distribution and by using the bootstrap.
Applying the Welch–James test to trimmed means and
Winsorized variances resulted in significant evidence of a

2 We cannot emphasize enough that the results of our numerical
example should not be taken to mean that with all data sets the
relative outcomes between classical methods and robust methods
will always lead to a similar conclusion, that is, results favoring the
robust method of analysis. Moreover when we say our numerical
results are consistent with the statistical literature in regard to how
classical and robust methods perform, we do not mean that our
numerical results prove that the statistical literature is correct.

Table 3
Descriptive Statistics by Group

Group N
Trimmed

M
Winsorized

SD

Scaled
Winsorized

SDa

Control 22 58.8 3.77 4.73
Experimental 23 69.8 11.51 14.63
a�̃Wj

.
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treatment effect, both when the p value was obtained by
using the t distribution and by using the bootstrap. The p
value computed by using the bootstrap was slightly smaller.
This difference, obtained by using trimmed means and
Winsorized variances, most likely occurred because of the
outliers in the data. As well, the difference resulting from
using the bootstrap most likely occurred because the data
appear to be drawn from nonnormal distributions, particu-
larly for the experimental treatment group.

CIs for ESs

Since the 1960s, recommendations to report an ES in
addition to, or in place of, a hypothesis test have been
proposed (e.g., Cohen, 1965; Hays, 1963). In perhaps the
past 15 years or so, there has been renewed emphasis on
reporting ESs because of editorial policies (e.g., Murphy,
1997; Thompson, 1994) and official support for the practice.
The practice of reporting ESs has also received support
from the American Psychological Association Task Force
on Statistical Inference (Wilkinson and the Task Force on
Statistical Inference, 1999). According to the Publication
Manual of the American Psychological Association (2001),
“it is almost always necessary to include some index of ES
or strength of relationship in your Results section” (p. 25).
An interest in reporting CIs for ESs has accompanied the
emphasis on ESs. Cumming and Finch (2001), for example,
presented a primer of CIs for ESs (see also Smithson, 2003;
Steiger, 2004). Bird (2002) presented software for calculat-
ing approximate CIs for a wide variety of ANOVA designs.

A commonly reported ES for measuring the size of effect
between two treatment groups is Cohen’s (1965) d:

d �
�̂2 � �̂1

�̂P
. (10)

In this context we refer to �̂P as the standardizer.3,4 Cohen’s
d estimates


 �
�2 � �1

�
, (11)

where �, the population standard deviation, is assumed to be
equal for both groups.5 (Table 4 summarizes the ES esti-
mators and parameters defined in this article.)

Researchers might consider �̂P and � to be the “natural”
standardizers for ES. However, there is no one universally
appropriate standardizer. Indeed, as Kline (2004, pp. 97–98)
noted, “There is more than one possible population standard
deviation for a comparative study.” For example, the stan-
dardizer “could be the standard deviation in just one of the
populations [the view taken by Glass et al. (1965)]” (itali-
cized words are our own), and with regard to the sample
estimator, Kline noted that an estimate of the standardizer
“is not the same in all kinds of d statistics.” This is impor-

tant to keep in mind as we define our robust ES parameters
and sample estimators. It further highlights that reporting
ESs can be as complicated, and potentially as fraught with
problems, as is the use of test statistics for assessing the
presence of a treatment. Indeed, as we are about to illustrate,
defining and estimating an ES is particularly problematic
when variances are not homogeneous.

In addition to other measures of ES that have received
attention in the literature, the American Psychological As-
sociation Task Force on Statistical Inference (Wilkinson
and the Task Force on Statistical Inference, 1999) indicated
that ES may be expressed in dependent variable units when
such units are interpretable. Thus, our accompanying SAS
program also allows users to obtain ES estimators expressed
in dependent variable units. Our view, however, is that
scales of measurement in psychological research are, with
few exceptions, arbitrary, and thus standardized measures of
ES are appropriate. However, when the scale is not arbitrary
(e.g., reaction time data recorded in milliseconds), a non-
standardized ES may be computed (i.e., the value of a
contrast among means). Indeed, when it is appropriate to
report an ES in dependent variable units, one no longer
faces the issue of what is the correct standardizer.

It is known (see, e.g., Cumming & Finch, 2001; Steiger &
Fouladi, 1997) that when the sample data are drawn from
normal distributions, the variances of the populations are
equal, and the scores are independently distributed, then an
exact CI for the population ES (i.e., 
) can be constructed by
using the noncentral t distribution. For the current example,
d � 0.54; and a 95% CI for 
 � [–0.06, 1.13]. The value for
d suggests the effect is of moderate size using Cohen’s
guidelines. Furthermore, the CI indicates the ES is impre-
cisely estimated and is consistent with an ES ranging from
a trivial value to a very large value.

Cohen’s (1965) ES is based on the homogeneity of vari-
ance assumption. When this assumption is likely to be

3 Cohen used the Latin letter d to refer to the population ES.
Following more typical practice, we use d to refer to the sample ES
and the Greek letter 
 to refer to the population ES.

4 Other, less popular, measures of ES have been proposed by
Cliff (1993, 1996); Hedges and Olkin (1985); Kraemer and An-
drews (1982); McGraw and Wong (1992); Vargha and Delaney
(2000); and Wilcox and Muska (1999); see Hogarty and Kromrey
(2001) for the definitions of these procedures.

5 The reader should remember that d, as given in Equation 10,
and 
, as given in Equation 11, assume variance homogeneity and,
thus, given equal group sizes, Equation 11 can be written as


 �
�2 � �1

���1
2 � �2

2	/2
,

while Equation 10 could be written as

d �
�̂2 � �̂1

���̂1
2 � �̂2

2	/2
.
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Table 4
Effect Size Statistics and Parameters

Estimator Eq Parameter Eq Comments

Independent Groups Designs
�̂2 – �̂1

� �2 – �1
� A nonstandardized measure of ES expressed in the original

measurement units. When the measurement scale is not
arbitrary (e.g., reaction time), this would be an
appropriate measure of ES and the issue of a
standardizer is no longer relevant.

d �
�̂2 � �̂1

�̂P

10

 �

�2 � �1

�

11 Cohen’s (1965) ES estimator and parameter that assumes
equality of variances. When homogeneity is violated,
and the sample sizes are unequal, Cohen’s estimator will
be biased.

�̂2 � �̂1

�n1�̂1
2 � n2�̂2

2

N

14 �2 � �1

�n1�1
2 � n2�2

2

N

15 For the case of unequal variances, Kulinska and Staudte
(2006) suggested a weighted sum of the group variances
(i.e., variances are pooled). The estimate and parameter
is sample size (design) dependent.


̂* �
�̂2 � �̂1

��̂1
2 � �̂2

2

2

16

* �

�2 � �1

��1
2 � �2

2

2

� This alternative uses an unweighted average of the
variances as the standardizer. This estimator and
parameter have been popular choices for data analysts.
Note, however, that variances are pooled.


