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Foreword

This is the manual created from the online HTML help file that accompanies the program Orthosim 2. It's in landscape format because
of the wide output which is created by the program,  some of which is pasted into the help file and would be almost unreadable if allowed
to wrap onto the next line etc. 

Also, for some of the data file examples, it was important to retain the column formats on-screen.
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1 Introduction

1.1 Comparing matrix/coordinate data to a Target Matrix

When an investigator wishes to compare a matrix of factor loadings or multidimensional scaling (MDS) coordinates to those from another such analysis, given the
same variables have been used in both analyses and where the coordinates/factors are orthogonal to one another, then this program will be of utility. The program
calculates four different kinds of similarity coefficient between a comparison and target matrix - both "as they are" on input to the program, and after the
comparison matrix has been orthogonally rotated against the target matrix so as to minimize the sum of squared deviations between the comparison matrix and
target matrix values. For exploratory factor analysis (EFA) vectors (factors), the program allows an investigator to choose between two kinds of approaches to the
problem  - that using a "procrustes" approach whereby the matrices are expressed in the same unit-metric space (coordinates of -1 and +1 , irrespective of the
initial sizes of the loadings/coordinate values - they are stretched or shrunk accordingly so as to occupy a joint unified metric space), and a non-procrustes
approach whereby the comparison and target matrices remain unadjusted, and the comparison matrix is rotated against the target "as is". Both orthogonal or
obliquely rotated matrices may be presented to the program. However, oblique matrices will be "transformed" to orthogonal ones, prior to the factor comparison
methodology being applied to these orthogonal versions. 

When submitting Multidimensional Scaling vectors (coordinate dimensions) for comparison, both matrices are initially centered (their coordinate-space origins are
equated), are row-normalized (the "procrustes" approach which expresses each matrix in a normalized unit metric space which preserves the distance relations),
then any coordinate "reflections" undone as part of the orthogonal rotation to maximum congruity.This is known as "configural similarity" (Borg and Groenen,
1997). The reason for these specific transformations is that MDS solutions are arbitrary in terms of their location, scale, and orientation of variables in geometric
space.It is the distance relations between variables which are critical in MDS; such relations can be preserved while allowing the origin, scale, and reflection of
solutions to vary. Hence, the extra transformations required prior to congruential rotation.

The EFA-specific procedures of the program are of use for exploratory factor comparison analyses, or where the number of variables is so large as to preclude a
structural equation modeling/confirmatory factor analysis approach. or where an investigator wishes to simply rotate a set of data to a schematic target (1s and 0s
as loadings/coordinate values). The Validimax routine published in McCrae and Costa (1989.,1994) and used in McCrae, Zonderman, Bond, Costa, & Paunonen
(1996) is the same as the Orthosim non-procrustes routine, which is the Kaiser, Hunka, Bianchini (1971) algorithm without the initial row-normalisation of the
matrices. All are based upon Schonemann's (1966) and Cliff's (1966) expositions, which in turn are based upon even earlier work such as Ahmavarra (1954).

The key feature to remember is that this routine utilizes least squares fit of the entire comparison matrix to a target matrix. It does not do so one factor at a time -
but rather rotates the entire orthogonal comparison solution in m-dimensional space (where m = the number of factors or MDS coordinate dimensions.) toward the
target solution. Evans (1971) provides a nice overview of the methodologies proposed for comparison to target matrix model fitting.

References
Ahmavaara, Y. (1954) Transformation analysis of factorial data. Annales Academiae Scientarum Fennical, Series B, 88, 2, 1-164.

Borg, I., and Groenen, P. (1997) Modern Multidimensional Scaling: Theory and Applications. Springer. ISBN: 0-387-94845-7.

Cliff. N. (1966) Orthogonal rotation to congruence. Psychometrika, 31, 1, 33-42.

Evans, G.T. (1971) Transformation of factor matrices to achieve congruence. British Journal of Mathematical and Statistical Psychology, 24, 22-48.
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Kaiser, H. F., Hunka, S., Bianchini, J. C. (1971) Relating factors between studies based upon different individuals. Multivariate Behavioral Research,  409-422.

McCrae, Robert R; Costa, Paul T. Rotation to maximize the construct validity of factors in the NEO Personality Inventory. Multivariate Behavioral Research. Vol
24(1) Jan 1989, 107-124.

McCrae, Robert R; Costa, Paul T. "Rotation to maximize the construct validity of factors in the NEO Personality Inventory": Erratum. Multivariate Behavioral
Research. Vol 29(2) 1994, [126]. 
Reports an error in the original article by R. R. McCrae and P. T. Costa (Multivariate Behavioral Research, 1989[Jan], Vol 24[1], 107-224). On page 115, in Table
1, the loading of Conscientiousness of the Varimax Neuroticism factor should be -.31.

McCrae, R. R., Zonderman, A. B., Bond, M. H., Costa, P. T. Jr., Paunonen, S. V. (1996) Evaluating replicability of factors in the revised NEO Personality Inventory:
Confirmatory factor analysis versus procrustes rotation. Journal of Personality and Social Psychology, 70, 3, 552-566.

Schonemann, P. (1966) A general solution of the orthogonal procrustes problem. Psychometrika, 31, 1-10.

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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1.2 The Procrustes Method

In Greek mythology, Procrustes was an ancient innkeeper/bandit who stood by the roadside, beckoning all travelers to come in for a good meal and a night's rest
on his legendary bed—a bed which could accommodate anyone, short and tall alike. Once you had decided to take him up on his offer and were well fed, he
conducted you to his vaunted bedchamber, whereupon you would be placed on his one-size-fits-all iron bed. If you were too long for his bed, he cut your legs off. If
you were too short, he stretched you out on the rack.

From Wikipedia ...
In Greek mythology, Procrustes ("the stretcher") was a bandit from Attica killed by Theseus. In Eleusis, he had a bed which he invited passersby to lie down in.
When they did so, he either stretched them or cut off body parts to make them fit into the bed. He continued this until he encountered Theseus and ended up in
his own bed.Killing Procrustes is the last adventure of Theseus. Theseus pushed Procrustes on his own bed and chopped off his head and feet.Procrustes was a
nickname for Damastus, Procoptas, or Polypemon.

Any attempt to reduce men to one standard, one way of thinking, or one way of acting, is called placing them on Procrustes' bed, and the person who makes the
attempt is called Procrustes.
Ovid VII, 438. The moral of the story is used as a metaphor for life: I make my own bed, and lie in it.

Procrustes analysis is the name for the process of performing a shape preserving Euclidean transformation to a set of shapes. This removes variations in
translation, rotation and scaling across the dataset, so to move them into a common frame of reference. This is generally the precursor to further statistical
analysis.

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz

http://en.wikipedia.org/wiki/Main_Page
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1.3 The Orthosim-2 program

Orthosim Features
1. Orthogonal Congruential rotation for EFA factor vectors - with or without row normalisation (i.e. no Procrustes effect). The Orthosim Procrustes solution is the
original Kaiser, Hunka, Bianichini algorithm which uses row normalization prior to configural matching (albeit modified by Barrett et al (1998) in the light of
criticisms by Ten Berge (1996)).
2. Configural Similarity assessment for MDS coordinate dimension vectors.
3. Input matrices printed as standard.
4. Two levels of output - brief and long.
5. Computes the Root-Mean-Square Difference between input comparison and target matrices
6. Computes the Root-Mean-Square Difference between optimally rotated comparison and target matrices
7. Computes the overall solution congruence
8. Computes the overall solution double-scaled euclidean distance similarity (DSED) coefficient
9. Computes the overall solution kernel smoothed distance (KSD) similarity coefficient
10. Computes variable congruence similarity indices 
11. Computes Factor/Coordinate DSED and KSD comparisons between the optimally rotated comparison and target matrices.
12. Computes Factor/Coordinate comparison matrices using Pearson and Congruence coefficients between the optimally rotated comparison and target matrices.
13. Computes Factor/Coordinate comparison matrices using Pearson and Congruence coefficients between the initial comparison and target matrices.

Important
· The limits of the program are 350 variables and 35 factors/MDS coordinate dimensions per matrix
· The program can cope with unequal numbers of factors – but, the target matrix must contain the higher number of factors.
· Both matrices must have the same number of variables.

Especially Important!
Unless the target matrix was a Varimax/orthogonal rotated matrix – an obliquely rotated input comparison and/or target matrix gets "orthogonalised" before
factor/MDS coordinate matching – which means mostly it is uninterpretable (as it is just an arbitrary orthogonalised version of the obliquely rotated matrix. This is
because the obliquely rotated matrices are "orthogonalised" to an arbitrary orthogonal representation (not simple structure at all) – then the orthogonalised
comparison matrix is compared to the orthogonalised target matrix. Remember, the point of the KHB/orthogonal congruential rotation is to enable you to say how
similar two orthogonal sets of vectors are to one another, prior to any rotational solution.  In reality, the maximally congruent matrix output is only of value when
using an orthogonal target matrix as input, and not using row-normalisation (procrustean stretching/shrinking). This is because the already orthogonal matrix
remains unchanged (untransformed) as the target matrix– and the comparison matrix is then rigidly rotated toward it. The comparison matrix could of course be
obliquely rotated – indeed, it could be the same orthogonal target matrix, obliquely rotated, so that you can see how similar the obliquely rotated factor loadings are
to the orthogonal version factor loadings, as well as confirming the congruential congruence via the KHB coefficients. 

