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Abstract:    

We describe approaches and preliminary experiments that are aimed at monitoring and detecting 

change in self-monitored data streams.  We introduce a new algorithm for outlier detection using 

K-Nearest Neighbor Data Distributions.  We run experiments on a variety of data stream 

topologies and thereby demonstrate the effectiveness of the new algorithm in detecting outliers 

and in quantitatively estimating the outlyingness likelihood of anomalous data points in diverse 

data streams.  These streams may occur in deep space probes or in autonomous robotic 

exploration probes in Earth environments.  We first consider an illustrative example involving a 

spatially varying data stream, which we then invoke as an analogy to studies of temporal data 

streams.  Any large dataset can benefit from a general approach in which parametric 

characterization and exploration of patterns in the data can be conducted with any independent 

variable (in time or parameter space).  Temporal variations that are novel, unexpected, 

previously unknown, or outside the bounds of our existing classification schemes are 

scientifically worthy of further investigation, which may include an autonomous response from a 

remote sensing agent.  We describe eigenstate monitoring in the context of high-throughput 

change-detection.  Changes in the eigenstates of a system are essentially changes in the 

stationarity of the source.  We describe the detection and characterization of non-stationarity 

through a variety of unsupervised learning algorithms.  These can be used in space missions for 

the detection and characterization of new events, state (phase) transitions in monitored systems, 

onset of change points in science environments, and pattern drift in critical correlations.  
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1  Introduction: Scientific Discovery across Heterogeneous Data Collections 

New modes of discovery are enabled by the growth of data and computational resources in the 

sciences.  This cyberinfrastructure includes databases, virtual observatories (distributed data), 

high-performance computing (clusters and petascale machines), distributed computing (the Grid, 

the Cloud, peer-to-peer networks), intelligent search and discovery tools, and innovative 

visualization environments (Eastman et al. 2005).  Data streams from experiments, sensors, and 

simulations are increasingly complex and growing in volume.  This is true in most sciences, 

including time-domain astronomical sky surveys, climate simulations, Earth observing systems, 

remote sensing image collections, and sensor networks.  At the same time, we see an emerging 

confluence of new technologies and approaches to science, most clearly visible in the growing 

synergism of the four modes of scientific discovery: Sensors-Computing-Modeling-Data. This 

has been driven by numerous developments, including the information explosion, the 

development of dynamic intelligent sensor networks, the acceleration in high performance 

computing (HPC) power, and advances in algorithms, models, and theories.  Among these, the 

most extreme is the growth in new data.   

The acquisition of data in all scientific disciplines is rapidly accelerating and causing a nearly 

insurmountable data avalanche (Bell et al. 2007).  Computing power doubles every 18 months 

(Moore’s Law), corresponding to a factor of 100 in ten years. The I/O bandwidth (into and out of 

memory and databases) increases by 10% each year – a factor 3 in ten years.  By comparison, 

data volumes approximately double every year (a factor of 1,000 in ten years). Consequently, as 

growth in data volume accelerates, especially in the natural sciences (where funding certainly 

does not grow commensurate with data volumes), we will fall further and further behind in our 

ability to access, analyze, assimilate, and assemble knowledge from our data collections – unless 

we develop and apply increasingly more powerful algorithms, methodologies, and approaches 

(Borne 2009b).  

In the space and Earth sciences in particular, rapid advances in three technology areas (science 

facilities, detectors, and computation) have continued unabated (Gray & Szalay 2004), all 

leading to more data (Becla et al. 2006).  In the sciences, the scale of data-capturing capabilities 

grows at least as fast as the underlying microprocessor-based measurement system (Gray et al. 

2005). For example, in astronomy, the fast growth in CCD detector size and sensitivity has seen 

the average dataset size of a typical large astronomy sky survey project grow from hundreds of 

gigabytes 10 years ago (e.g., the MACHO survey), to tens of terabytes today (e.g., 2MASS and 

Sloan Digital Sky Survey [Brunner et al. 2001; Gray & Szalay 2004]), up to a projected size of 

tens of petabytes 10 years from now (e.g., LSST, the Large Synoptic Survey Telescope [Becla et 

al. 2006; Bell et al. 2007]).  In survey astronomy, LSST will produce one 56Kx56K (3-

Gigapixel) image of the sky every 20 seconds, generating nearly 30 TB of data every day for 10 

years.  In solar physics, NASA announced in 2008 a science data center specifically for the Solar 

Dynamics Observatory, which obtains one 4Kx4K image every 10 seconds, generating one TB 

of data per day. NASA recognizes that previous approaches to scientific data management and 

analysis will simply not work.  We see the data flood in all sciences (e.g., numerical simulations, 

high-energy physics, bioinformatics, drug discovery, medical research, geosciences, climate 

monitoring and modeling) and outside of science (e.g., banking, healthcare, homeland security, 

retail marketing).  The application of data mining, knowledge discovery, and e-discovery tools to 
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these growing data repositories is essential to the success of our social, financial, health, 

government, and scientific enterprises.  This is an especially challenging scientific problem as all 

modern science disciplines will become even more data-intensive in the coming decade (Szalay, 