̂j �
�̂2 � �̂1

�̂j

17

j �

�2 � �1

�j

18 The Glass et al. (1981) estimator and parameter. A
nonpooled standardizer, e.g., �̂1 or �̂2, or both, is used.
It is this approach that is preferred by the authors of this
article.


̂Rj � .642
�̂t2 � �̂t1

�̂Wj

19

Rj � .642

�t2 � �t1

�Wj

20 Robust versions of (17) and (18); that is, the estimator and
statistic are based on trimmed means and a Winsorized
variance. A bootstrap critical value (CV) is
recommended. This is our recommended approach.


̂Rj � .642
�̂

�̂Wj

�


Rj � .642
�

�Wj

� Generalizations of (19) and (20), allowing for a
nonpairwise contrast — � � c1�1 � c2�2 � . . . �
cJ�J — where 
jcj � 0 in the numerator.


̂*
R �

�̂t2 � �̂t1

��̂W1

2 � �̂W2

2

2

22

*

R �
�t2 � �t1

��W1

2 � �W2

2

2

21 Robust analogues of (16) and 
*. A bootstrap CV is
recommended. However, (Winsorized) variances are
pooled.

Correlated Groups Designs
�̂t2 – �̂t1

� �t2 – �t1
� A nonstandardized measure of ES expressed in the original

measurement units.


̂R
† � .642

�̂t2 � �̂t1

��̂W1

2 � �̂W2

2

2

28

R

† � .642
�t2 � �t1

��W1

2 � �W2

2

2

27 Analogues of (21) and (22). A bootstrap CV is
recommended. However, (Winsorized) variances are
pooled.


̂k �
�̂2 � �̂1

�̂k

29

k �

�2 � �1

�k

30 Estimator and parameter based on least squares values and
a nonpooled standardizer. A bootstrap CV is
recommended.


̂Rk � .642
�̂t2 � �̂t2

�̂Wk

32

Rk � .642

�t2 � �t2

�Wk

31 Analogues of (19) and (20). That is, the standardizer uses
a single Winsorized variance. A bootstrap CV is
recommended. Our analogue of the Glass et al. (1981)
approach.


̂Rk � .642
�̂

�̂Wk

�


Rk � .642
�

�Wk

� Generalizations of (31) and (32), allowing for a
nonpairwise contrast — � � c1�1 � c2�2 � . . . �
cK�K — where 
kck � 0 in the numerator.

Note. � denotes an equation that is implied, not defined, in the article. Estimators and parameters whose equation numbers are bolded are those procedures
that we recommend.
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violated and the sample sizes are unequal, Cohen’s ES is not
appropriate because the parameter one estimates changes
depending on the sample sizes. This problem occurs be-
cause the standardizer is the pooled standard deviation and
estimates

��n1 � 1	�1
2 � �n2 � 1	�2

2

N � 2
. (12)

For the case of unequal variances, Kulinska and Staudte
(2006) suggested a squared ES, standardizing by a weighted
sum of the group variances:

�̂ �
��̂2 � �̂1	

2

n1�̂1
2 � n2�̂2

2

N

. (13)

The Kulinska and Staudte ES is a squared quantity but can
be converted to a nonsquared quantity:

��̂ �
�̂2 � �̂1

�n1�̂1
2 � n2�̂2

2

N

, (14)

which estimates

�2 � �1

�n1�1
2 � n2�2

2

N

. (15)

We believe that general use of the Kulinska and Staudte ES
is unwise, for the same reason we do not recommend the use
of Cohen’s ES statistic when population variances are un-
equal. An obvious alternative to d uses the unweighted
average of the variances as the standardizer:


̂* �
�̂2 � �̂1

��̂1
2 � �̂2

2

2

. (16)

Of the two, 
̂* seems the most useful in that it does not result
in an ES whose population value depends on the design.

An alternative definition of the ES, based on the standard
deviation for the jth group, is


̂j �
�̂2 � �̂1

�̂j
, (17)

which estimates


j �
�2 � �1

�j
. (18)

One could use the standard deviation (standardizer) for
either group. Referring to a case in which 
̂1 and 
̂2 are not

equal, Glass et al. (1981) noted, “These facts are not con-
tradictory; they are two distinct features of a finding which
cannot be expressed by one number” (p. 107). In writing
about the choice between 
̂j and an ES defined as the mean
difference divided by the average standard deviation, Glass
et al. wrote “the average standard deviation should proba-
bly be eliminated as a mindless statistical reaction to a
perplexing choice” (p. 106; italicized words indicate our
own emphasis). Although we recognize that the selection of
one of the two standard deviations could be, in many cases,
a difficult substantive decision, our preference, like that of
Glass et al., is for 
̂j. Regardless of whether 
̂j or 
̂* is used,
the same issues arise for construction of a CI: Should the CI
be based on a distributional assumption or should the boot-
strap be used? Thus far the relative performance of these
alternative methods for constructing CIs has not been in-
vestigated in connection with 
̂*.6

When 
̂j is used, the CI for d is no longer correct. As with
hypothesis testing, there are two alternatives for construct-
ing a CI based on 
̂j. Under the assumptions that the data in
each group are normally distributed, and all data are dis-
tributed independently, an approximate CI for 
j based on a
noncentral t distribution can be derived. However, the in-
terval is based on normal distribution theory. This normality
assumption is likely to be problematic because �̂2 – �̂1 and
�̂j are not independent when the distribution is skewed for
the jth treatment. For example, if the distribution is posi-
tively skewed for the first treatment, the correlation between
�̂2 – �̂1 and �̂1 will be negative. Therefore, large values for
�̂2 – �̂1 will tend to be associated with small values for �̂1,
and 
̂1 will tend to be positively biased. Moreover, the
distribution theory used in deriving the CI will no longer
apply. As a result, the CI may not have the correct proba-
bility coverage (Algina et al., 2006). (Kelly, 2005, presented
similar results for the CI for Cohen’s 
 based on a noncen-
tral t distribution.)

An alternative to the noncentral t-based approximate CI
for 
j is to use the nonparametric percentile bootstrap

6 As we indicate, the choice of standardizer is not a statistical
issue but rather a conceptual one. Also, though our preference is to
compute a robust version of 
̂j, we, nonetheless, recognize that
others might want to compute 
̂*. Thus, our SAS program (SAS
Institute, 1999) allows users to compute this statistic for each
design illustrated in the article. In particular, the program will
compute the standardizer as the average of the variances over the
cells involved in the contrast. Furthermore, the program uses our
bootstrap methodology to set a CI around the unknown parameter

*. However, we once again remind the reader that, though we
suspect this CI would be generally robust to heterogeneity, there is
no proof that this is indeed the case.
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method to construct a CI for 
j.
7 To apply the percentile

bootstrapping method for setting CIs around a parameter of
ES, first, a random sample with replacement of size n1 is
selected from the scores for the first group. Second, a
random sample with replacement of size n2 is selected from
the scores for the second group. These two samples are
combined to form a bootstrap sample. The ES (i.e., 
̂j) is
then calculated from the bootstrap sample. The ES estimates
for all bootstrap samples are ranked from low to high. The
lower limit of the 100(1 – �)% CI is determined by finding
the [�B(�/ 2)� � 1]th estimate in the rank order, where
�B(�/ 2)� indicates rounding B(�/2) to the nearest whole
number; the upper limit would be determined by finding the
[B � �B(�/ 2)�]th estimate in the rank order.8