References
Barrett, P. T., Petrides, K. V., Eysenck, S. B. G., & Eysenck, H. J. (1998) The Eysenck Personality Questionnaire: An examination of the factorial similarity of P, E,
N, and L across 34 countries. Personality and Individual Differences, 25, 5, 805-819.

Ten Berge, J. M. F. (1996) The Kaiser, Hunka and Bianchini factor similarity coefficients: A cautionary note. Multivariate Behavioral Research, 31, 1, 1-6.

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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2 Chapter 2: Similarity Indices

2.1 Why Four Similarity indices?

Because as Example #1 makes clear, neither the  Pearson nor Congruence coefficient are sensitive to differences in magnitude between factor loadings or MDS
coordinates. While mostly not a serious problem in factor analysis, coordinate scale differences (after origin centering, reflection, normalization, and rotation) and
are critical to MDS - where the distance between coordinate values is itself indicative of similarity/dissimilarity. 

The problem is that the Pearson and Congruence coefficients are scale insensitive. That is, the coefficients are blind to the magnitude differences between
loadings or coordinates, being sensitive to the monotonic order only.. So, we need to use a coefficient which is sensitive to both monotonicity relations and
magnitude differences of corresponding loading/coordinate values. Two coefficients, designed by myself are used. A double-scaled euclidean distance coefficient
expressed as a similarity measure, and a kernel-smoothed distance coefficient, also expressed as a similarity measure. Both coefficients vary between 0 and 1,
where 0 = maximum possible discrepancy and 1 = absolute identity. 

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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2.2 The Pearson Coefficient

The normalised covariance between two variables. Here the variables are the factors or MDS coordinate "axes", and the loadings or coordinate values are
considered the observations.So, the deviation-value (each variable observation is subtracted from the mean of the all the observations for that factor/axis)
cross-products of two variables, divided by the product of the respective standard deviationstandard deviation is the second-moment around the mean). This is
why it is sometimes called the Pearson product-moment correlation. The coefficient varies between +1.0 and -1.0, with +1.0 indicating maximum similarity, -1.0 =
maximum inverse similarity, and 0.0 indicating no relationship whatsoever. 

The formula is:
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The problem with the Pearson correlation is that it is insensitive to the scale of the corresponding pairs of loadings or MDS coordinates, as Example 1
demonstrates. As such, it is not advisable to use this coefficient at all - but some investigators still like to see it all the same - so I have included it here for
comparative purposes etc.

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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2.3 The Congruence Coefficient

The congruence coefficient is normally encountered only in the domain of factor similarity (comparing factors from a factor analysis across samples). It is, in effect,
a pearson correlation computed using unstandardised variables. That is, if we were to express each profile vector score as a deviation from the respective vector
mean (subtract the elevation (mean) coefficient from each profile value), then compute the measure of relationship using the Pearson correlation formulae, we
would indeed have computed a Pearson correlation coefficient. The congruence coefficient varies between +1.0 and -1.0, with +1.0 indicating maximum similarity,
-1.0 = maximum inverse similarity, and 0.0 indicating no relationship whatsoever.

The formula is:
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Overall and Klett (1972, pp. 392-393) also refer to this coefficient as the raw vector product coefficient (contrasted with the normalized vector product coefficient
- i.e. the Pearson correlation). 

Guttman (1981) derived exactly the same coefficient for computing the similarity between derived and observed distances within multidimensional scaling (MDS);
he called it the monotonicity coefficient (mu or m). Coxon (1982, p. 89-90) also shows that m is directly related to measures of stress (in multidimensional
scaling), as well as Gutmman's coefficient of Alienation (K). This alienation coefficient is a measure of the "unexplained" variation between the comparison and
target profiles. So for example, of a congruence coefficient of 0.99 is computed, Guttman's K = 0.14. A brief discussion of these issues can be found in Borg and
Groenen (1997, pp 203-204). In relation to this issue, they note that m takes on values close to 1.0 even if the MDS solution is "far from perfect". It was for this
reason that Guttman converted m to K (the coefficient of Alienation), in order to expand the indicative range. If we subtract K from 1.0, we can obtain a measure of
"similarity" (lack of alienation) that is based upon the expanded range of K.

Of interest is that Gorsuch (1983, p. 285), in relation to the use of the congruence coefficient for comparing factors, states "Occasionally, coefficients of
congruence can give ridiculous results. Pinneau and Newhouse (1964) have pointed out that the index is highly influenced by the level and sign of loadings. 
Factors whose loadings are the same size will, of necessity, have a high coefficient of congruence even if the patterns are unrelated".

But, it has serious scale-sensitivity problems ... so sensitive that I no longer recommend its usage at all.
The Pearson is based upon standardized deviations from the mean of each factor/coordinate axis loadings/values, while the congruence is based upon raw
deviations from 0.0. What this means is that the Pearson is not sensitive to differences between the means of two sets of loadings, but the congruence might be
expected to be. In fact it is sensitive only when one vector contains loadings that vary proportionately around 0.0. Jensen (1988) p. 100 gives a small
example which shows the sensitivity of the congruence coefficient to the scale of the loadings/coordinate values. 

Loadings/Coordinate values Factor/Dimension 1 Factor/Dimension 2
1 .9 .4
2 .8 .3
3 .7 .2
4 .6 .1
5 .5 0.0
6 .4 -.1
7 .3 -.2
8 .2 -.3
9 .1 -.4

The Pearson r for these data is 1.00, The congruence coefficient is 0.46. But look at these data ...

Loadings/Coordinate values Factor/Dimension 1 Factor/Dimension 2
1 .9 .09
2 .8 .08
3 .7 .07
4 .6 .06
5 .5 .05



12 Orthosim Target-Comparison Matrix Fitting

2006: Paul Barrett

6 .4 .04
7 .3 .03
8 .2 .02
9 .1 .01

The Pearson r for these data is 1.00, The congruence coefficient is also 1.00. If we try the following data ....

Loadings/Coordinate values Factor/Dimension 1 Factor/Dimension 2
1 .9 .09
2 .8 .08
3 .7 .07
4 .6 .06
5 .5 .0
6 .4 .0
7 .3 .0
8 .2 .0
9 .1 .0

The Pearson is 0.91 whilst the congruence is 0.90. Yet 5 out of the 9 loadings on the 2nd dimension are 0, and the remainder less than 0.1 This is not "scale
sensitivity", neither is the coefficient "sensitive" to the scale mean disparity between factors. In short, it's all but useless (like the Pearson correlation) for this kind
of work - unless other information about the scale/magnitude differences is acquired. It is for this reason that I will no longer use the congruence coefficient any
more unless its value is corroborated by using an index which is sensitive to loading/coordinate magnitudes as well as monotonic relations.i.e. Double-scaled
euclidean or the kernel smoothed distance measures of agreement. 

However, it is probably fair to say that most factor solutions which have previously used the congruence coefficient are probably Ok - in that the loadings are
invariably of similar size and scale and so its value could be considered a fair representation of the agreement between two vectors,  As I say, Orthosim has the
capacity to advise on magnitude differences  as well as monotonicity, it is as well to use this information.

References
Borg, I. and Groenen, P. (1997) Modern Multidimensional Scaling: Theory and Application. Springer Verlag. ISBN: 0-387-94865-7

Coxon, A.P.M. (1982) The User's Guide to Multidimensional Scaling. Heinemann Educational Books.ISBN: 0-435-82251-9

Gorsuch, R.L. (1983) Factor Analysis 2nd Edition. Lawrence Erlbaum. ISBN: 0-89859-202-X

Jensen, A.R. (1998) The g Factor: The Science of Mental Ability. Praeger Press. ISBN: 0-275-961-3-6

Overall, J.E. and Klett, C.J. (1972) Applied Multivariate Analysis. McGraw-Hill. ISBN: 07-047935-6

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz



13Chapter 2: Similarity Indices

2006: Paul Barrett

2.4 Double-Scaled Euclidean Distance

The Euclidean metric (and distance magnitude) is that which corresponds to everyday experience and perceptions. That is, the kind of 1, 2, and 3-Dimensional
linear metric world where the distance between any two points in space corresponds to the length of a straight line drawn between them. The figure below shows
the scores of three individuals on two variables (Variable 1 is the x-axis, Variable 2 the y-axis) –
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The straight line between each "Person" is the Euclidean distance. There would this be three such distances to compute, one for each person-to-person distance.
Likewise, when calculating the distance between variables located on the same factor/MDS coordinate axis across two studies ...

The formula for calculating the distance between each of the three individuals as shown above is:

where the difference between two persons' scores is taken, and squared, and summed for v variables (in our example v=2). Three such distances would be
calculated, for p1 – p2, p1 – p3, and p2 - p3. In terms of comparison and target vector operations, the formula looks like ...

where we compare the loadings/MDS coordinate values (i=1 to N such values) across a factor/coordinate axis within the comparison and target data. 

Normalised Euclidean Distance
The problem with the raw distance coefficient is that it has no obvious bound value for the maximum distance, merely one that says 0 = absolute identity. Its range
of values vary from 0 (absolute identity) to some maximum possible discrepancy value which remains unknown until specifically computed. Raw Euclidean
distance varies as a function of the magnitudes of the observations. Basically, you don't know from its size whether a coefficient indicates a small or large
distance. The fact of the matter is that unless we know the maximum possible values for a Euclidean distance, we can do little more than rank dissimilarities,
without ever knowing whether any or them are actually similar or not to one another in any absolute sense. A further problem is that raw Euclidean distance is
sensitive to the scaling of each constituent variable. For example, comparing persons across variables whose score ranges are dramatically different. Likewise,
when developing a matrix of Euclidean coefficients by comparing multiple variables to one another, and where those variables' magnitude ranges are quite
different. Several approaches are taken in an attempt to normalize the coefficient. These are described with examples in the document "Euclidean Distance"
downloadable from the Stats_Corner of my website at: http://www.pbarrett.net/statistics_corner.htm,  at the link: "Euclidean Distance: raw, normalized, and
double-scaled coefficients". None are seen as particularly useful. Note also that so far, all we can talk about is distance or dissimilarity, not similarity.