Gray, & VandenBerg 2002). Increasingly sophisticated computational and data science 

approaches will be required to discover the wealth of new scientific knowledge hidden within 

these new massive scientific data collections (Gray et al. 2002; Szalay et al. 2002; Borne 2006; 

Graham et al. 2007; Kegelmeyer et al. 2008; Borne 2009a).  As illustrated schematically in 

Figure 1, scientific data collections are numerous and heterogeneous, as are the types of 

information extracted from the data, and as are the types of machine learning algorithms applied 

to the data collections in order to achieve scientific knowledge discovery in databases (KDD). 

 

Figure 1 – The KDD process flow for scientific knowledge discovery. 

 

Some of our prior results are reproduced in the following sections in order to demonstrate the 

application areas that we are investigating. In particular, Section 2 is reproduced, with slight 

modifications, from our SMC-IT 2006 paper (Borne 2006).  In Section 3, Figures 3 and 4 and the 

paragraph describing those results are reproduced from our SDM 2009 paper (Das et al. 2009). 

2  Unsupervised Exploration: Space Science Application 

Unsupervised learning algorithms include principal components analysis (PCA), link analysis, 

self-organizing maps, association mining, and most clustering algorithms (including statistical 

clustering, such as mixture modeling). We begin our discussion with an example of an 

autonomous scientific data collection system operating as a science discovery machine in a 

remote environment with minimal or no human intervention. In this example, the operational 

behavior of the science data-collection system is data-driven, through machine learning (Borne 



4 

 

2001). Machine learning therefore provides decision support to the autonomous mission systems, 

in addition to providing decision support to human mission managers. The embedded machine 

learning algorithms are enhanced through data-sharing (from other sensors, spacecraft, 

databases, and/or models) – e-Science tools enable this data-sharing (Hey et al. 2002) – via Web 

Services, distributed data discovery and access, heterogeneous data fusion, distributed (Grid-

like) model computations, and semantic data integration (Graham et al. 2007). We enumerate 

here a variety of machine learning applications for a hypothetical planetary rover. Numerous 

machine learning algorithms may be embedded within the roving operational sciencecraft:  

(a) Supervised learning – search for rocks with known mineral compositions (by classifying each 

rock sample according to a known list of rock types). 

(b) Unsupervised learning – discover objectively what types of rocks and minerals are present, 

without preconceived bias. 

(c) Association mining – find the most common associations (co-occurrences) and also the most 

unusual co-occurrences of different minerals within rock samples. 

(d) Clustering – find the complete set of unique classes of rocks. 

(e) Classification – assign rock samples to known classes. 

(f) Deviation/outlier detection – find one-of-a-kind, interesting, or anomalous rock/mineral 

samples. 

(g) Learn as the rover goes from sample to sample – build up a model of the environment 

through Bayesian Networks or Markov modeling.  Including spatial tools (such as GIS = 

Geographic Information Systems) to track the location of samples would provide still greater 

scientific insight and decision support capabilities. 

(h) Information retrieval and fusion – relate the scientific instrument measurement results to 

other factors, such as dust storms, using data from other sciencecraft (e.g., from another 

rover, or from an orbiting satellite “mother ship”). 

(i) Decision trees and case-based reasoning – provide on-board intelligent data understanding 

and decision support (e.g., “stay here and do more” versus “move on to another rock;” or 

“send results to Earth immediately” versus “send results later”). 

(j) Case-based reasoning or logistic regression – predict where to go in order to find interesting 

rocks. 

In all of these cases, decisions are based on the incoming data stream, prior experience, new 

knowledge, and decision logic.  The rover can be allowed to act autonomously, without human 

intervention, in the deep space environment.  Actions are determined by mining actionable data 

from all sensors. To maximize the decision-making accuracy and effectiveness, the rover should 

take advantage of other resources.  These other resources may include measurements from other 

data-collecting sensors and models. The latter may be models of the environment (e.g., the 

geologic origins of the terrain, or the anticipated effects of an impending dust storm), or models 
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of the objects within the environment (e.g., location-dependent rock mineral classes), or models 

of the sciencecraft’s behavior. These models can be updated in real-time as new data are 

acquired – this is data assimilation. 

3  Unsupervised Exploration through Eigenstate Monitoring of Data Streams 

We now consider the example of time-domain astronomy as an analogue to other space science 

data stream mining use cases (including machine learning in deep space missions, machine 

learning in sensor networks in Earth environments, and decision support in autonomous robotic 

exploration probes).  We then argue how studies of large samples can benefit from a general 

approach in which parametric characterization and exploration of physical phenomena can be 

conducted with any independent variable (e.g., in time or space). 