Applying 
̂1 in the present example, the ES is 0.77 and
indicates the mean difference is about eight tenths of a
standard deviation for the first treatment. The ES 
̂2 is 0.44
and indicates the mean difference is a bit larger than four
tenths of a standard deviation for the second treatment.
These results reflect the fact that data are much less variable
for the first treatment group. The ES 
̂* � 0.54 and is
approximately midway between 
̂1 and 
̂2. Ninety-five per-
cent CIs, constructed by using the noncentral t distribution
and the percentile bootstrap, are [–0.11, 1.64]; and [–0.08,
2.71]; respectively for 
1. The wider interval constructed by
using the bootstrap is consistent with results in Algina et al.
(2006) indicating that when the second group was more
variable than the first, and data were sampled from nonnor-
mal distributions, coverage probability was too small for
both the noncentral t distribution based CI and the percentile
bootstrap CI, but coverage probability was worse for the
noncentral t distribution based CI. The 95% CIs for 
2 are
[–0.06, 0.92]; and [–0.04, 1.11]. In addition, a 95% percen-
tile bootstrap CI for 
* is [–0.04, 1.43]. It should be noted
that despite the differences in ESs and the CIs, the results
are consistent with hypothesis testing using least square
means and variances: There is not sufficient evidence to
claim a treatment effect (see Footnote 2).

Wilcox and Keselman (2003) argued that the common
population definition and sample estimate of ES (i.e., 
 and
d or 
j and 
̂j for the two-group problem), based on least
squares estimators, are not robust to distribution shape. That
is, skewed distributions and distributions containing outliers
can cause the population ES value and its estimate to be
grossly misleading (Wilcox, 2003, Section 8.11). One rea-
sonable alternative is to replace the least squares estimates
in 
̂j with robust estimates. Accordingly, in place of 
̂j, we
suggest using


̂Rj
� .642

�̂t2 � �̂t1

�̂Wj

, (19)

where .642 is the Winsorized standard deviation for a 20%
trimmed standard normal distribution. The ES 
̂Rj

estimates


Rj
� .642

�t2 � �t1

�Wj

. (20)

For a normal distribution, both 
̂Rj
and 
̂j converge to 
j as

the sample sizes increase.9 Again there are two alternatives
for constructing a CI, a CI constructed by using the non-
central t distribution and a CI constructed by using the
percentile bootstrap. Algina et al. (2006) found, however,

7 Other bootstrapping methods are available such as the bias-
corrected and accelerated bootstrap. Because all of the research
that we are familiar with uses the percentile bootstrap, that is the
method that is employed in our SAS program. Future work could
result in our adopting another bootstrap method.

8 To elaborate suppose B � 1,000 ES estimates are ranked from
low to high. The lower limit of the CI is determined by finding the
26th estimate in the rank order (i.e., the estimate just larger than
the 0.025 � 1,000th estimate); the upper limit is determined by
finding the 975th estimate (i.e., the 0.975 � 1,000th estimate). Use
of the [B(�/2) � 1]th and B[(1 – �)/2]th values as the percentiles
is based on Wilcox (2003, p. 211) and defines the 95% CI as the
range of the bootstrap distribution containing the middle 950
bootstrap estimates.

9 One question that might be asked about 
Rj
is whether it is

necessary to multiply

�t2 � �t1

�Wj

by .642 to obtain a robust parameter. The answer is no. In

�t2 � �t1

�Wj

,

the difference between the trimmed means is divided by the
Winsorized standard deviation. By contrast, for 
Rj

the difference
between the trimmed means is divided by a rescaled Winsorized
standard deviation. The rescaled Winsorized standard deviation is
a consistent estimator of the usual standard deviation

� � �E�X � �	2

when the data are normal. This kind of rescaling is not unusual in
robust statistics. For example, the median absolute deviation is
often divided by .6745 so that it estimates the usual standard
deviation when the data are sampled from a normal distribution
(see Wilcox, 2005). Deleting .642 would make the interpretation of
�t2 � �t1/�Wj

analogous to that of 
Rj
: �t2 � �t1/�Wj

is the number
of Winsorized standard deviations that separate the trimmed
means. However, deleting .642 would also mean that the ES would
not equal 
Rj

when the data are normal. Moreover, when the 20%
trimmed distribution is similar in shape to a 20% trimmed normal
distribution (just what trimming is intended to accomplish), using
.642 will put the ES on a scale that is similar to the scale of
Cohen’s (1965) ES. Not using .642 means that the ES will not be
on a familiar scale in any situation. In addition, as was true in
regard to the interpretation of 
, the meaning of 
Rj

will emerge
from repeated use of the ES.
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that the first approach (i.e., using robust estimators with the
noncentral t limits) can result in inaccurate confidence co-
efficients when data are nonnormal. They also found that a
robust CI can be obtained by using a percentile bootstrap
method for empirically determining the limits of the inter-
val.

For the current example 
̂R1
� 1.87. This ES is much

larger than 
̂1 � 0.77 because the Winsorized standard
deviation is much smaller than the least squares standard
deviation. From the point of view of robust estimation, the
least squares standard deviation is too large because of the
influence of outliers on the estimate, and defining the ES by
using a robust measure of spread is preferable. CIs for 
R1

,
constructed by using the noncentral t distribution and the
percentile bootstrap are [0.31, 3.37]; and [0.26, 3.87]; re-
spectively. As with the CIs for 
1, the bootstrap results in a
wider interval. This result is again consistent with results in
Algina et al. (2006) indicating that when the second group
was more variable than the first and the data were sampled
from nonnormal distributions, coverage probability was too
small for the CI based on the noncentral t distribution. The
ES 
̂R2

is 0.61 and the CIs are [0.10, 1.11]; and [0.07, 1.35].
We can define a robust version of 
*:


*
R �

�t2 � �t1

��W1

2 � �W2

2

2

, (21)

which is estimated by


̂*
R �

�̂t2 � �̂t1

��̂W1

2 � �̂W2

2

2

. (22)

For the example data, we find 
̂*
R � 0.82, and a 95%

bootstrap CI for 
̂*
R is [0.09, 1.57]. Despite the differences in

ESs and the CIs, the CIs are consistent with hypothesis
testing using trimmed means and Winsorized variances:
There is sufficient evidence to claim a treatment effect (see
Footnote 2).

A General ADF Test Statistic

Methods that generally give improved power and better
control over the probability of a Type I error can be formu-
lated within the framework of the general linear model
(GLM) ADF perspective.10 Lix and Keselman (1995)
showed how the various Welch (1938, 1951) statistics that
appear in the literature for testing omnibus main and inter-
action effects, as well as focused hypotheses using contrasts
in univariate and multivariate independent and correlated
groups designs, can be formulated from a GLM ADF per-
spective, thus allowing researchers to apply one statistical
procedure to any testable model effect. We adopt their

approach in this article and begin by presenting, in abbre-
viated form, its mathematical underpinnings.