Double-Scaled Euclidean Distance (DSED)
When comparing two variables/persons, what we can do is to calculate the Euclidean distance from data which is transformed into a 0-1 metric using a strictly
linear method (rather than non-linear normalization-standardization), then re-scale the resultant Euclidean distance measure itself into a 0-1 range, scaling it into a
range defined by 0 through to the maximum possible distance observable between the two variables/persons. This also allows us to re-express this coefficient as
a similarity measure by simply subtracting it from 1.0.

http://www.pbarrett.net/statistics_corner.htm
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There are three computational steps to be followed in factor/MDS coordinate similarity with a DSED coefficient...(in fact all of these are automated within the
program - including the use of fixed maximum variable discrepancies).

Step 1: Determine the maximum possible squared discrepancy for each factor/MDS coordinate dimension using the minimum and maximum values which might
be observed for these factors/MDS coordinate axes. Call these values md. 

Given a factor solution invariably presented to Orthosim will be based upon an input correlation matrix, all factor loadings are thus standardized between -1.0 and
+1.0, hence we calculate the maximum possible discrepancy for any two variable loadings as: 

  md = (min-max)2

  md = ((-1)-(+1))2

  md = 4

* Note that md acts as a constant.

Although MDS solution coordinates invariably possess a range larger than -1 to +1, the centering, reflection, and normalizing of the coordinates into the same
metric space mean that the minimum and maximum values always range between -1 to +1, thus the resulting scaling of the squared disparity between any two
coordinate values will be fixed at this range.

An important point: Orthosim only permits one minimum and maximum value (-1 to +1)  to be used for all factor/MDS coordinate comparisons. This differs from
the use of this coefficient in person-target profiling (as explained in the document "Euclidean Distance" downloadable from the Stats_Corner of my website at: 
http://www.pbarrett.net/statistics_corner.htm,  at the link: "Euclidean Distance: raw, normalized, and double-scaled coefficients").

Step 2. Compute the sum of squared discrepancies per observation, dividing through the squared discrepancy for each pair of observations by the maximum
possible discrepancy observable given these two variables. Then take the square root of the sum to produce the scaled variable Euclidean distance.

we modify the equation above ...

to become ...

http://www.pbarrett.net/statistics_corner.htm
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where   d1 = the "scaled variable" Euclidean distance
          md = the maximum possible squared discrepancy between these two variables (which is always 4 for each variable).

Step 3. Compute the scaled value from step 3 by dividing it by the square root of N, where N = the number of paired loadings/MDS coordinate values.

A worked example of this calculation is given in the document "Euclidean Distance" downloadable from the Stats_Corner of my website at: 
http://www.pbarrett.net/statistics_corner.htm,  at the link: "Euclidean Distance: raw, normalised, and double-scaled coefficients").

Finally, we express this scaled distance (which varies between 0 = absolute identity to 1.0 = maximum possible dissimilarity) as a similarity for our purposes here,
by subtracting it from 1.0. So, the formula above becomes:

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz

http://www.pbarrett.net/statistics_corner.htm
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2.5 Kernel Smoothed Distance

My design of this coefficient was based upon the idea that a distance function could be shaped in such a way that if the simple arithmetic unsigned difference
between a person's attribute value and the target attribute value was computed to be within a certain range, then the computed distance should reflect a very small
distance, almost regardless of the actual distance. But, as that distance grew larger, then the computed distance should be accelerated in size. In short, an
"inertial" effect was aimed for – translated into a distance metric. 

The "shaped distance" design is in direct response to a need to "take control" or "shape" the distance function between two objects in space, as a function of their
distance. So, small disparities between two profile scores would have little effect on the distance calculation, but, as the disparity grew greater, so would the
distance be degraded in an accelerated fashion. The function chosen to achieve this was the normal distribution curve equation, with distance degradation
acceleration controlled by the standard deviation parameter and the target profile value represented by the mean of the distribution function. 

Within the area of computational data smoothing and trend analysis, this kind of "inertial" effect is known as kernel density smoothing (Hastie et al, 2001). It has
been applied here to permit the control of a distance function rather than to smooth data trends. As the distance between a target score value and a comparison
score value increases, so the distance is accelerated between them once the distance moves beyond a region of little change (near the peak of such a
distribution). The parameter controlling the "plateau" effect is the standard deviation of such a distribution; likewise, the acceleration in distance at larger values.

It has been applied here to permit the control of a distance function rather than to smooth data trends. As the distance between a target variable value and a
comparison variable value increases, so the distance is "accelerated" (made much larger than it actually is) between them once the distance moves beyond a
region of little change (near the peak of such a distribution). 

The parameter controlling the "plateau" effect is the standard deviation of such a distribution; likewise, the acceleration in distance at larger values. For example,
the figures below show the distance curves with standard deviations of 10 and 30 for five different target values of 10, 20, 35, 50, and 75. The curves are
constructed by systematically varying comparative score values (those score values to be compared to the fixed target) from 0 through 100 in 1-unit steps. 

A kernel distance weighting function with standard deviation = 10. Comparison scores ranging between 0 and 100 are compared to five target scores of 5, 10, 35,
50, and 75
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A kernel distance weighting function with standard deviation = 30. Comparison scores ranging between 0 and 100 are compared to five target scores of 5, 10, 35,
50, and 75.
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The formula for this coefficient is:
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where s = standard deviation "smoothing" parameter
          c = the comparison vector (factor/MDS coordinate axis)
          t = the target vector (factor/MDS coordinate axis)
          N = the number of variables being compared within a factor/MDS coordinate axis

It is constructed to yield a percentage similarity measure, with 0% indicating maximum dissimilarity and 100% being absolute identity. 

In Orthosim, I simply divide it by 100 so as to express similarity in a unified metric of 0 to 1.

More details concerning this coefficient are provided in the chapter:

Barrett, P.T. (2005) Person-Target Profiling. In  André Beauducel, Bernhard Biehl, Michael Bosniak, Wolfgang Conrad, Gisela Schönberger, and Dietrich Wagener
(Eds.) Multivariate Research Strategies: a Festschrift for Werner Wittman. Chapter 4, pp 63-118. Hofstede and Huber.

Also, details of the kernel smoothing techniques are provided in:
Hastie, T., Tibshirani, R., and Friedman, J. (2001) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer.

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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2.6 Root-Mean-Square Deviation

This coefficient is calculated as:

where N = the number of variables and c and t are the comparison and target vectors respectively

It has no upper limit - being dependent upon the scale of the variables ... however, it is useful as a "relative change" coefficient which informs you as to how well
(and the degree of improvement from the original input comparison matrix)  the optimally rotated comparison matrix fits the target matrix.

Note that this coefficient is built from the simple least-squares difference expression used to "locate" the optimal position of the comparison matrix to the target
matrix.

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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3 Chapter 3: The Programs

3.1 The precise mechanics of Orthosim

Rather than try and present the entire suite of equations here, it is better you download the paper: Barrett, P.T., Petrides, K.V., Eysenck, S.B.G., and Eysenck, H.J.
(1998) The Eysenck Personality Questionnaire: an examination of the factorial similarity of P, E, N, and L across 34 countries Personality and Individual
Differences, 25, 5, 805-819 from my website at: http://www.pbarrett.net/preprint.htm. This provides a listing of all matrix operations used to perform the
Kaiser-Hunka-Bianchini (KHB) congruential, least-squares optimised, rotation. 

This particular (KHB) technique of factor comparison compares two row-normalized orthogonal matrices to one another. A comparison set of orthogonal factor
vectors are rotated rigidly against a target set of vectors, such that the overall least-squares discrepancy between loadings/coordinate values in the comparison
and target matrices is at a minimum. Even if the two matrices to be compared have been initially rotated to an oblique position, the Kaiser-Hunka-Bianchini (1971)
procedure "undoes" the oblique transformations and performs a subsequent orthogonal rotation of one set of row-normalized vectors against the other. Thus, the
KHB procedure is essentially an orthogonal procrustes procedure. 

Unfortunately, as pointed out by Bijnen, Poortinga, and Ten Berge (1996), the original KHB similarity coefficients were mis-specified by Kaiser et al, who
advocated using the angular shift cosines (required to bring the two factor matrices into maximum congruity) as measures of similarity. However, Barrett et al
(1998) modified the procedure to permit the calculation of congruence coefficients over the maximally congruent orthogonalized factor matrices. 

A key feature within Orthosim is that of row normalization of factor matrices to be compared prior to the comparison procedure being applied., and then the
re-expression (reverse normalization) of the maximally congruent comparison matrix back in the metric of the original input matrix. These operations produce a
slightly different final comparison matrix than if we just rotate the input comparison matrix "as is" (no row normalization selected). Further, that
expansion/contraction (the procrustes effect) completely removes the scale differences between matrices (see Example 1). You must decide whether you wish to
row-normalize or not.

Look at the following results from comparing two matrices via Orthosim - the 8 physical variable matrix given in Table 15.8 (p. 355) of Harman (1976) ... (the two
matrices are included in the installation package for your convenience) ...

