# # From Daniel Molinari July 2015 # # S.x.y = y+1 instances of x replicates # 0 replicates abcdef S.0 <- choose(92,6)*factorial(6) # 1-0 replicates aabcde S.1.0 <- choose(6,2)*92*91*90*89*88 + choose(6,2)*choose(4,2)*92*91*90*89 + choose(6,2)*choose(4,2)*choose(2,2)*92*91*90 # 1.1 PW addition using Laurence S formula aabbcd S.1.1 <- choose(92,2)*choose(90, 2)*15*6*2 # 1-2 replicates aabbbc S.1.2 <- choose(6,2)*choose(4,3)*92*91*90 # 1-3 replicates aabbbb S.1.3 <- choose(6,2)*choose(4,4)*92*91 # 2-0 replicates aaabcd S.2.0 <- choose(6,3)*92*91*90 # PW ADDING IN LAURENCE S FORMULA 2-1 replicates aaabbb S.2.1 <- factorial(2)*choose(92,2)*choose(6,3)/92^6 # 2-2 replicates aaabbb S.2.2 <- choose(6,3)*choose(3,3)*92*91 # 3-0 replicates aaaabc S.3.0 <- choose(6,4)*92*91*90 # PW addition # Yes, the order counts. The correct computation is # Sequences( 3 instances 1 replicate) = 3 ! (92 Choose 3)*(6 choose 2)*(4 choose 2) S.3.1 <- factorial(3)*choose(92,3)*choose(6,2)*choose(4,2) # 4-0 replicates aaaaab S.4.0 <- choose(6,5)*92*91 # 5-0 replicates aaaaaa S.5.0 <- choose(6,6)*92 # Compute cumulative probability S <- S.0 + S.1.0 + S.1.2 + S.1.3 + S.2.0 + S.2.2 + S.3.0 + S.4.0 + S.5.0 P <- S / (92^6) S <- S.0 + S.1.0 + S.1.1 + S.1.2 + S.1.3 + S.2.0 + S.2.1 + S.2.2 + S.3.0 + S.3.1 S.4.0 + S.5.0 P1 <- S / (92^6)
yields
P # 1.002883 P1 # 1.007972