Consider the linear model:

Y � X� � �, (23)

where Y is an N � p matrix of scores on p dependent
variables or p repeated measurements, N is the total sample
size, X is an N � r design matrix consisting entirely of zeros
and ones, � is an r � p matrix of population means, and �
is an N � p matrix of random error components. Let Yj (j �
1, . . . , r) denote the nj � p submatrix of Y containing the
scores associated with the nj subjects in the jth group (cell).
It is typically assumed that the rows of Yj are independently
and normally distributed, with mean vector �j and variance–
covariance matrix �j, that is, N(�j, �j), where �j � (�j1 . . .
�jp), the jth row of �, and 
j � �j� (j � j�). Specific
formulas for estimating � and �j, as well as an elabora-
tion of Yj are provided in Lix and Keselman (1995,
Appendix A).

The general linear hypothesis is

H0: R� � 0, (24)

where R � CVUT, C is a dfC � r matrix which controls
contrasts on the independent groups effect(s), U is a p � dfU
matrix which controls contrasts on the within-subjects ef-
fect(s), R is the Kronecker or direct product function
(Timm, 2002, describes the properties of the Kronecker
product function), and T is the transpose operator.11,12 For
multivariate independent groups designs, U is frequently an
identity matrix of dimension p (i.e., Ip). (An example of
when the dimension of U is not p would be when one were
interested in testing a single dependent measure, in which
case the dimension of U is one.) The R contrast matrix has
(dfC)(dfU) rows and (r)(p) columns. In Equation 24, � �
vec(�T) � [�1 . . . �r]

T. In other words, � is the column
vector with r � p elements obtained by stacking the col-

10 The following material provides the mathematical underpin-
nings to the methods, in their most general form, we present
throughout the remainder of the article. A complete understanding
of the matrix algebra approach will not prevent the reader from
utilizing the methods we recommend, particularly as we clarify
this material with the numerical examples provided in the accom-
panying online supplement.

11 Though the null hypothesis is almost universally stated as a
vector of zeros, the reader should remember that a vector of any
real numbers can be hypothesized.

12 If CJ is a matrix of dimension (J – 1) � J and CK is a matrix
of dimension (K – 1) � K, then the Kronecker product is defined
as

CJ � CK � � c11CK · · · c1JCK···
· · ·

···
c� J�1	1CK · · · c� J�1	JCK

�.
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umns of �T. The 0 column vector is of order dfC � dfU (see
Lix & Keselman, 1995, for illustrative examples).

The generalized test statistic given by Johansen (1980) is

TWJ�(R�̂)T(R�̂RT)�1(R�̂), (25)

where �̂ estimates �, and �̂ � diag[�̂1/n1 . . . �̂r/nr], a
block matrix with diagonal elements �̂j/nj.

13 This statistic,
divided by a constant, c (i.e., TWJ/c ), approximately follows
an F distribution with v1 � dfC � dfU and v2 � v1(v1

�2)/(3A), where c � v1 � 2A – (6A)/(v1 � 2). The formula
for the statistic A is provided in the online supplement.

When p � 1, that is, for a univariate model, the elements
of Y are typically assumed to be independently and nor-
mally distributed with mean �j and variance �j

2, that is,
N(�j, �j

2). To test the general linear hypothesis, C has the
same form and function as for the multivariate case, but now
U � 1, �̂ � [�̂1 . . . �̂r]

T and �̂ � diag[�̂1
2/n1 . . . �̂r

2/nr].

Using an ADF Solution With Robust Estimators
and/or Bootstrapping

One-Way Independent Groups Design

For an independent groups experiment with nj subjects
(
jnj � N) in each of J groups, and using the notation of
Equation 23, Y � (Yij), where Yij is the score associated
with the ith subject in the jth group (j � 1, . . . , J; i � 1,
. . ., nj), E(Ȳj) � �j , the jth population mean, �T � [�1 . . .
�J] and � � (εij) defines the random error term. The Yijs are
assumed to be N(�j, �j

2) variates, with �̂j and �̂j
2, respec-

tively, representing the jth sample mean and unbiased vari-
ance.

To test the general linear hypothesis of Equation 24, R �
C � Cj, because U � 1. That is, Cj is a (J – 1) � J matrix
for which the rows represent a set of linearly independent
contrasts among the levels of the independent groups factor.
For example, if there are four independent groups (J � 4)
then C4(3 � 4) can be defined as

C4 � � 1 0 0 �1
0 1 0 �1
0 0 1 �1

�.

It should be noted, however, that selecting C4 as any (3 �
4) matrix in which the elements in each row sum to zero and
the rows are linearly independent will result in the same
value of TWJ. With respect to Equation 25, �̂ � [�̂1 . . . �̂J]

T

and �̂ � diag [�̂1
2/n1 . . . �̂J

2/nJ].
Pairwise contrasts on the group means are frequently of

great interest (see Keselman, Cribbie, & Holland, 2004).
Using Equation 24, R � C � cjj�, � (c1 . . . cJ), the 1 �
J vector of coefficients which contrasts the jth and j�th
means (
jcj � 0). In other words, we test the null
hypothesis Hjj�: �j � �j� (j � j�). For example, if again

J � 4 and we want to compare the first and fourth means,
c14 � � 1 0 0 �1 �.

Robust estimation, testing, and CIs for ES statistics. As
indicated in the introduction, a great deal of evidence indi-
cates that the traditional tests for mean equality are ad-
versely affected by nonnormality, particularly when vari-
ances are heterogeneous and group sizes are unequal (see
Lix & Keselman, 1998; Wilcox, 1995, 2005). As before, we
apply robust estimates of central tendency and variability to
the ADF statistic and to CIs for ES statistics.

Omnibus and specific effects testing. To test the general
linear hypothesis in a one-way independent groups design
we specify H0: R�t � 0. Thus, with robust estimation, the
trimmed group means replace the least squares group
means, the Winsorized group variance estimators replace
the least squares variances, and hj (hj � nj – 2gj; the number
of observations remaining after trimming) replaces nj, and
accordingly one computes the robust version of TWJ, de-
fined as TWJt. As noted, we refer the value of TWJt/c to the
sampling distribution of F (see Yuen, 1974). The program
described in the accompanying document computes the
appropriate value of c based on robust estimators.

Bootstrapping/omnibus and specific effects tests. As we
previously indicated, the strategy behind the bootstrap is to
shift the sample distributions of the scores for each group
and variable by subtracting the group mean (least squares or
trimmed, depending on whether a nonrobust or robust mean
is used) from each score and using the shifted empirical
distributions to estimate an appropriate critical value. For
each j, obtain a bootstrap sample by randomly sampling
with replacement nj observations from the shifted values,
yielding Y*

1, . . . , Y*
nj

. Let F*
t be the value of a test statistic

(TWJ/c or TWJt/c) based on the bootstrap sample. The B
values of F*

t, where B represents the number of bootstrap
simulations, are sorted in ascending order, that is, F*

t(1) �
. . . � F*

t(B), and an estimate of an appropriate critical value
is F*

t(a), where a � (1 – �)B, rounded to the nearest integer.
One will reject H0: R� � 0 or H0: R�t � 0 when Ft � F*

t(a),
where Ft is the value of the heteroscedastic statistic (TWJ/c
or TWJt/c) based on the raw data. Thus, bootstrapping can be
applied to two statistics (i.e., TWJ/c or TWJt/c).