From Orthosim (with row normalization) - with the factors re-expressed in their original metric space

   Orthogonal Maximally Congruent Comparison Matrix: Eight Physical Variables - Matrix No. 1 

            FAC. 1    FAC. 2
            ------    ------
Var_1       0.8712    0.2805
Var_2       0.9199    0.2067
Var_3       0.8867    0.1841
Var_4       0.8629    0.2508
Var_5       0.2303    0.9141
Var_6       0.1865    0.7781
Var_7       0.1268    0.7535

http://www.pbarrett.net/preprint.htm
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Var_8       0.2557    0.6529

 HYP.COUNT       0         0
 VARIANCE    3.3053    2.6532

From Orthosim (without row normalization)

   Orthogonal Maximally Congruent Comparison Matrix: Eight Physical Variables - Matrix No. 1                                       
 

            FAC. 1    FAC. 2
           ------     ------
Var_1       0.8763    0.2643
Var_2       0.9235    0.1896
Var_3       0.8900    0.1677
Var_4       0.8674    0.2348
Var_5       0.2471    0.9096
Var_6       0.2009    0.7745
Var_7       0.1407    0.7510
Var_8       0.2677    0.6481

 HYP.COUNT       0         0
 VARIANCE    3.3580    2.6005

Note that the eigenvalue sum remains constant between the two solutions- but that the actual eigenvalues for each factor vary marginally.

This also affects the overall similarity and factor/coordinate axis similarity measures:

From Orthosim (with row normalization)

Mean Solution Congruence =  0.96580

                   Congruence Coefficients:  between the target and maximally congruent comparison matrix
                   **************************************************************************************

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    0.9651    0.2524
 FAC. 2    0.2516    0.9665

From Orthosim (without row normalization)
Overall Solution Congruence = 0.96563



27Chapter 3: The Programs

2006: Paul Barrett

                   Congruence Coefficients:  between the target and maximally congruent comparison matrix
                   **************************************************************************************

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    0.9706    0.2655
 FAC. 2    0.2337    0.9560

References 
Barrett, P.T., Petrides, K.V., Eysenck, S.B.G., and Eysenck, H.J. (I1998) The Eysenck Personality Questionnaire: an examination of the factorial similarity of P, E,
N, and L across 34 countries. Personality and Individual Differences, 25, 5, 805-819 

Bijnen, E.J. (1988) The Questionable value of cross-cultural comparisons with the Eysenck Personality Questionnaire. Journal of Cross-Cultural Psychology, 19,
2, 193-202.

Bijnen, E.J., van der Net, T.Z.J., Poortinga, Y.H. (1986) On cross-cultural comparative studies with the Eysenck Personality Questionnaire. Journal of
Cross-Cultural Psychology, 17, 1, 3-16.

Harman, H. (1976) Modern Factor Analysis, 3rd edition. Chicago University Press. ISBN: 0-226-31652-1

Kaiser, H.F., Hunka, S., and Bianchini, J.C. (1971) Relating factors between studies based upon different individuals. Multivariate Behavioral Research, 6,
409-422.

Ten Berge, J.M.F. (1996) The Kaiser, Hunka, and Bianchini factor similarity coefficients: a cautionary note. Multivariate Behavioral Research, 31, 1, 1-6.

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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3.2 Job Control and Input Data File Structures

Orthosim_1 is written in Delphi 2005, but the routines used by the program are written in Fortran 77 and compiled using the Intel Fortran 9.1 visual Fortran
compiler for Windows (XP compatible etc.). However, because my original program (19989/1992) was job-control-based as were all Fortran programs around that
time, I have had to continue the convention until I can completely re-write the software in Delphi.

Anyway, the upshot of this is that the input files possess a fixed format structure, and must appear as "text files" to the program. This is a real pain. For users of
my Pswin software (probably 0 now!) and for STATISTICA users, there is no pain as my rotation program takes care of the file setup automatically as an output
file of factor leadings ready for comparison. The new STATISTICA VB programs (downloadable from my website) also allow users of this package to simply create
the necessary file from a factor analysis or MDS workbook results spreadsheet in STATISTICA. 

However, for those using SPSS or whatever, or just wanting to set up a file from say a paper or book chapter, or even set up a synthetic target file  (1s and 0s as
target loadings say), you need to be aware of how to do this.

A Synthetic Target 
 It is possible to set up a synthetic target data matrix and diagonal factor correlation matrix (1s in the diagonal and 0s elsewhere). The dummy matrix would itself
consist of 1s and 0s - and provide a clear target pattern for comparison purposes. For example, take the following matrix which has been formed from an
expectation that the first 5 variables would load factor 1, and the second 5 on factor 2. The matrix would look like:
   F1 F2
  1.0 0.0
  1.0 0.0
  1.0 0.0
  1.0 0.0
  1.0 0.0
  0.0 1.0
  0.0 1.0
  0.0 1.0
  0.0 1.0
  0.0 1.0

with the orthogonal factor correlation matrix as 
  1.0     0.0
  0.0     1.0

The next section details the Orthosim input file structure - common to both routines so you can submit either file setup to either program.

Some "runtime" specifics
When running the windows program Orthosim_2, it creates a temporary file called "Faksim.tmp" which contains the output "length" instructions, minimum,
maximum, and KSD smoothing values appropriate for the orthosim routine, along with the file paths and names of the input and output files you selected.The
appropriate fortran routine (orthosim.exe) is then called, and it reads the appropriate temporary file information.
 

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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3.2.1 Orthosim Job Control

This is the map for the job control that heads an input file for Orthosim coordinate comparison analysis. The input file should contain ...

 
LINE 1 .... TITLE (up to 80 chars) 

LINE 2 .... Col. 1-2   the number of factors in the matrix

Col. 3-5   the number of variables/items in the matrix.

NEXT LINE/s ...the names of the variables, 8 chars per name, with up to 10 names per line. The input format is fixed at (10A8)

NEXT LINE ..... the INPUT data format for the factor PATTERN matrix 

NEXT LINE ..... the INPUT data format for the factor INTERCORRELATION matrix.

An example file setup , for 3 factors and 5 variables, looks like ...

Ahmavaara Test Matrix -X-
03005
Variab_1Variab_2Variab_3Variab_4Variab_5
(8F6.3)
(8F6.3)
   .56   .43   .31   .36   .35
   .12  -.03   .32   .09  -.03
   .24   .50   .24   .31   .55
  1.00   .00   .00
   .00  1.00   .00
   .00   .00  1.00 

Note that the factor correlation matrix in this example indicates an orthogonal solution. Also, the factor correlation matrix always follows the factor pattern matrix.
Note also that each factor/MDS coordinate axis is listed "by row". That is, the loadings/coordinate values for each dimension are listed factor/axis by factor/axis.

The 8 physical variable comparison matrix given in Table 15.8 (p. 355) of Harman (1976) looks like

Eight Physical Variables - Matrix No. 1
 2  8
Var_1   Var_2   Var_3   Var_4   Var_5   Var_6   Var_7   Var_8
(8F12.6)
(8F6.3)
        .856        .848        .808        .831        .750        .631       .569         .607
       -.324       -.412       -.409       -.342        .571        .492       .510         .351
  1.000  0.000
  0.000  1.000
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Another example – using a sample questionnaire oblique factor matrix input  – with 15 items and 3 factors …

Questionnaire Data - AoHT - items 12 and 14 excluded - 3 factors DIROBL                 
 3 15
AoHT 1  AoHT 2  AoHT 3  AoHT 4  AoHT 5  AoHT 6  AoHT 7  AoHT 8  AoHT 9  AoHT 10 
AoHT 11 AoHT 13 AoHT 15 AoHT 16 AoHT 17 
(8F10.6)
(8F10.6)
   .729944   .595202   .778294   .680963  -.097802   .034107   .244660   .391214
   .360160   .387810   .042117  -.139163   .606636   .094208   .409074
   .217157   .040858  -.151194  -.141103  -.888941  -.911463  -.036675  -.242526
  -.224271  -.508952  -.009535  -.052023  -.032373  -.703377  -.309347
  -.008865  -.319628   .218008   .003275  -.048440  -.001285  -.747034  -.156402
  -.282549  -.075753  -.839402  -.780177  -.045437  -.053086  -.150631
  1.000000  -.309750  -.264361
  -.309750  1.000000   .231690
  -.264361   .231690  1.000000

Yes - you've probably also noticed the Fortran format statements ..8F10.6 etc! This means a fixed field of 10 characters, 8 per line, and 6 decimal places per
number.
8F6.3 = a fixed field of 6 characters, 8 per line, and 3 decimal places per number.
108F12.8 = a fixed field of 12 characters, 10 per line, and 8 decimal places per number.
16F12.6 = a fixed field of 12 characters, 16 per line, and 6 decimal places per number.

Reference
Harman, H. (1976) Modern Factor Analysis, 3rd edition. Chicago University Press. ISBN: 0-226-31652-1

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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3.3 How to Run an Analysis

Click on the program icon on your desktop - or wherever you have placed it ...

The following screen will appear - which is the orthosim 2 user interface ...
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The "Printer Page Format" menu item is explained in the Help Section "Output Fonts".

Step 1: Select a target matrix file ... by clicking on the "Target File?" button. This will display a dialog screen whreby you can select your file ...