With time-domain astronomy, a new vision of the night sky will emerge, as time series are 

collected for billions of objects and thousands of object classes. Time variations may be detected 

in flux, in position, or in spectral properties. For those temporal variations that are novel, 

unexpected, previously unknown, or outside the bounds of our existing classification schemes, 

scientists will want to know (usually within seconds of the initial observation) that the event has 

occurred.  Future projects may produce as many as 100,000 such event alerts each night for 

many years. The event alert notification must include as much information as possible to help the 

astronomers and facilities (especially robotic autonomous observatories) around the world to 

prioritize their response to each time-critical event. That information packet will include a 

probabilistic classification of the event, with some measure of the confidence of the classification 

(Bloom et al. 2008a, 2008b; Borne 2008a).  Without good classification information in those 

alert packets, and hence without some means with which to prioritize the anticipated huge 

number of events from the new time-based instruments, the science community will 

consequently be buried in the data deluge and may miss some of the greatest scientific 

discoveries of the next decade. 

 

To solve the anticipated massive event classification problem, the application of high-throughput 

change-detection algorithms is needed. These algorithms will use distributed astronomical 

databases worldwide to correlate in near real-time with each transient event, in order to model, 

classify, and prioritize correctly each event (Graham et al. 2007).  In the seemingly simple case 

of variable stars, their variability is known, well studied, and well characterized already. 

However, if one of these stars’ eigenmodes of variability were to change, then that would be 

extremely interesting – perhaps a signal that some potentially exotic astrophysical processes are 

taking place (Sarro et al. 2009). Scientists will definitely want to be notified promptly of these 

types of variations, which (in this case) are essentially changes in the stationarity of the source. 

Detection and characterization of non-stationarity can be measured through changes in the 

eigenvectors and eigenvalues of the light curve (Debosscher et al. 2007; Rebbapragada et al. 

2009).  Because these eigenstates (e.g., Fourier components) provide convenient and efficient 

short-hand representations of the features contained in the full data stream, the eigenstate 

information can be easily stored, monitored, and flagged as interesting and/or changing. 

 

To address this type of parameter extraction and classification problem, new algorithms have 

been researched by our group (Giannella et al. 2006; Dutta et al. 2007; Das et al. 2009). These 
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algorithms are useful for distributed mining, change detection, and eigenvector monitoring in 

both static databases and dynamic data streams. Specifically, we investigated an eigenvector 

monitoring problem that addresses the research challenges associated with unsupervised 

exploratory mining of space science data streams. We analyzed the principal components of 

galaxy parameters as a function of an independent variable, similar to the temporal dynamic 

stream mining described above (which has time of observation as the independent variable).  For 

our experiments, the independent variable was not the time of observation, but instead it was the 

local galaxy density, and it could have been any other major galaxy parameter (e.g., luminosity, 

color, concentration, effective radius, central surface brightness, metallicity). 

 

 
Figure 2 – Edge-on view of the fundamental plane (continuous line) of the Coma elliptical galaxies 

(triangles), S0 bulges (open triangles), and SB0 bulges (filled circles).  The dashed lines represent the 3-σ 

deviation from the fundamental plane (reproduced from Aguerri et al. 2005).  

 

The class of elliptical galaxies has been known for more than 20 years to show dimension 

reduction among a subset of physical attributes (radius, surface brightness, and central velocity 

dispersion), such that the 3-dimensional distribution of three of those astrophysical parameters 

reduces to a 2-dimensional plane (Djorgovski & Davis 1987). The normal to that plane 

represents the principal eigenvector of the distribution, and it is found that the first two principal 

components capture significantly more than 90% of the variance among those 3 parameters (e.g., 

see Figure 2; Aguerri et al. 2005). 

 

By analyzing existing large astronomy databases, we have generated a sample of 102,600 

galaxies. Each galaxy in this large sample was then assigned (labeled with) a new “local galaxy 

density” attribute, calculated through a volumetric Voronoi tessellation of the total galaxy 

distribution in space. The inverse of the Voronoi volume represents the local galaxy density (i.e., 

each galaxy occupies singly a well defined volume that is calculated by measuring the distance 

to its nearest neighbors in all directions and then generating the 3-dimensional convex polygon 

whose faces are the bisecting planes along the direction vectors pointing toward the nearest 

neighbors in each direction – the enclosed volume of the polygon is the Voronoi volume).  It is 
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scientifically interesting to note that the dynamical timescale (age) of a gravitating system is 

proportional to the square root of the Voronoi volume (i.e., inversely proportional to the square 

root of the local galaxy density).  Therefore, studying the variation of galaxy parameters and 

relationships as a function of the Voronoi volume is akin to studying the time evolution of the 

ensemble population of galaxies.  In this way, the problem that we studied is dynamic in time. 