Focused contrast tests such as pairwise contrasts are
computed either by using the usual least squares estimators
with TWJ/c or by substituting robust estimators for least
squares values, resulting in the TWJt/c statistic. To control
the FWER for a set of contrasts, the following approach is
used. Let F*

t be the value of the statistic based on the
bootstrap sample. Set t* � maxF*

t, the maximum being
taken over all contrasts in the set, for example, J(J – 1)/2

13 Lix and Keselman (1995) used the notation TWJ to refer to
this statistic, relating it to a Welch (1951)–James (1951) statistic.
For consistency, we continue to use this designation.
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tests for all possible pairwise tests on the J means. Repeat
this process B times yielding t*1, . . . , t*B. Let t*(1) � . . . � t*(B)

be the t*b values written in ascending order, and q � (1 –
�)B, rounded to the nearest integer. After repeating the
process B times, TWJ/c or TWJt/c is compared with t*(q) (i.e.,
TWJ/c � t*(q) or TWJt/c � t*(q)), where q is determined so that
the FWER is approximately �.14

CIs for ES statistics. The approach we have taken (in
the two-group example) was to arrive at a CI around a
population ES that is robust to variance heterogeneity and
nonnormality. This can be accomplished by using the non-
parametric percentile bootstrap method described previous-
ly.15 Further, the user can either set the confidence limits per
interval or over the entire set of ES intervals with a Bon-
ferroni adjustment (e.g., if five CIs are of interest, the
confidence coefficient per interval can be set at 99% if one
desires that the overall confidence coefficient is not less
than 95%).

Factorial Independent Groups Design

Application of the general ADF solution for hypothesis
testing in factorial independent groups designs will be dis-
cussed only from the perspective of a two-way design.
However, the same concepts may be readily extended to
higher order designs.

Let Y � (Yijk), where Yijk represents the score associated
with the ith subject in the (j,k)th treatment combination cell
(j � 1, . . . , J; k � 1, . . . , K; i � 1, . . . , njk; 
j
knjk � N).
Then E(Yijk) � �ijk is the (j,k)th population mean, �T �
(�11 �12 . . . �JK), and � � (εijk) defines the random error.
The Yijks are assumed to be N(�jk, �jk

2 ) variates, with �̂jk and
�̂jk

2 respectively representing the (j,k)th sample mean and
unbiased variance estimates.

The sensitivity of the ANOVA F test to violations of its
derivational assumptions for tests of main and interaction
hypotheses in factorial designs has been studied in less
detail than for one-way designs (Harwell, Rubenstein,
Hayes, & Olds, 1992). Nevertheless, the evidence available
supports the conclusion that the test may become seriously
biased when equality of the �jk

2 s is not a tenable assumption,
particularly when the njks are unequal, that is, for non-
orthogonal designs, when hypotheses involving unweighted
means are tested (Milligan, Wong, & Thompson, 1987).
The deleterious effects of nonnormality are described by
Wilcox (2003, 2005). Keselman, Carriere, and Lix (1995,
1996) identified that an ADF solution is largely robust in
such situations.

To test the general linear hypothesis of Equation 24, R �
C � CJK, CJ, and CK, respectively for tests of the interac-
tion, row, and column hypotheses, since U � 1 in all cases.
Here, CJK � CjRCk, where Cj and Ck are matrices of order
(J – 1) � J and (K – 1) � K, respectively, for which the
rows represent sets of linearly independent contrasts among

the levels of the independent groups factors. Thus, CJK is a
contrast matrix of order (J – 1)(K – 1) � JK.16 For example
if J � 3 and K � 4, Cj and Ck can be selected as

C3 � � 1 0 �1
0 1 �1 �

and

C4 � � 1 0 0 �1
0 1 0 �1
0 0 1 �1

�.

However, consistent with the definition of Cj in the design
with one between-subjects factor, C3 can be any (2 � 3)
matrix in which the elements in each row sum to zero and
the rows are linearly independent. Similarly, C4 can be any
(3 � 4) matrix in which the elements in each row sum to
zero and the rows are linearly independent.

For the main effect tests, CJ � CjR1K
T, and CK � 1J

TRCk,
where 1K and 1J are column vectors of ones, of order K and
J, respectively, which serve to sum the means over the
appropriate factor. Consequently, CJ, a matrix of order (J –

14 Though researchers can use the ADF statistic with trimmed
means to compute a priori complex contrasts applying our boot-
strapping method to achieve Type I error familywise (FWER)
control (we do not claim FWER control if the tests are computed
post hoc), we caution researchers that we are not aware of any
study confirming that this approach provides adequate Type I error
control for heteroscedastic and/or nonnormal data. Thus, until such
empirical evidence is forthcoming, we recommend that our method
be used only with pairwise and/or tetrad comparisons.

15 It should be noted that the approach we present is not limited
to setting a CI around a pairwise ES parameter. In its most general
form, the approach we present would have � and �̂ in the numer-
ator of the ES parameter and sample statistic, where � and �̂
define a population and sample contrast (pairwise or complex),
respectively. As well, bootstrapping would involve as many
groups that are involved in computing the value of �̂. The hypoth-
esis H0: � � 0 can be written as H0: r� � 0, where r � cRuT,
and the test of this hypothesis will not be affected if r is replaced
by kr where k is a constant. For example, suppose an independent
samples design has three means and we define c
� � 1/2 1/2 �1 � and u � 1 to test the hypothesis that the
average of the first two means is equal to the third mean. Changing
the contrast vector to c � � 1 1 �2 � will not affect the
hypothesis test. However, the change will affect the ES and the CI.
The vector c � [1/2 1/2 �1] is more appropriate for estimating an
ES because then � will be a difference between one mean and the
average of two means. Thus, for the purpose of estimating ESs and
forming CIs it is important to make sure that contrast weights have
appropriate magnitudes and not merely an appropriate pattern.
Examples are provided in the online supplement.

16 For higher order designs, Algina and Olejnik (1984) have
developed a set of general rules which can be used to form C.

122 KESELMAN, ALGINA, LIX, WILCOX, AND DEERING



1) � JK, has (J – 1) contrast rows which sum across the
levels of factor K, and CK, a matrix of order (K – 1) � JK,
has (K – 1) contrast rows which sum across the levels of
factor J.17

For pairwise comparisons on the row marginal means,
R � C � cjj�R1K

T, a 1 � JK vector, where cjj� contains the
coefficients which contrast the jth and j�th row means.
Similarly, when R � C � 1J

TRckk�, also a 1 � JK vector,
where ckk� contains the coefficients which contrast the kth
and k�th column means, a pairwise contrast on the column
marginal means is formed.