You'll notice that you are only seeing files which end in ".vf". This is the "Facsim/Orthosim" default suffix for an input file. If you want to see "all Files", just click on
the "Files of type" comboBox ...
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then you will see all the files in whatever subdirectory you have chosen. Select your file ... 
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You now see the filename in the row next to the Target File button. Do the same for the "Comparison File" and the "Output Results File". You will note that the
output results file is defaulted to sim1 ... you can change this at any time. Further, note that the output file is a text file - so you might wish to append the suffix .txt
to this file. 

As you enter the Output results filename, you will notice the "Go!" button is activated ... which means you can now implement an analysis ...However ...
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before you hit the "Go!" button - choose which kind of analysis you'd like to run, and whether you'd like brief or long output.

Finally, check that the KSD smoothing value is acceptable. It is set at a fairly sensitive "discrepancy degredation" level - so you might want to increase it say to 0.4.
However, remember this is a coefficient you need to calibrate on some specially adjusted datasets, taking into account how you you will adjudge "similarity" and
how sensitive you want this coefficient to be to any kind of discrepancy,

You'll note that the program "remembers" the directory you last used to input and save output files, as well as the last specified KSD smoothing
coefficient value.

Ready? Press Go! Almost instantaneously, the "Look at Output File" and "Print the Output File" buttons will be activated - signalling the finish of the analysis.
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If you click on the "Look at Output File" button, your output file will be opened up on the free text editor which was installed with this program ... 
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You can view your file within this editor - and cut and paste areas etc to say a Word Processor. Full online help accompanies this editor via its own Help button.
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If you wish to print the output - you may do so from the Editor - or click on the "Print the Output File" Button on Orthosim_2 window for a page-formatted output file.

If you wish to rerun the same analysis using say row normalization, select the appropriate analysis radio-button and click on the Go! button again. Likewise, if you
wish to retain the same target matrix but compare a new matrix to it - then just change the comparison file name by clicking on the "Comparison File?" button.
Then press Go! etc.

Also, if you wish to see the effect of changing the value of the smoothing coefficient on the KSD, just change its values with everything else as previously set
(except you may wish to divert the output into a new output file)  and press Go!   

In short - this interface is built for usability and speed!

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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4 Chapter 4: The Output

4.1 Output fonts

A document entitled: Orthosim Output Fonts and Fontsizer info.doc has been installed in c:\facsim ... this explains about installing the Monospace fonts (if you
don't already have them) that you will need for the formatted Orthosim_2 printed output utility, It also explains the Printer-Page format menu option (fontsizer).

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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4.2 Understanding Orthosim Output

Brief Output
This is what is obtained when selecting an Orthosim Analysis with the Brief Input option active ... 

The Header page to the output shows you which files have been input to the routine ...

 **** PSPwin Software Series ****

 Program : ORTHOSIM: Orthogonal congruential and configural rotation .......... Version 2.0, 26th July, 2005

 For Exploratory Factor Comparison Analysis using an Orthogonal  Procrustes (row normalized) or Non-Procrustes procedure, and
 also with direct comparison between the target and comparison matrix

 For Multidimensional Scaling Solution Comparisons - a configural rotation is undertaken, which centers each matrix, row normalizes
it,
 undoes any reflections and rotates the scaled target and comparison matrices to maximum congruity.

 Author  : Paul Barrett (p.barrett@xtra.co.nz) or (www.pbarrett.net)

 Target file : C:\Facsim\Eight Physical Variables Matrix_2.vf                                                                       
                                                             
 Datafile Title : Eight Physical Variables - Matrix No. 2                                         

 Comparison file : C:\Facsim\Eight Physical Variables Matrix_1.vf                                                                   
                                                                 
 Datafile Title : Eight Physical Variables - Matrix No. 1                                         

 ***** Factor Analysis Unit-Vectors - No Procrustes (no row normalization) 

 ***** Results format will be BRIEF

Then, the next two pages display the input Target and Comparison loading/coordinate matrices, and the respective factor/MDS dimension correlation matrix. The
Target matrix is presented first, followed by the Comparison matrix. This is so that the user can be assured that the correct data are being read, prior to analysis.

                    Eight Physical Variables - Matrix No. 2                                         
                   *******************************************************************************************



42 Orthosim Target-Comparison Matrix Fitting

2006: Paul Barrett

Input Format for Pattern Matrix is: (8F12.6)                                                                        
Input Format for Factor Correlation Matrix is: (8F6.3)                                                                         

                                        Input TARGET factor/coordinate matrix
                                        *************************************

             FAC. 1    FAC. 2
             ------    ------
Var_1       1.0000    0.0000
Var_2       1.0000    0.0000
Var_3       1.0000    0.0000
Var_4       1.0000    0.0000
Var_5       0.0000    1.0000
Var_6       0.0000    1.0000
Var_7       0.0000    1.0000
Var_8       0.0000    1.0000

 HYP.COUNT       4         4
 VARIANCE    4.0000    4.0000

*The HYP COUNT = the hyperplane count (the loadings/coordinate values <= |0.1|)
*         VARIANCE = the sum of squared loadings/coordinate values.

     Comparison Factor Intercorrelation Matrix:  Eight Physical Variables - Matrix No. 2                                           

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    1.0000    0.0000
 FAC. 2    0.0000    1.0000

------------------------------------------------------------------------------------------------------
                    Eight Physical Variables - Matrix No. 1                                         
                    *******************************************************************************************

Input Format for Pattern Matrix is: (8F12.6)                                                                        
Input Format for Factor Correlation Matrix is: (8F6.3)                                                                         

                                        Input COMPARISON factor/coordinate matrix
                                        *****************************************

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.8560   -0.3240
Var_2       0.8480   -0.4120
Var_3       0.8080   -0.4090
Var_4       0.8310   -0.3420
Var_5       0.7500    0.5710
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Var_6       0.6310    0.4920
Var_7       0.5690    0.5100
Var_8       0.6070    0.3510

 HYP.COUNT       0         0
 VARIANCE    4.4481    1.5104

     Comparison Factor Intercorrelation Matrix:  Eight Physical Variables - Matrix No. 1                                           

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    1.0000    0.0000
 FAC. 2    0.0000    1.0000

Then, the overall results page is presented. This details the overall solution congruence (which is the mean of the congruence coefficients calculated comparing
each variable's values across all factors/coordinate axes). The "row" congruences are presented in a table below the summary results - I've rounded these row
coefficients to two decimal places for simple convenience.Remember, the coefficient varies between -1.0 and +1.0.

Following this is the overall solution Double-Scaled Euclidean (DSED) similarity coefficient .. which includes the particular minimum and maximum value applied
for these data. This coefficient varies between 0 and 1 with 1 = absolute identity. This is the mean of the individual factor/MDS coordinate dimension DSEDs. 

Then comes the overall solution Kernel Distance Smoothed (KSD) similarity coefficient .. which includes the particular smoothing value used here (0.2). This is the
mean of the individual factor/MDS coordinate dimension KSDs. Note how the small smoothing value here significantly reduces the apparent agreement. Generally,
I use a smoothing value of about a fifth to a tenth of the minimum and maximum range ... so for -1 to +1 I'd maybe use a value of 0.2 up to 0.4 ... this needs
calibrating by you in order to gauge how far you would like this coefficient to express the dissimilarity you see "by eye". Example 3 explains how I generally do this
myself.  

Note, both the DSED and KSD coefficients are sensitive to the scale discrepancy between the size of loadings in each matrix, unlike the congruence coefficient
which is only sometimes sensitive (See the congruence  coefficient help for examples of this phenomenon).

Ok - finally, we see the root-mean-square deviations, first between the input target and comparison matrix, then between the orthogonalized forms of each, then
between the orthognalized target and maximally congruent comparison matrix. When presenting two orthogonal matrices to this routine, the orthogonalized forms
are in fact the same matrices, hence no difference between the first two rms indices. You only see a difference when one or both matrices have been obliquely
rotated. Then, orthogonalization has an effect - and is duly reported via the rms index. The 3rd rms index shows you how close the matrices have been brought
into congruency - in terms of a root mean square deviation index. Obviously, the lower the rms value, the close are the two matrices to one another (in terms of
least squares deviations of each variable across matrices).

              Matching Coefficients - by variable across dimensions (factors), and an overall mean congruence (of the variable
congruences)
             
*****************************************************************************************************************************

 ***** Factor Analysis Unit-Vectors - No Procrustes (no row normalization) 
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     Overall Solution Congruence = 0.96563

     Overall Solution Double-Scaled Euclidean Similarity =  0.89814          [Scaling Minimum =  -1.0000       Maximum =   1.0000 ]

     Overall Solution Kernel Distance Smoothed Similarity =  0.62774         [Scaling Smoother value =  0.20000 ]

     Root Mean Square deviation between the actual input target and original comparison matrix =  0.65427

     Root Mean Square deviation between the orthogonalised target and orthogonalised comparison matrix =  0.65427

     Root Mean Square deviation between the orthogonalised target and now maximally congruent comparison matrix =  0.29105

          Congruence Coefficients calculated for each row (variable) in the target and maximally congruent comparison matrix
          ------------------------------------------------------------------------------------------------------------------

   variable     Name/ID          congruence     congruences rounded to two decimal places
   --------     -------          ----------     ----------------------------------------
        1       Var_1             0.95739         0.96                                             
        2       Var_2             0.97956         0.98                                             
        3       Var_3             0.98271         0.98                                             
        4       Var_4             0.96526         0.97                                             
        5       Var_5             0.96502         0.97                                             
        6       Var_6             0.96798         0.97                                             
        7       Var_7             0.98289         0.98                                             
        8       Var_8             0.92425         0.92                                             

If the congruences fall below certain values, then appropriate warnings will be given at the side of each variable:

If a congruence is less than or equal to 0.4, then the message "Trivial Variable Similarity" is printed alongside the variable congruence.
If a congruence is less than or equal to 0.6 but greater than 0.4, then the message "Bad Match" is printed alongside the variable congruence.
If a congruence is less than or equal to 0.8 but greater than 0.6 then the message "Poor Match" is printed alongside the variable congruence.