 

For our initial correlation mining work, the entire galaxy data set was divided into 30 equal-sized 

partitions as a function of our independent variable: the local galaxy density.  Consequently, each 

bin contains more than 3000 galaxies, thereby generating statistically robust estimators of the 

fundamental parameters in each bin.  From the various astronomical data catalogs, we have 

extracted about four dozen measured parameters for each galaxy (out of a possible 800+ from the 

combined two catalogs): fluxes, size and radius measures, concentration indices, velocity 

dispersions, isophotal shape parameters, and surface brightness measures.  For those parameters 

that depend on distance (e.g., radius), we have used the galaxy’s measured redshift to normalize 

these into distance-independent physical measures for those parameters.  

 

 
Figure 3 – Variance captured by the first two principal components of the fundamental plane as a function of 

the log of the mean galaxy local density (for 30 different bins containing ~3400 galaxies each).  The sample 

parameters used in this analysis are i-band Petrosian radius containing 50% of the galaxy flux (from SDSS), 

velocity dispersion (SDSS), and K-band mean surface brightness (2MASS). This plot clearly shows that the 

fundamental plane relation becomes tighter with increasing local galaxy density (inverse Voronoi volume). 

(Borne et al. 2009) 
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Figure 4 – Direction cosines for the normal vector to each fundamental plane point in Fig. 3, calculated as a 

function of local galaxy density (inverse Voronoi volume).  Though there are some chaotic effects, in general 

there is a trend for the tilt of the fundamental plane to drift nearly systematically for elliptical galaxy ensembles 

ranging from low- to high-density regions (Das et al. 2009). 

 

As a result of our data sampling criteria, we have been able to study eigenvector changes of the 

fundamental plane of elliptical galaxies as a function of density. Computing these eigenvectors 

for a very large number of galaxies, one density bin at a time, thus mimics the dynamic data 

stream challenge problem (stationarity or eigenvector change) described earlier. In addition, this 

galaxy problem actually has uncovered some new astrophysical results: we find that the variance 

captured in the first 2 principal components increases systematically from low-density regions to 

high-density regions (Figure 3), and we find that the direction of the principal eigenvector also 

drifts systematically in the 3-dimensional parameter space from low-density regions to the 

highest-density regions (Figure 4).  The progression from low-density to high-density 

corresponds to an age progression from dynamically unevolved to dynamically evolved systems. 

 

Eigenstate-monitoring tools such as this can be used in unsupervised exploratory data mining 

(either in dynamic data streams or in parameter sweeps in high-dimensional databases) for the 

detection of non-stationarity (e.g., new events, state/phase transitions, onset of change points, 

pattern drift in correlations).  In addition, this could be a major enabling technology for machine 

learning in space science depending on the degree to which a data stream or a high-dimensional 
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data record can be accurately represented by its eigenvectors (principal components). This would 

lead to significant data and dimension reduction, and could be used to generate useful and 

scientifically meaningful condensed representations, summarizations, and abstractions of the 

data for more rapid analysis and transmission (Borne 2008b). 
 
4 Related Work: Interestingness Detection - Discovery of Surprise, Novelty, and Anomalies 

Interestingness detection refers to the discovery of novelty, outliers, anomalies, and surprise 

within large data sets and data streams.  Novelty and surprise are two of the more exciting 

aspects of science – finding something totally new and unexpected – though perhaps it may 

represent a serious flaw, glitch, or error in a system.  Petascale databases potentially offer a 

multitude of such opportunities.  But how do we find that surprising novel thing?  These come 

under various names:  interestingness, outliers, novelty, surprise, anomalies, or defects 

(depending on the application).  In large databases and in high-rate data streams, rapid detection 

and characterization of events (i.e., changes, outliers, anomalies, novelties) are essential.  

Various information theoretic measures of interestingness and surprise can be used for the task.  

Among these are Shannon entropy, information gain (Freitas 1998), Weaver's Surprise Index 

(1988), and the J-Measure (Smyth & Goodman 1991).  In general, such metrics estimate the 

relative information content between two sets of discrete-valued attributes.   

As an example, we note that rule learning algorithms, specifically decision tree rule induction, 

make use of the information gain metric in order to determine which attribute contains the most 

“information”.  This is the one attribute among all attributes that by itself yields the best single-

attribute classifier (= the top-level decision node).  After testing this attribute’s value, the 

remaining attributes are tested again for the next best information gain.  The ranking of each 

attribute’s information gain provides a measure of attribute interestingness.  When faced with a 

database of many hundreds of attributes (e.g., in a complex highly dimensional scientific data 

stream), the scientist end-user is unlikely to know in advance which attributes are most 

interesting.  Consequently, the user usually ends up selecting the small handful of attributes that 

are most familiar to her/him.  These may not be the most beneficial for scientific discovery or for 

efficient database exploration.  Consequently, to address this problem, it is useful to analyze 

various measures of interestingness, including information gain, covariance analysis, PCA, and 

independent components analysis.  The result will be an objective quantifiable feature-selection 

algorithm that presents the most interesting attributes to end-users for efficient and effective 

explorations: efficient in the sense that the selection of the most interesting attributes for 

query/retrieval avoids lots of useless searches and queries; effective in the sense that novel 

discoveries (beyond known classes and expected relationships) are enabled. 