A significant interaction effect could be probed by using
a variety of procedures, including tetrad contrasts.18 Tetrad
contrasts are used to test for the presence of an interaction
in a 2 � 2 submatrix of the J � K data matrix. Tetrad
contrasts are defined as R � cjj�Rckk�. For such contrasts, R
is of order 1 � JK.

Robust estimation. With robust estimation, the trimmed
cell means and Winsorized cell variances are once again
substituted for their least squares counterparts into the ADF
statistic. In addition, error df (�2s) are based on the effective
sample sizes.

The results reported by Keselman et al. (1995, 1996) and
Keselman, Kowalchuk, and Lix (1998) indicated that for
moderate degrees of skewness (e.g., �3

2-type data) and vari-
ance heterogeneity (�jk

2 ratio of 1:1:1:9), the TWJ/c test, with
the usual least squares estimators for central tendency and
variability, typically is robust in nonorthogonal designs.
However, for more disparate assumption violations, the
ADF test using trimmed means and Winsorized variances
provides better Type I error control. Thus, the TWJt/c sta-
tistic appears to us to be the more versatile procedure in that
it controls rates of Type I error when conditions are sub-
stantially as well as moderately unfavorable.

Bootstrapping. The bootstrap can be generalized to fac-
torial designs from the one-way methodology. That is, em-
pirical sampling distributions can be created for each effect
by using resampled data. Additional research is required to
determine how much researchers have to gain by determin-
ing statistical significance through bootstrap methods. Re-
sults presented by Keselman, Kowalchuk, and Lix (1998)
indicated that robust and powerful tests can be obtained by
using trimmed means, Winsorized variances, and the t dis-
tribution in nonorthogonal heterogeneous designs when data
are nonnormal. However, their findings were for 2 � 2
designs and did not include results on the performance of
the bootstrap. Given results for one-way designs showing
that use of the bootstrap can improve control of the Type I
error rate and power, we would expect that similar results
will emerge for factorial designs. Despite the need for
additional research, if researchers choose to adopt the boot-
strap for factorial designs, the methodology we presented
for one-way independent groups designs is applicable to

higher order factorial designs when estimating an appropri-
ate critical value.

For each cell of the design, obtain a bootstrap sample by
randomly sampling with replacement njk observations from
the shifted values, yielding Y*

1, . . . , Y*
njk

. For omnibus
effects (J, K, JK) let F*

t be the value of the test statistic
[TWJt/c] based on the bootstrap sample. As previously indi-
cated, one will reject the appropriate null hypothesis when
Ft � F*

t(a), where Ft is the value of the heteroscedastic
statistic (for J, K, and/or JK) based on the original data.

Marginal mean or interaction contrasts can be obtained in
a manner that is analogous to contrast testing in the one-way
design. That is, let F*

t be the value of the statistic based on
the bootstrap sample. Set t* � maxF*

t, the maximum being
taken over all contrasts in the set, for example, J(J – 1)/2
tests for all possible pairwise tests on the J marginal means
or [J(J – 1)/2][K(K – 1)/2] tests for all possible tetrad
contrasts on the cell means. Repeat this process B times
yielding t*1, . . . , t*B. Let t*(1) � . . . � t*(B) be the t*b values
written in ascending order, and q � (1 – �)B, rounded to the
nearest integer. After repeating the process B times, TWJt/c
is compared with t*(q).

CIs for ES statistics. Because the methods in this article
do not assume homogeneity of variances or that data are
normally distributed for the phenomena that psychologists
investigate, our modus operandi has been to present meth-
ods which will be robust to the combined effects of variance
heterogeneity and nonnormality. Thus, to control for vari-
ance heterogeneity one would not want to adopt a pooled
estimator of the standard deviation (e.g., �MSW), and to
deal with the effects of nonnormality one would not want to
rely on least squares estimators.

Accordingly, the question arises as to what standardizer
should be used to set a CI around a contrast effect in order
to circumvent the biasing effects of variance heterogeneity.
In some contexts, this question appears to have a seemingly
straightforward solution. That is, consider a 2 � 2 design
where each factor involves a comparison of a control group
with a group receiving a treatment. Thus, in this four-cell
design, the cell which combines the control subjects from
each factor seems to be a reasonable choice for the stan-
dardizer. Naturally, if one subscribes to this concept, the
choice of standardizer is apparent in designs containing
control groups, no matter the number of factor levels.

If factors do not contain a control level, one may simply

17 In nonorthogonal designs, the researcher may test main effect
hypotheses involving either weighted or unweighted means, de-
pending on the values assigned to the elements of C (see Keselman
et al., 1995, 1996). For the sake of simplicity, we have assumed
that the researcher is interested in testing hypotheses of un-
weighted means (see Maxwell & Delaney, 2004, pp. 320–342).

18 Tetrad contrasts are a special case of interaction contrasts (see
Hochberg & Tamhane, 1987, pp. 295–303).
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select the standardizer from a particular cell. This approach
is a generalization of the method recommended by Glass
et al. (1981), and the one we adopted in the one-way
completely randomized design. Having selected a standard-
izer, one can use the nonparametric percentile bootstrap to
obtain a CI; the interval, of course, would be set around the
robust parameter of ES, that is, the parameter and CI are
based on trimmed means and Winsorized variances.

The idea of using the standard deviation from just one
cell of the design applies to setting CIs around tetrad con-
trasts (i.e., interaction contrasts) as well. That is, we do not
recommend using a pooled standard deviation or other
pooled values from subset cells of the design, approaches
that are cited in the literature, because, in the presence of
variance heterogeneity, these intervals for ES statistics will
not be robust (see, e.g., Kline, 2004, pp. 227–228).19 There-
fore, we recommend that users adopt our generally robust
ES statistic and the percentile bootstrap method, remember-
ing that the numerator of the statistic is �̂, which can
represent a pairwise and/or tetrad contrast. As was pointed
out in the one-way design, one can also use the unweighted
average of the cell variances as the standardizer. Again, the
confidence coefficient can be set per interval or over the set
of intervals (with a Bonferroni adjustment).

Correlated Groups Design

Omnibus and specific effects testing. Keselman, Carri-
ere, and Lix (1993) have shown how TWJ/c can be used to
test for treatment effects in between- by within-subjects
correlated groups designs (see also Keselman, 1998). Fur-
thermore, they have demonstrated, through Monte Carlo
methods, that this statistic is generally robust to nonnormal-
ity and covariance heterogeneity in nonspherical unbal-
anced repeated measures designs.20

Even though it has been demonstrated that the ADF
procedure is generally robust to the combined effects of
nonnormality and covariance heterogeneity, under some
conditions of departure from multisample sphericity and
multivariate normality, its rate of Type I error has been
found to be inflated (see Algina & Keselman, 1997; Ke-
selman et al., 1993). Further improvement in Type I error is
possible by applying the procedure with robust estimators,
that is, with trimmed means and Winsorized variances and
covariances and/or by obtaining critical values through
bootstrap methods (see Keselman, Algina, et al., 2000;
Keselman, Kowalchuk, Algina, Lix, & Wilcox, 2000).