What comes next are the summary values for several "agreement" indices ... The first table shows the DSED and KSD coefficients for each factor/MDS
coordinate dimension.

           Double-Scaled (DSES) and Kernel Smoothed Euclidean Similarity Coefficients - target vs comparison factors/coordinate axes
           *************************************************************************************************************************

          The coefficients range from 0 = maximum dissimilarity to 1 = absolute identity

     Factor #     DSES Coefficient     Kernel Smoothed Similarity
     --------     ----------------     --------------------------
        1             0.91273                0.70956
        2             0.88355                0.54591                                          
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The next one shows the Pearson correlations between each factor/MDS coordinate dimension.

                   Pearson Correlations:  between the target and maximally congruent comparison matrix
                   ************************************************************************************

    The < ROWS > are..Eight Physical Variables - Matrix No. 2                                         
    The < COLUMNS > are..Eight Physical Variables - Matrix No. 1                                         

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    0.9938   -0.9689
 FAC. 2   -0.9938    0.9689

Then we see the congruence coefficients between each factor/MDS coordinate dimension.

                   Congruence Coefficients:  between the target and maximally congruent comparison matrix
                   **************************************************************************************

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    0.9706    0.2655
 FAC. 2    0.2337    0.9560

Next we see two tables - showing Pearson and congruence coefficients - between the initial input target and comparison matrices, These tables show you what
the agreement was like between the matrices, prior to the congruential rotation procedure. Sometimes interesting to see - especially when looking at the eftect
of simple structure rotation and/or oblique rotations on the matrices, compared to the orthogonal congruity found using the least-squares discrepancy criterion.

                   Pearson Correlations: between the original input target and comparison matrices - prior to any congruential
rotation
                  
********************************************************************************************************************

    The < ROWS > are..Eight Physical Variables - Matrix No. 2                                         
    The < COLUMNS > are..Eight Physical Variables - Matrix No. 1                                         

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    0.8928   -0.9891
 FAC. 2   -0.8928    0.9891

                   Congruence Coefficients: between the original input target and comparison matrices - prior to any congruential
rotation
                  
***********************************************************************************************************************

           FAC. 1    FAC. 2
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           ------    ------
 FAC. 1    0.7925   -0.6050
 FAC. 2    0.6062    0.7828

         --- Finished ---

Long Output
This is what is obtained when selecting an Orthosim Analysis with the Long Input option active ... 

After the first two pages of input matrix output as above, the next page/s are displayed prior to the Overall Solution index results ... These are the actual "results"
matrices - the target and the maximally congruent comparison matrix over which all subsequent summary indices are computed. Here you can see just how close
(if at all) the comparison matrix loadings/values look compared to the target matrix loadings (note, this example uses a synthetic target matrix).

   Orthogonalised Input Target Matrix: Eight Physical Variables - Matrix No. 2                                         

             FAC. 1    FAC. 2
             ------    ------
Var_1       1.0000    0.0000
Var_2       1.0000    0.0000
Var_3       1.0000    0.0000
Var_4       1.0000    0.0000
Var_5       0.0000    1.0000
Var_6       0.0000    1.0000
Var_7       0.0000    1.0000
Var_8       0.0000    1.0000

 HYP.COUNT       4         4
 VARIANCE    4.0000    4.0000

   Orthogonal Maximally Congruent Comparison Matrix: Eight Physical Variables - Matrix No. 1                                       
 

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.8763    0.2643
Var_2       0.9235    0.1896
Var_3       0.8900    0.1677
Var_4       0.8674    0.2348
Var_5       0.2471    0.9096
Var_6       0.2009    0.7745
Var_7       0.1407    0.7510
Var_8       0.2677    0.6481
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 HYP.COUNT       0         0
 VARIANCE    3.3580    2.6005

Then all other output is the same as for the brief option .. so all that really differs between the options is whether you get to see the orthogonalised matrices used
as a target and comparison. 

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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5 Chapter 5: Orthosim, Scaling, and Order

5.1 Example 1: Perfect monotonicity but size discrepancy

This example shows the effects of "procrustes" row normalisation (stretching or shrinking values in a matrix so as to express both matrices in the same metric). -
or raw matrix comparisons (without row normalization)

We'll start off gently at first! Here I use two matrices ...

 Target Datafile : C:\Facsim\Eight Physical Variables Matrix_2 - adjusted.vf                                                                                                                           
 Datafile Title : Eight Physical Variables - Matrix No. 2 - adjusted loadings                     

 Comparison Datafile : C:\Facsim\Eight Physical Variables Matrix_1.vf                                                                                                                                      
 Datafile Title : Eight Physical Variables - Matrix No. 1          

The input matrices are:

Input TARGET factor/coordinate matrix
*************************************
             FAC. 1    FAC. 2
             ------    ------
Var_1       0.1000    0.1000
Var_2       0.2000    0.1000
Var_3       0.3000    0.1000
Var_4       0.4000    0.1000
Var_5       0.1000    0.1000
Var_6       0.1000    0.2000
Var_7       0.1000    0.2000
Var_8       0.0000    0.9000

Input COMPARISON factor/coordinate matrix
*****************************************
             FAC. 1    FAC. 2
             ------    ------
Var_1       0.8560   -0.3240
Var_2       0.8480   -0.4120
Var_3       0.8080   -0.4090
Var_4       0.8310   -0.3420
Var_5       0.7500    0.5710
Var_6       0.6310    0.4920
Var_7       0.5690    0.5100
Var_8       0.6070    0.3510

The Orthosim (non-procrustes) target and maximally congruent comparison matrix are:
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   Orthogonalised Input Target Matrix: Eight Physical Variables - Matrix No. 2 - adjusted loadings                     

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.1000    0.1000
Var_2       0.2000    0.1000
Var_3       0.3000    0.1000
Var_4       0.4000    0.1000
Var_5       0.1000    0.1000
Var_6       0.1000    0.2000
Var_7       0.1000    0.2000
Var_8       0.0000    0.9000

   Orthogonal Maximally Congruent Comparison Matrix: Eight Physical Variables - Matrix No. 1                                      
 

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.8392    0.3653
Var_2       0.8949    0.2967
Var_3       0.8641    0.2710
Var_4       0.8338    0.3350
Var_5       0.1387    0.9324
Var_6       0.1086    0.7927
Var_7       0.0516    0.7624
Var_8       0.1898    0.6750

Overall Solution congruence = 0.94329

The factor by factor congruence coefficients computed from the above two matrices are:

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    0.8875    0.5683
 FAC. 2    0.3325    0.6847

Now look at the corresponding output form the routine (where I have exposed the actual "procrustean" matrices which are compared to one another, and from
which the congruence coefficients are calculated.

   ROW NORMALISED (original factor space) ORTHOGONAL MULTIPLE GROUP MATRIX #1
   ==========================================================================
             FAC. 1    FAC. 2
             ------    ------
Var_1       0.7071    0.7071
Var_2       0.8944    0.4472
Var_3       0.9487    0.3162
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Var_4       0.9701    0.2425
Var_5       0.7071    0.7071
Var_6       0.4472    0.8944
Var_7       0.4472    0.8944
Var_8       0.0000    1.0000

   ROW NORMALISED (original factor space) ORTHOGONAL MULTIPLE GROUP MATRIX #2
   ==========================================================================
             FAC. 1    FAC. 2
             ------    ------
Var_1       0.9474    0.3200
Var_2       0.9724    0.2332
Var_3       0.9761    0.2173
Var_4       0.9562    0.2928
Var_5       0.2304    0.9731
Var_6       0.2192    0.9757
Var_7       0.1518    0.9884
Var_8       0.3513    0.9363

Overall Solution congruence = 0.94669

The factor by factor congruence coefficients computed from the above two matrices are:

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    0.9307    0.6164
 FAC. 2    0.6294    0.9628

These factor by factor coefficients are a lot different in this example to those computed from a non-procrustean orthogonal target rotation.

BUT - it gets worse! What if I compare the original 8 physical variable matrix to one in which all loadings are divided by 100?