We have used PCA to identify outliers (Dutta et al. 2007, 2009). In particular, we have been 

studying cases where the first two PC vectors capture and explain most (>90%) of the sample 

variance in a data sample (specifically, the fundamental plane of elliptical galaxies). 

Consequently, in such a case, the component of a data record’s attribute feature vector that 

projects onto the third PC eigenvector will provide a measure of the distance z3 of that data 

record from the fundamental plane that defines the structure of the overwhelming majority of the 

data points.  Simply sorting the records by z3, and then identifying those with the largest values, 

will result in an ordered set of outliers (Dutta 2007) from most interesting to least interesting.   
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In many cases, the first test for outliers can be a simple multivariate statistical test of the 

“normalcy” of the data: is the location and scatter of the data consistent with a normal 

distribution in multiple dimensions?  There are many tests for univariate data. Tests on 

multivariate data include the Shapiro-Wilk test for normalcy and the Stahel-Donoho multivariate 

estimator for outlyingness (Shapiro & Wilk 1965; Maronna & Yohai 1995).  The Stahel-Donoho 

outlyingness parameter is straightforward to calculate and assign for each object:  

Outlyingness O(x) = | x – μ(Xn) | / σ(Xn) , where x Є Xn = {x1, … xn} 

This is simply the absolute deviation of a data point x from the centroid of the data set X
n
, 

normalized to the scale of the data. These tests should not be construed as proofs of non-

normalcy or outlyingness, but as evidence. For machine learning of petascale data or for machine 

learning in deep space environments, even simple tests are non-trivial in terms of computational 

cost, but it is essential to apply a range of algorithms in order to make progress in mining the 

data.  Our future work will investigate some of these techniques, including: “Measures of 

Surprise in Bayesian Analysis” (Bayarri & Berger 1997), “Quantifying Surprise in Data and 

Model Verification” (Bayarri & Berger 1998), and “Anomaly Detection Model Based on Bio-

Inspired Algorithm and Independent Component Analysis” (Srinoy & Kurutach 2006).     

Interestingness metrics are particularly useful as eigenstate-monitoring tools (for time series data 

streams and for parameter sweeps in high-dimensional databases) – these are used to detect new 

events, state (phase) transitions, onset of change points, non-stationarity, and pattern drift in 

correlations (Levy-Leduc & Roueff 2009).  

 

5  Algorithm: Effective Outlier Detection using K-Nearest Neighbor Data Distributions  

  

We have implemented a new algorithm for outlier detection that has proven to be effective at 

detecting a variety of novel, interesting, and anomalous data behaviors.  The new algorithm 

evaluates the local data distribution around a test data point and compares that distribution with 

the data distribution within the sample defined by its K nearest neighbors.  The algorithm’s 

success is based on the assumption that the distribution of distances between a true outlier and its 

nearest neighbors will be different from the distribution of distances among those neighbors by 

themselves. This assumption relies on the definition of an outlier as a point whose behavior (i.e., 

the point’s location in parameter space) deviates in an unexpected way from the rest of the data 

distribution.  Our algorithm quantifies this deviation, and uses that quantity as a measure of O(x), 

the “outlyingness” of the data point, or its “surprise index”, or its “interestingness”.  

 

Our algorithm is different from the Distribution of Distances algorithm for outlier detection 

presented by Saltenis (2004), in which the comparison is between the local data distribution 

around a test data point and a uniform data distribution.  Our algorithm is also different from the 

k-Nearest Neighbor Graph algorithm for outlier detection of Hautamaki et al. (2004), in which 

data points define a directed graph and outliers are those connected graph components that have 

just one vertex. Furthermore, our algorithm appears similar but is actually different in important 

ways from the incremental LOF (Local Outlier Factor) algorithms of Breunig et al. (2000) and 

Pokrajac et al. (2007), in which the outlier estimate is density-based (determined as a function of 

the data point’s local reachability density), whereas our outlier estimate is based on the full local 

data distribution.  Finally, we report that the KORM (K-median OutlieR Miner) approach to 
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outlier detection in dynamic data streams by Dhaliwal et al. (2010) is most similar to our 

algorithm, except that their approach is cluster-based (based on K-medians) whereas our 

approach is statistics-based.  We describe our algorithm below. 