Furthermore, the sample sizes necessary to achieve ro-
bustness with these estimators and/or bootstrapping can be
substantially smaller than the sizes required to achieve
robustness with the ADF procedure based on least squares
estimators. Thus, though we subscribe to the analysis pro-
cedures advocated by Keselman (1998) for the analysis of
repeated measures effects, procedures based on the usual

least squares estimators, his analyses should, when appro-
priate, be adopted with robust estimators.21

Consider the design in which nj subjects (
jnj � N) in
each of J groups are measured on a single dependent vari-
able at K points in time, or under each of K treatments.
Using the notation of Equation 23, the observations Y �
(Yij), where Yij � [Yij1. . . YijK] (j � 1, . . . , J; i � 1, . . . nj)
and �T � (�j) � (�j1 . . . �jK) and � � (�ij) � (εij1 . . . εijK).
The Yijs are assumed to be N(�j,�j) K-vector variates, with
�̂j and �̂j denoting the jth sample mean vector and vari-
ance–covariance matrix, respectively.

To test the general linear hypothesis of Equation 24, both
C and U are defined in terms of the effect to be tested, to
create the appropriate R contrast matrix. For the within-
subjects interaction effect, R � CjRUK

T, because C � Cj,
where Cj has the same form and function as for the one-way
univariate independent groups design, and U � Uk, where
Uk is a K � (K – 1) matrix whose columns form a set of
linearly independent contrasts among the levels of the with-
in-subjects factor. Thus, R is of order (J – 1)(K – 1) � JK.
For example, if the between-subjects factor has J � 3 levels
and the within-subjects factor has K � 4 levels,

C3 � � 1 0 �1
0 1 �1 �

and

U4 � �
1 0 0
0 1 0
0 0 1

�1 �1 �1
	.

As indicated in the presentation of between-subjects de-
signs, other forms for Cj and Uk will result in the same test
statistic.

For tests of the within-subjects main effect, C � 1J
T and

19 Because our accompanying SAS program allows the user to
select the standard deviation from any cell of a factorial design,
users can when computing ESs for contrasts (i.e., pairwise, com-
plex, tetrad) select different cell standard deviations for each
contrast; however, this is not what we recommend.

20 Neither single factor nor multifactor within-subjects designs
are considered since covariance heterogeneity is not an issue when
the design does not contain an independent groups variable. How-
ever, users should always use a procedure and critical value which
can either contend with violations of the sphericity assumption,
such as an adjusted-df test (see Keselman & Rogan, 1980), or
bypass it altogether, such as a multivariate test. As well, users
should be cognizant of the normality assumption.

21 Wilcox, Keselman, Muska, and Cribbie (2000) found that
applying robust estimators with a multivariate statistic did not
result in good Type I error control under conditions of nonnor-
mality.
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U � Uk; for the independent groups main effect, C � Cj and
U � 1K. Consequently, these R matrices are of order (K –
1) � JK and (J – 1) � JK, respectively.

As we have indicated, significant interaction effects can
be probed with a variety of procedures, including tetrad
contrasts. FWER control can be obtained with a procedure
described in Lix and Keselman (1996). Main effects may be
probed with pairwise comparisons of the marginal means
(see Keselman & Lix, 1995). To test within-subjects pair-
wise comparison hypotheses with an ADF approach, R �
1J

TRukk�
T , of order 1 � JK, where C � 1J

T and U � ukk�.
Robust estimation/omnibus and specific effects testing.

Keselman, Kowalchuk, Algina, et al. (2000) indicated how
one Winsorizes the observations in order to compute the
Winsorized covariance matrices and, as well, indicate how
to compute trimmed means in a J � K design. Robust
estimators can then be applied to TWJ/c.

Keselman, Algina, et al. (2000) and Keselman, Kowal-
chuk, Algina, et al. (2000) found that in the context of J �
K repeated measures designs, bootstrapping did not result in
better control of Type I errors than did test statistics that just
adopted trimmed means and Winsorized variances and co-
variances. However, their findings are applicable to a lim-
ited number of designs, and therefore may not generalize to
other repeated measures designs. Accordingly, we present
bootstrap methodology for those who believe it could be
beneficial for the designs they utilize.

For a fixed value of j, randomly sample with replacement
nj rows of observations from the matrix

� Y1j1 , . . . , Y1jK···
Ynjj1 , . . . , YnjjK

� .

Label the results

� Y*
1j1 , . . . , Y*

1jK···
Y*

njj1
, . . . , Y*

njjK
	 .

Shift the bootstrap samples.22 Next compute F*
t, the value of

the statistic which is based on the shifted bootstrapped
values. Repeat this process B times yielding F*

bt, b � 1, . . .,
B. Once again, effects are significant if TWJt/c � F*

(a). We
again recommend that B be set at 1,000. Focused hypothesis
tests using contrasts are accomplished in the same manner
previously enumerated.

Robust CIs for ES statistics. In the context of a single
repeated measures factor with two levels (i � 1, . . . , n; k �
1, 2), Algina and Keselman (2003) developed and evaluated
a noncentral t-based approximate CI for an ES that was
suggested by Bird (2002):


† �
�2 � �1

���1
2 � �2

2	/ 2
. (26)

Subsequently Algina et al. (2005b) showed that the approx-
imate CI had poor coverage probability when the data were
drawn from a nonnormal distribution. As an alternative to
the approximate CI for the ES in Equation 26, they devel-
oped an approximate CI for the robust ES based on the
noncentral t distribution.


R
† � .642

�t2 � �t1

���W1

2 � �W2

2 	/2
, (27)

where �tk and �Wk

2 are the population trimmed mean and
Winsorized variance, respectively, for the kth level. The
robust ES can be estimated by


̂R
† � .642

�̂t2 � �̂t1

���̂W1

2 � �̂W2

2 	/2
. (28)

Algina et al. (2005b) presented evidence that coverage
probability was not always adequate when data were drawn
from a nonnormal distribution. Alternatively, the nonpara-
metric percentile bootstrap can be used to calculate a CI for

R

† and was shown by Algina et al. (2005b) to provide better
coverage probability under the nonnormal distributions in-
cluded in the study, whereas a percentile bootstrap CI for 
†

had poor coverage probability for many of these distribu-
tions.23

Recall that when a researcher suspects that the population
variances are not equal, Glass et al. (1981) proposed, in a
completely randomized design, using the ES


̂k �
�̂2 � �̂1

�̂k
. (29)

Similarly, in a within-subjects design in which a researcher
suspects the variances for the repeated measures are not
equal, 
̂k can also be used. The ES 
̂k estimates


k �
�2 � �1

�k
, (30)

which seems more appropriate than does 
† when variances
are not equal. A robust alternative to 
k is

22 Following Westfall and Young (1993), and as enumerated by
Wilcox (1997), the shifted values are the empirical distribution
centered so that the sample trimmed mean is zero. That is, the
empirical distributions are shifted so that the null hypothesis of
equal trimmed means is true in the sample. The strategy behind the
bootstrap is to use the shifted empirical distributions to estimate an
appropriate critical value.