 ***** Factor Analysis Unit-Vectors - No Procrustes (no row normalization) 

 ***** Results format will be LONG and DETAILED!

                    Eight Physical Variables - Matrix No. 1                                         
                    *******************************************************************************************

Input Format for Pattern Matrix is: (8F12.6)                                                                        
Input Format for Factor Correlation Matrix is: (8F6.3)                                                                         

                                        Input TARGET factor/coordinate matrix
                                        *************************************

             FAC. 1    FAC. 2
             ------    ------
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Var_1       0.8560   -0.3240
Var_2       0.8480   -0.4120
Var_3       0.8080   -0.4090
Var_4       0.8310   -0.3420
Var_5       0.7500    0.5710
Var_6       0.6310    0.4920
Var_7       0.5690    0.5100
Var_8       0.6070    0.3510

 HYP.COUNT       0         0
 VARIANCE    4.4481    1.5104

     Target Factor Intercorrelation Matrix:  Eight Physical Variables - Matrix No. 1                                         

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    1.0000    0.0000
 FAC. 2    0.0000    1.0000

                    Eight Physical Variables - Matrix No. 1 - all loadings divided by 100           
                    *******************************************************************************************

Input Format for Pattern Matrix is: (8F14.6)                                                                        
Input Format for Factor Correlation Matrix is: (8F6.3)                                                                         

                                        Input COMPARISON factor/coordinate matrix
                                        *****************************************

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.0086   -0.0032
Var_2       0.0085   -0.0041
Var_3       0.0081   -0.0041
Var_4       0.0083   -0.0034
Var_5       0.0075    0.0057
Var_6       0.0063    0.0049
Var_7       0.0057    0.0051
Var_8       0.0061    0.0035

 HYP.COUNT       8         8
 VARIANCE    0.0004    0.0002

     Comparison Factor Intercorrelation Matrix:  Eight Physical Variables - Matrix No. 1 - all loadings divided by 100           

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    1.0000    0.0000
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 FAC. 2    0.0000    1.0000

   Orthogonalised Non-Procrustes EFA Input Target Matrix: Eight Physical Variables - Matrix No. 1                                   
    

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.8560   -0.3240
Var_2       0.8480   -0.4120
Var_3       0.8080   -0.4090
Var_4       0.8310   -0.3420
Var_5       0.7500    0.5710
Var_6       0.6310    0.4920
Var_7       0.5690    0.5100
Var_8       0.6070    0.3510

 HYP.COUNT       0         0
 VARIANCE    4.4481    1.5104

   Orthogonal Maximally Congruent Comparison Matrix: Eight Physical Variables - Matrix No. 1 - all loadings divided by 100         
 

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.0086   -0.0032
Var_2       0.0085   -0.0041
Var_3       0.0081   -0.0041
Var_4       0.0083   -0.0034
Var_5       0.0075    0.0057
Var_6       0.0063    0.0049
Var_7       0.0057    0.0051
Var_8       0.0061    0.0035

 HYP.COUNT       8         8
 VARIANCE    0.0004    0.0002
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              Matching Coefficients - by variable across dimensions (factors), and an overall mean congruence (of the variable
congruences)
             
*****************************************************************************************************************************

 ***** Factor Analysis Unit-Vectors - No Procrustes (no row normalization) 

     Overall Solution Congruence = 1.00000

     Overall Solution Double-Scaled Euclidean Similarity =  0.70791          [Scaling Minimum =  -1.0000       Maximum =   1.0000 ]

     Overall Solution Kernel Distance Smoothed Similarity =  0.07128         [Scaling Smoother value =  0.20000 ]

     Root Mean Square deviation between the actual input target and original comparison matrix =  0.85440

     Root Mean Square deviation between the orthogonalised target and orthogonalised comparison matrix =  0.85440

     Root Mean Square deviation between the orthogonalised target and now maximally congruent comparison matrix =  0.85440

          Congruence Coefficients calculated for each row (variable) in the target and maximally congruent comparison matrix
          ------------------------------------------------------------------------------------------------------------------

   variable     Name/ID          congruence     congruences rounded to two decimal places
   --------     -------          ----------     ----------------------------------------
        1       Var_1             1.00000         1.00                                             
        2       Var_2             1.00000         1.00                                             
        3       Var_3             1.00000         1.00                                             
        4       Var_4             1.00000         1.00                                             
        5       Var_5             1.00000         1.00                                             
        6       Var_6             1.00000         1.00                                             
        7       Var_7             1.00000         1.00                                             
        8       Var_8             1.00000         1.00                                             
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           Double-Scaled (DSES) and Kernel Smoothed Euclidean Similarity Coefficients - target vs comparison factors/coordinate axes
           *************************************************************************************************************************

          The coefficients range from 0 = maximum dissimilarity to 1 = absolute identity

     Factor #     DSES Coefficient     Kernel Smoothed Similarity
     --------     ----------------     --------------------------
        1             0.63090                0.00492
        2             0.78492                0.13763

                   Pearson Correlations:  between the target and maximally congruent comparison matrix
                   ************************************************************************************

    The < ROWS > are..Eight Physical Variables - Matrix No. 1                                         
    The < COLUMNS > are..Eight Physical Variables - Matrix No. 1 - all loadings divided by 100           

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    1.0000   -0.8478
 FAC. 2   -0.8478    1.0000

                   Congruence Coefficients:  between the target and maximally congruent comparison matrix
                   **************************************************************************************

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    1.0000    0.0002
 FAC. 2    0.0002    1.0000

This example shows why I recommend only using a congruence coefficient as a matching index alongside a DSED or KSD coefficient. Even where one matrix
contains essentially all zero loadings - the mere fact that a perfect monotonic order is maintained in the 3rd decimal place is sufficient to produce congruence and
pearson coefficients of 1.0.

Now, let's run the same analysis using a procrustes row normalization ...

first we see the row-normalized version of our input target matrix.

   Orthogonalised EFA Procrustes (Row Normalized Version) Input Target Matrix

   Eight Physical Variables - Matrix No. 1                                         

             FAC. 1    FAC. 2
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             ------    ------
Var_1       0.9352   -0.3540
Var_2       0.8995   -0.4370
Var_3       0.8922   -0.4516
Var_4       0.9247   -0.3806
Var_5       0.7957    0.6058
Var_6       0.7886    0.6149
Var_7       0.7447    0.6674
Var_8       0.8657    0.5006

 HYP.COUNT       0         0
 VARIANCE    5.8938    2.1062

Now, the matrix which only had loadings defined in the 3rd decimal place is now itself row normalized and rotated into maximum congruity with the target
row-normalized matrix ...

   Orthogonal Maximally Congruent Comparison Matrix: Eight Physical Variables - Matrix No. 1 - all loadings divided by 100         
 

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.9352   -0.3540
Var_2       0.8995   -0.4370
Var_3       0.8922   -0.4516
Var_4       0.9247   -0.3806
Var_5       0.7957    0.6058
Var_6       0.7886    0.6149
Var_7       0.7447    0.6674
Var_8       0.8657    0.5006

 HYP.COUNT       0         0
 VARIANCE    5.8938    2.1062

              Matching Coefficients - by variable across dimensions (factors), and an overall mean congruence (of the variable
congruences)
             
*****************************************************************************************************************************

 ***** Factor Analysis Unit-Vectors - Procrustes Fit

     Overall Solution Congruence = 1.00000

     Overall Solution Double-Scaled Euclidean Similarity =  1.00000          [Scaling Minimum =  -1.0000       Maximum =   1.0000 ]

     Overall Solution Kernel Distance Smoothed Similarity =  1.00000         [Scaling Smoother value =  0.20000 ]

     Root Mean Square deviation between the actual input target and original comparison matrix =  0.85440
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     Root Mean Square deviation between the orthogonalised target and orthogonalised comparison matrix =  0.00000

     Root Mean Square deviation between the orthogonalised target and now maximally congruent comparison matrix =  0.00000

          Congruence Coefficients calculated for each row (variable) in the target and maximally congruent comparison matrix
          ------------------------------------------------------------------------------------------------------------------

   variable     Name/ID          congruence     congruences rounded to two decimal places
   --------     -------          ----------     ----------------------------------------
        1       Var_1             1.00000         1.00                                             
        2       Var_2             1.00000         1.00                                             
        3       Var_3             1.00000         1.00                                             
        4       Var_4             1.00000         1.00                                             
        5       Var_5             1.00000         1.00                                             
        6       Var_6             1.00000         1.00                                             
        7       Var_7             1.00000         1.00                                             
        8       Var_8             1.00000         1.00                                             
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           Double-Scaled (DSES) and Kernel Smoothed Euclidean Similarity Coefficients - target vs comparison factors/coordinate axes
           *************************************************************************************************************************

          The coefficients range from 0 = maximum dissimilarity to 1 = absolute identity

     Factor #     DSES Coefficient     Kernel Smoothed Similarity
     --------     ----------------     --------------------------
        1             1.00000                1.00000
        2             1.00000                1.00000

As can be seen, once the matrices are row-normalized into the same metric, then they are exactly the same as one-another. The question is, what is
required to be compared, the original matrices "as is" or their unified metric versions? This is not so easy to answer. Ordinarily, psychologists/researchers interpret
factor matrix loadings of the original matrices - not row-normalized ones. Yet, a simple transformation of the matrices yields a completely different set of loadings
and absolute identity between matrices. My feeling is that IF the original factor matrices are to be compared "as is" - then size does indeed matter and you cannot
simply stretch or shrink a comparison matrix loadings to another. With MDS coordinates, the issue is not relevant - as these coordinates are essentially scale free.
True configural similarity is required - rather than factor similarity. MDS solutions are arbitrary in terms of their location, scale, and orientation of variables in
geometric space.It is the distance relations between variables which are critical in MDS; such relations can be preserved while allowing the origin, scale, and
reflection of solutions to vary. Hence, the extra transformations required prior to congruential rotation in MDS.

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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5.2 Example 2: Which is the target? Order matters

Ah yes - the old "order effect". Lost in the small print in many descriptions of congruential rotation is that the order in which you input matrices matters.
That is, which matrix you define as the target matrix matters to the factor/coordinate axis vs factor/coordinate axis comparisons. For example, let's run the 8
physical variable example ... The order of matrices is:

 Target Datafile : C:\Facsim\Eight Physical Variables Matrix_2.vf                                                                                                                                      
 Datafile Title : Eight Physical Variables - Matrix No. 2                                         

 Comparison Datafile : C:\Facsim\Eight Physical Variables Matrix_1.vf                                                                                                                                      
 Datafile Title : Eight Physical Variables - Matrix No. 1                                         

We obtain the following overall solution indices ...