 

For our algorithm, we define a general distance distribution function f(d,x) as the distribution of 

distances d between point x and a sample of data points. We specifically define fK(d,O) as the 

distribution of distances between a potential outlier O and its K-nearest neighbors.  We also 

specifically define fK(d,K) as the distribution of distances among the K-nearest neighbors.  Our 

algorithm compares the two distance distribution functions fK(d,O) and fK(d,K).  

 

Our algorithm takes advantage of the two-sample K-S (Kolmogorov-Smirnov) statistical test, 

which is a classical non-parametric test used to estimate the likelihood that two sample 

distributions are drawn from the same population (= the Null Hypothesis). There is no 

assumption of normalcy or any other functional form for the distance distribution functions – this 

is an important and essential criterion in order to avoid introducing any bias in the estimation of 

outlier probability. We initially attempted to apply the Mann-Whitney (Wilcoxon) U Test to 

compare the two distance distribution functions, but this test failed to detect true outliers 

effectively – the primary reason is that the U Test essentially measures the difference in the 

median of the two distributions, which demonstrates that a single parameter (including the 

Stahel-Donoho outlyingness parameter O(x), defined in Section 4) is often a completely 

insufficient indicator of true outlylingness. The p-value derived from the K-S statistic (= the 

maximum difference between the two samples’ cumulative density functions) measures the 

likelihood that the two samples satisfy the Null Hypothesis (Wall 1996). We define an Outlier 

Index as (1-p) = the probability that the Null Hypothesis is invalid (i.e., that the data distributions 

are not drawn from the same population). Consequently, the Outlier Index measures the 

likelihood that the test data point deviates from the behavior of the remainder of the data stream.  

Our algorithm has the advantage that it makes no assumption about the shape of the data 

distribution or about “normal” behavior.  

 

Algorithm – Outlier Detection using K-Nearest Neighbor Data Distributions 

Find the set S(K) of K nearest neighbors to the test data point O. 

Calculate the K distances between O and the members of S(K).  These distances define fK(d,O). 

Calculate the K(K-1)/2 distances among the points within S(K).  These distances define fK(d,K). 

Compute the cumulative distribution functions CK(d,O) and CK(d,K), respectively, for fK(d,O) 

and fK(d,K). 

Perform the K-S Test on CK(d,O) and CK(d,K).  Estimate the p-value of the test. 

Calculate the Outlier Index = 1-p. 

If Outlier Index > 0.95, then mark O as an “Outlier”. The Null Hypothesis is rejected. 

If 0.90 < Outlier Index < 0.95, then mark O as a “Potential Outlier”. 

If p > 0.10, then the Null Hypothesis is accepted: the two distance distributions are drawn from 

the same population.  Data point O is not marked as an outlier. 

 

According to this algorithm, an outlier is defined as a data point whose distribution of distances 

between itself and its K-nearest neighbors is measurably different from the distribution of 

distances among the K-nearest neighbors alone (i.e., the two sets of distances are not drawn from 
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the same population).  We tested the effectiveness of this algorithm on a variety of synthetic 

idealized data streams.  Our results are illustrated in Section 6. 

 

6  Experimental Results 

 

To test the K-Nearest Neighbor Data Distribution algorithm for outlier detection and its 

effectiveness, we performed a sequence of experiments on idealized data series.  We synthesized 

three type of data streams: 

a) Linear data streams 

b) V-shaped data reversals (i.e., the “normal” data trend suddenly changes direction) 

c) Circular-shaped data distributions 

Then, we inserted test data points at varying distances from the “normal” data stream: from “true 

normal” to “soft outlier” to “hard outlier”.  We finally applied our algorithm and measured the 

Outlier Index for the test data points, which estimates the likelihood that the test points are 

outliers.  In each experiment, there were 25 points in the data stream, from which we identified 

the K=9 nearest neighbors.  Therefore, the 36 distances between these 9 points were calculated 

and used as an estimate for fK(d,K).  Similarly, the 9 distances between the test data point and K 

nearest neighbors were calculated and used as an estimate for fK(d,O).  In each of the scatter plots 

shown below (Figures 5, 7, and 9), the outlier is identified as a filled brown square, the K nearest 

neighbors are identified as filled green circles, and the remaining (non-nearest neighbor) points 

in the data stream are identified as filled blue diamonds. 

 

6.1  Linear Data Streams 

 

Figure 5 shows three sets of linear data streams (with noise) plus a test data point.  In these tests, 

the outlier was shifted progressively from the middle of the stream (the “true normal” TN 

position) out to increasing distances above the stream line (“soft outlier” SO to “hard outlier” 

HO): these are labeled as Experiments L-TN, L-SO, and L-HO, respectively, in Table 1 (see 

section 6.4).  An example of the comparison between the two cumulative distribution functions 

CK(d,O) and CK(d,K) used by the K-S Test is shown in Figure 6 for Experiment L-TN – this 

illustrates that the cumulative distributions are very similar, as they should be, for a non-outlier 

data point embedded in the middle of the stream’s data distribution. 