23 Algina et al. (2005b) examined both symmetric and asym-
metric distributions. The nonnormal distributions had skewness
values (�1) and kurtosis values (�2) of (�1 � 2, �2 � 6), (�1 � 0,
�2 � 154.84), and (�1 � 4.90, �2 � 4,673.80), where for a normal
distribution �1 � �2 � 0.
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Rk
� .642

�t2 � �t1

�Wk

. (31)

The corresponding sample estimator is


̂Rk
� .642

�̂t2 � �̂t1

�̂Wk

. (32)

Algina et al. (2005b) developed noncentral t-based CIs for

k and 
Rk

and evaluated coverage probability for these CIs
as well as for percentile bootstrap CIs for 
k and 
Rk

. Results
indicated that when data were drawn from nonnormal dis-
tributions coverage probability for the noncentral t-based
CIs for 
k and 
Rk

could be inadequate, though coverage
probability was better for the CI for 
Rk

. Under the nonnor-
mal distributions included in the study, coverage probability
of the percentile bootstrap CI for 
k was also poor in some
conditions. Coverage probability of the percentile bootstrap
CI for 
Rk

was much better, with only 1 of 800 estimated
values outside the interval [0.925, 0.975] and the vast ma-
jority inside the interval [0.94, 0.96].

As was the case in completely randomized factorial de-
signs, defining the standardizer is a conceptual issue, not a
statistical issue, in factorial repeated measures designs. The
choice will sometimes be straightforward and at other times
will be more arbitrary. For example, for factorial repeated
measures designs that contain a pretest condition, a most
reasonable choice is to select the standard deviation from
the pretest cell (see Kline, 2004, pp. 104–114).24 However,
for repeated measures designs not containing a pretest con-
dition, the choice can be from among any cell of the
between- by within-subjects repeated measures design (see
also Footnote 6).

Thus, once again our recommended approach for setting
a robust CI around a robust parameter of ES is to adopt the
statistic presented in Equation 32, where, in its most general
form, the numerator is �̂, the sample value of a pairwise
and/or interaction contrast. The percentile bootstrap is then
used to find the upper and lower confidence limits.

Conclusions

When psychological researchers encounter populations
that are nonnormal in form and subscribe to the position that
inferences pertaining to robust parameters are more valid
than inferences pertaining to the usual least squares param-
eters, then procedures based on robust estimators should be
adopted. In our article, we presented an approximate df test
statistic for one-way and factorial completely randomized
and correlated groups designs based on robust estimators
(trimmed means and Winsorized variances and covariances)
in order to circumvent the biasing effects of variance het-
erogeneity and nonnormality. As well, we indicated when
testing could be improved by determining statistical signif-

icance through a bootstrap method. In addition, we indi-
cated how researchers can set robust CIs around robust ES
parameters.

We presented this methodology in order to encourage
researchers to adopt a procedure that has been shown to be
generally robust to variance heterogeneity and nonnormal-
ity. That is, the empirical literature has indicated that dis-
tortion in rates of Type I error can generally be eliminated
by applying robust estimators with heteroscedastic test sta-
tistics. Moreover, the power to detect treatment effects is
also improved through the use of robust estimators in the
presence of nonnormal data. As well, the accuracy of con-
fidence coefficients based on robust estimators for robust
parameters was noted.

Within the context of independent groups designs, we
indicated that for one-way designs, the use of a bootstrap
methodology does indeed result in better Type I error con-
trol. For factorial designs, the current literature suggests that
the adoption of robust estimators may be sufficient to elim-
inate the biasing effects of variance heterogeneity and non-
normality, though researchers can apply the bootstrap to
assess statistical significance.

With respect to the analysis of effects in correlated groups
designs, we strongly support the recommendations pre-
sented by Keselman (1998). Keselman (1998) recom-
mended the use of the ADF statistic in repeated measures
designs based on least squares estimators. However, as was
pointed out, sample sizes must meet the prescriptions enu-
merated by Keselman et al. (1993) and Algina and Ke-
selman (1997), in order to obtain a robust test with the ADF
solution. When sample sizes do not meet these prescrip-
tions, researchers can still obtain a robust test of treatment
effects by applying trimmed means and Winsorized vari-
ances and covariances with the ADF statistic. Indeed, the
results reported by Keselman, Algina, et al. (2000) indicated
that robustness can be achieved with very modest sample
sizes (e.g., nj � 22; see also Luh & Guo, 2007).

The ADF solution can be applied to a wide range of
designs by using a GLM framework to define the hypothesis
of interest and the computer program demonstrated in our
online supplement. Lix and Keselman (1995) showed how
to specify multivariate designs and the associated tests of
model effects. The ADF solution has been explored in a
limited manner in multivariate repeated measures designs
(Keselman & Lix, 1997), but not with robust estimators
and/or bootstrapping. The software that we describe in our
online resources can also be used to set robust CIs around
robust ES estimates.

24 Some might take the view that a pretest should be treated as
a covariate, not a level of the repeated measures variable, and,
therefore, the standardizer should be obtained from a “real” level
of the repeated measures variable.
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As a final note, we want to once again generally recom-
mend that applied researchers adopt robust estimation and
testing methods. In particular, we recommend that trimmed
means be used in the ADF statistic and in CIs for ES
statistics. In addition, generally, critical values for test sta-
tistics and CIs should be obtained through the bootstrap
methodology described in this article. Moreover, with re-
spect to defining and estimating ES, we strongly believe in
the view originally voiced by Glass et al. (1981), namely,
“the average standard deviation should probably be elimi-
nated as a mindless statistical reaction to a perplexing
choice” (p. 106).

However, as we previously acknowledged, there will
always be instances (i.e., data sets) where other methods
of analysis would provide better Type I error control,
better power to detect effects, and better CIs of ESs.
Moreover, and most importantly, we could not a priori
enumerate all the scenarios (shapes of distributions, mag-
nitudes of variance heterogeneity, extent of sample size
imbalance, etc.) where one method would dominate oth-
ers. Thus, what we attempted to do in this article was
provide researchers with a general methodology that has
four options to consider: (a) least squares estimators with
a robust test statistic, (b) robust estimators with a robust
test statistic, and (c) using bootstrapping methodology
with options (a) or (b). This substantially simplifies se-
lecting a method of analysis for the applied researcher.
With regard to setting CIs for an ES statistic, we recom-
mend adopting the method enumerated in this article: a
standardized mean difference statistic based on robust
estimators, where the limits of the CI are based on a
bootstrap method. Lastly, because we acknowledge that it
is not a simple matter to discover how groups may differ
from one another, researchers should not only consider
the methods of analysis we enumerated in our article but
other analysis strategies as well, for example, rank trans-
formation methods (see Conover & Iman, 1981) and
nonparametric methods (see Brunner, Dette, & Munk,
1997; Brunner & Munzel, 2000; Zimmerman & Zumbo,
1993, etc.).
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