 

6.2  V-shaped Data Streams 

 

Figure 7 shows three sets of V-shaped data streams (with noise) plus a test data point.  In these 

tests, the outlier was shifted progressively from the apex of the V-shaped stream (the “true 

normal” position) out to increasing distances from the vertex in locations between the two 

branches of the V (“soft outlier” to “hard outlier”): these are labeled as Experiments V-TN, V-

SO, and V-HO, respectively, in Table 1 (see section 6.4).  An example of the comparison 

between the two cumulative distribution functions CK(d,O) and CK(d,K) used by the K-S Test is 

shown in Figure 8 for Experiment V-SO – this illustrates that the cumulative distributions are 

markedly different, as they should be, for an outlier data point outside the data distribution 

pattern of the stream. 
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6.3  Circular-shaped Data Streams 

 

Figure 9 shows three sets of circular-shaped data streams (with noise) plus a test data point.  In 

these tests, the outlier remained at the center of the circle while the inner radius of the circularly 

distributed data stream was shifted progressively outward from the central point (inner radius=0, 

the “true normal” position) out to increasing values for the inner radius, thus progressively 

isolating the test data point from the remainder of the data stream (“soft outlier” to “hard 

outlier”): these are labeled as Experiments C-TN, C-SO, and C-HO, respectively, in Table 1 (see 

section 6.4).  An example of the comparison between the two cumulative distribution functions 

CK(d,O) and CK(d,K) used by the K-S Test is shown in Figure 10 for Experiment C-HO – this 

illustrates that the cumulative distributions are significantly different, as they should be, for an 

outlier data point that is distinctly removed from the data distribution pattern of the stream. 

 

6.4  Outlier Index Determinations 

 

Table 1 presents our experimental results: the KS Test p-value, the Outlier Index, and the Outlier 

Flag for the nine experiments described above.  It is clear from this table that the K-Nearest 

Neighbor Data Distribution algorithm for outlier detection is very effective at identifying outliers 

and at quantitatively estimating their likelihood of “outlyingness”. These results provide 

confidence that our new algorithm can be used to detect a variety of anomalous deviations in 

topologically diverse data streams.  

 

Experiment ID Short Description 

of Experiment 

KS Test p-value Outlier Index = 1-p = 

Outlyingness Likelihood 

Outlier Flag 

(p<0.05?) 

L-TN 

(Fig. 5a) 

Linear data stream, 

True Normal test 

0.590 41.0% False 

L-SO 

(Fig. 5b) 

Linear data stream, 

Soft Outlier test 

0.096 90.4% Potential 

Outlier 

L-HO 

(Fig. 5c) 

Linear data stream, 

Hard Outlier test 

0.025 97.5% TRUE 

V-TN 

(Fig. 7a) 

V-shaped stream, 

True Normal test 

0.366 63.4% False 

V-SO 

(Fig. 7b) 

V-shaped stream, 

Soft Outlier test 

0.063 93.7% Potential 

Outlier 

V-HO 

(Fig. 7c) 

V-shaped stream, 

Hard Outlier test 

0.041 95.9% TRUE 

C-TN 

(Fig. 9a) 

Circular stream, 

True Normal test 

0.728 27.2% False 

C-SO 

(Fig. 9b) 

Circular stream, 

Soft Outlier test 

0.009 99.1% TRUE 

C-HO 

(Fig. 9c) 

Circular stream, 

Hard Outlier test 

0.005 99.5% TRUE 

Table 1  Results of experiments on the effectiveness of the K-Nearest Neighbor Data Distribution 

algorithm for outlier detection. 
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7  Future Work 

We will expand the experiments to test a variety of other outlier and anomaly detection 

algorithms, to compare these algorithms against the algorithm presented here, and to measure the 

precision and recall of outliers and anomalies from a diverse set of test data sets and realistic 

scientific data streams for each of the various algorithms.  Effective outlier detection is not 

necessarily efficient, and vice versa.  So we will examine the trade-offs between efficiency and 

effectiveness of the different algorithms for different types of data deviations, including changes 

in the trend line of the data, stochastic data variations, catastrophic data changes, changes in the 

median, median, and mode of the data stream, changes in the sample distribution, and more.  

Each of these types of deviations may have relevance in different space mission systems or in 

different sensor applications. Therefore, it is useful to determine which algorithms are most 

effective, and ultimately most efficient, in detecting non-stationary behavior in an unsupervised 

mode within remotely sensed data streams.  

 

8  Summary: Machine Learning In Space 

 

The acquisition of scientific data in all disciplines is accelerating and causing a nearly 

insurmountable data avalanche. Assimilating these data into models and using these data and 

models to drive scientific measurement systems are major scientific challenges for today's large 

scientific research projects. The application of machine learning algorithms will enhance the 

scientific return and knowledge-building capabilities of future space missions. Machine learning 

will enable the science missions to address data-intensive problems that would not otherwise be 

manageable. This will permit large scientific projects to make use of larger data volumes in the 

discovery and modeling process than is currently possible. The scientific return on the 

investments to build, launch, and operate future complex space missions will thus be maximized.   

The challenges of real-time data analysis and exploration are growing as missions become 

increasingly complex in their instrumentation and as the missions produce exponentially more 

data in their telemetry packets, engineering streams, and science data systems. One such research 

challenge area is in the application of dynamic data-driven decision support in data-intensive 

environments, which we have discussed in this paper. In space science missions, the volume of 

data to be processed, analyzed, and explored and the corresponding demands on computational 

power thus lead naturally to an investigation of the information technology efficiencies that 

streamline the corresponding compute-intensive and data-intensive operations. Among these 

technologies are techniques that generate condensed representations of the data stream and 

knowledge extraction from data streams (e.g., eigenstate monitoring, or compressive sensing).  

The extraction of knowledge from the information content of a massive data collection is a clear 

example of data reduction. This “reduced” knowledge can be communicated and shared among 

instruments and missions in a much more bandwidth-friendly manner, which is essential for 

future in-orbit or deep-space data streams, which may be so voluminous that the data flow cannot 

be handled.  Thus, the abstraction of data-intensive operations (through unsupervised learning 

applications, data mining models, and knowledge ontologies) may be the natural solution to the 

data-volume problem.  For example, flight telemetry data streams may be processed and mined 

for non-stationarity (glitches, anomalies, and/or trajectory deviations), and could thus provide the 

necessary feedback to an intelligent systems loop that corrects the trajectory or other satellite 
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systems appropriately in real-time without human intervention.  Similarly, flight engineering 

data streams can be mined for instrumentation problems or other hardware anomalies and, if 

possible, yield feedback to an on-board autonomous correction loop. Finally, though science data 

streams are projected to grow exponentially in volume, not all of these data need to be broadcast 

back to the ground, if appropriate distillations or summarizations are sufficient. It may be desired 

that on-board autonomous machine learning, data mining, and analysis systems perform 

preliminary processing steps and thus provide feedback to the science planning system – e.g., 

continue this observation, or stop and look elsewhere, or stop and send results to another 

spacecraft (such as a member of a constellation spacecraft system).  In all of these cases, the data 

processing, data mining, information retrieval, and knowledge discovery processes are dynamic 

data-driven decision processes. Applying machine learning solutions to these data-intensive 

processes could have profound positive benefits for future space exploration. 
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Figure 5a – Experiment L-TN (see Section 6.1 and Table 1) 

Figure 5b – Experiment L-SO (see Section 6. 1 and Table 1) 
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Figure 5c – Experiment L-HO (see Section 6. 1 and Table 1) 
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Figure 6 – Cumulative distribution plots for Experiment L-TN (see Section 6.1) 

used in the KS-Test to test if the two distance distribution functions fK(d,O) and 

fK(d,K)are drawn from the same population (Section 5).  The ordinate X refers to 

the distance between data points in the sample.  The solid line is the cumulative 

distribution of distances exclusively among the K nearest neighbors to the test data 

point.  The dashed line is the cumulative distribution of distances between the data 

point and its K nearest neighbors (illustrated in Figure 5a). 
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Figure 7a – Experiment V-TN (see Section 6.2 and Table 1) 

Figure 7b – Experiment V-SO (see Section 6.2 and Table 1) 
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Figure 7c – Experiment V-HO (see Section 6.2 and Table 1) 
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Figure 8 – Cumulative distribution plots for Experiment V-SO (see Section 6.2) 

used in the KS-Test to test if the two distance distribution functions fK(d,O) and 

fK(d,K)are drawn from the same population (Section 5).  The ordinate X refers to 

the distance between data points in the sample.  The solid line is the cumulative 

distribution of distances exclusively among the K nearest neighbors to the test data 

point.  The dashed line is the cumulative distribution of distances between the data 

point and its K nearest neighbors (illustrated in Figure 7b). 
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Figure 9a – Experiment C-TN (see Section 6.3 and Table 1) 

Figure 9b – Experiment C-SO (see Section 6.3 and Table 1) 
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Figure 9c – Experiment C-HO (see Section 6.3 and Table 1) 
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 Figure 10 – Cumulative distribution plots for Experiment C-HO (see Section 6.3) 

used in the KS-Test to test if the two distance distribution functions fK(d,O) and 

fK(d,K)are drawn from the same population (Section 5).  The ordinate X refers to 

the distance between data points in the sample.  The solid line is the cumulative 

distribution of distances exclusively among the K nearest neighbors to the test data 

point.  The dashed line is the cumulative distribution of distances between the data 

point and its K nearest neighbors (illustrated in Figure 9c). 