     Overall Solution Congruence = 0.96563

     Overall Solution Double-Scaled Euclidean Similarity =  0.89814          [Scaling Minimum =  -1.0000       Maximum =   1.0000 ]

     Overall Solution Kernel Distance Smoothed Similarity =  0.62774         [Scaling Smoother value =  0.20000 ]

     Root Mean Square deviation between the actual input target and original comparison matrix =  0.65427

     Root Mean Square deviation between the orthogonalised target and orthogonalised comparison matrix =  0.65427

     Root Mean Square deviation between the orthogonalised target and now maximally congruent comparison matrix =  0.29105

with factor by factor results of:

          Congruence Coefficients calculated for each row (variable) in the target and maximally congruent comparison matrix
          ------------------------------------------------------------------------------------------------------------------

   variable     Name/ID          congruence     congruences rounded to two decimal places
   --------     -------          ----------     ----------------------------------------
        1       Var_1             0.95739         0.96                                             
        2       Var_2             0.97956         0.98                                             
        3       Var_3             0.98271         0.98                                             
        4       Var_4             0.96526         0.97                                             
        5       Var_5             0.96502         0.97                                             
        6       Var_6             0.96798         0.97                                             
        7       Var_7             0.98289         0.98                                             
        8       Var_8             0.92425         0.92                                             

                   Double-Scaled Euclidean Similarity (DSES) Coefficients - target vs comparison factors/coordinate axes
                   ****************************************************************************************************
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          The coefficients range from 0 = maximum dissimilarity to 1 = absolute identity

     Factor #     DSES Coefficient     Kernel Smoothed Similarity
     --------     ----------------     --------------------------
        1             0.91273                0.70956
        2             0.88355                0.54591

                   Congruence Coefficients:  between the target and maximally congruent comparison matrix
                   **************************************************************************************

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    0.9706    0.2655
 FAC. 2    0.2337    0.9560

Now we input the matrices with Matrix No. 1 as our target, and Matrix No. 2 as our comparison matrix ...

 Target Datafile : C:\Facsim\Eight Physical Variables Matrix_1.vf                                                                                                                                      
 Datafile Title : Eight Physical Variables - Matrix No. 1                                         

 Comparison Datafile : C:\Facsim\Eight Physical Variables Matrix_2.vf                                                                                                                                      
 Datafile Title : Eight Physical Variables - Matrix No. 2                                         

We obtain the following overall solution indices ...

     Overall Solution Congruence = 0.96563

     Overall Solution Double-Scaled Euclidean Similarity =  0.91344          [Scaling Minimum =  -1.0000       Maximum =   1.0000 ]

     Overall Solution Kernel Distance Smoothed Similarity =  0.68490         [Scaling Smoother value =  0.20000 ]

     Root Mean Square deviation between the actual input target and original comparison matrix =  0.65427

     Root Mean Square deviation between the orthogonalised target and orthogonalised comparison matrix =  0.65427

     Root Mean Square deviation between the orthogonalised target and now maximally congruent comparison matrix =  0.29105

Note the marginal change in the DSED and KSD coefficients - reflecting the sensitivity of these coefficients to the changed target and maximally congruent factor
pattens, but no change between the Congruence coefficient or root-mean-square coefficients. These latter coefficients (the rms) should not change as they simply
index the least-squares fit - which will be the same regardless of which matrix is input first. 
However, look at the factor by factor results ...
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          Congruence Coefficients calculated for each row (variable) in the target and maximally congruent comparison matrix
          ------------------------------------------------------------------------------------------------------------------

   variable     Name/ID          congruence     congruences rounded to two decimal places
   --------     -------          ----------     ----------------------------------------
        1       Var_1             0.95739         0.96                                             
        2       Var_2             0.97956         0.98                                             
        3       Var_3             0.98271         0.98                                             
        4       Var_4             0.96526         0.97                                             
        5       Var_5             0.96502         0.97                                             
        6       Var_6             0.96798         0.97                                             
        7       Var_7             0.98289         0.98                                             
        8       Var_8             0.92425         0.92                                             

No change in the row-by-row congruences ..but changes to the distance and factor-by-factor congruences ...

                   Double-Scaled Euclidean Similarity (DSES) Coefficients - target vs comparison factors/coordinate axes
                   ****************************************************************************************************

          The coefficients range from 0 = maximimum dissimilarity to 1 = absolute identity

     Factor #     DSES Coefficient     Kernel Smoothed Similarity
     --------     ----------------     --------------------------
        1             0.96909                0.95607
        2             0.85780                0.41373

                   Congruence Coefficients:  between the target and maximally congruent comparison matrix
                   **************************************************************************************

           FAC. 1    FAC. 2
           ------    ------
 FAC. 1    0.9978   -0.0018
 FAC. 2   -0.0031    0.9893

So- order of entry (which is the target and which is the comparison matrix) WILL make a difference to the size of the factor-by-factor congruencecoefficients, as
well as to the DSED and KSD coefficients.It will not make a difference to the overall mean solution congruence.
The overall similarity DSED and KSD indices are relatively unaffected by the order of entry of the matrices - but the factor-by-factor indices are sensitive, as are
the congruence coefficients. 

So - be careful!

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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5.3 Example 3: Kernel Distance smoothing - calibration #1

Ok - how to scale the coefficient ... well, run an test analysis such as in example 1 ...

Target file : C:\Facsim\Eight Physical Variables Matrix_1.vf                                                                                                                                      
 Datafile Title : Eight Physical Variables - Matrix No. 1                                         

 Comparison file : C:\Facsim\Eight Physical Variables Matrix_001.vf                                                                                                                                    
 Datafile Title : Eight Physical Variables - Matrix No. 1 four loadings set to 0.001 

The file "Eight Physical Variables Matrix_001.vf" has exactly the same loadings as the target file - except four have been set to 0.001. I run a non-procrustes
rotation ...

I'm using a KSD value of 0.2 ...

The input matrices are:

                    Eight Physical Variables - Matrix No. 1                                         
                    *******************************************************************************************

                                        Input TARGET factor/coordinate matrix
                                        *************************************

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.8560   -0.3240
Var_2       0.8480   -0.4120
Var_3       0.8080   -0.4090
Var_4       0.8310   -0.3420
Var_5       0.7500    0.5710
Var_6       0.6310    0.4920
Var_7       0.5690    0.5100
Var_8       0.6070    0.3510

 HYP.COUNT       0         0
 VARIANCE    4.4481    1.5104

                    Eight Physical Variables - Matrix No. 1 four loadings set to 0.001-             
                    *******************************************************************************************

                                        Input COMPARISON factor/coordinate matrix
                                        *****************************************

             FAC. 1    FAC. 2
             ------    ------
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Var_1       0.0010   -0.3240
Var_2       0.0010   -0.4120
Var_3       0.8080   -0.4090
Var_4       0.8310   -0.3420
Var_5       0.7500    0.5710
Var_6       0.6310    0.4920
Var_7       0.5690    0.0010
Var_8       0.6070    0.0010

 HYP.COUNT       2         2
 VARIANCE    2.9963    1.1271

   Orthogonal Maximally Congruent Comparison Matrix: Eight Physical Variables - Matrix No. 1 four loadings set to 0.001-           
 

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.0864   -0.3123
Var_2       0.1096   -0.3972
Var_3       0.8873   -0.1814
Var_4       0.8918   -0.1107
Var_5       0.5729    0.7486
Var_6       0.4789    0.6410
Var_7       0.5486    0.1510
Var_8       0.5852    0.1610

The overall results are:

              Matching Coefficients - by variable across dimensions (factors), and an overall mean congruence (of the variable congruences)
              *****************************************************************************************************************************

 ***** Factor Analysis Unit-Vectors - No Procrustes (no row normalization) 

     Overall Solution Congruence = 0.87152

     Overall Solution Double-Scaled Euclidean Similarity =  0.85273          [Scaling Minimum =  -1.0000       Maximum =   1.0000 ]

     Overall Solution Kernel Distance Smoothed Similarity =  0.66215         [Scaling Smoother value =  0.20000 ]

     Root Mean Square deviation between the actual input target and original comparison matrix =  0.47828

     Root Mean Square deviation between the orthogonalised target and orthogonalised comparison matrix =  0.47828

     Root Mean Square deviation between the orthogonalised target and now maximally congruent comparison matrix =  0.43691
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          Congruence Coefficients calculated for each row (variable) in the target and maximally congruent comparison matrix
          ------------------------------------------------------------------------------------------------------------------

   variable     Name/ID          congruence     congruences rounded to two decimal places
   --------     -------          ----------     ----------------------------------------
        1       Var_1             0.59061         0.59               Bad Match                     
        2       Var_2             0.66057         0.66               Poor Match                    
        3       Var_3             0.96460         0.96                                             
        4       Var_4             0.96460         0.96                                             
        5       Var_5             0.96460         0.96                                             
        6       Var_6             0.96460         0.96                                             
        7       Var_7             0.89510         0.90                                             

        8       Var_8             0.96748         0.97                                             

Determine whether or not you feel the "distance degredation" of the KSD coefficient is too harsh or too "soft" - if you feel it's a bit too harsh in terms of its value
here, try re-running the same analysis with the smoothing parameter set at a higher value - say 0.5 ... the result of this is:

     Overall Solution Kernel Distance Smoothed Similarity =  0.86952         [Scaling Smoother value =  0.50000 ]

Perhaps this feels about right? Alternatively, you may feel that's it's still a bit generous ....so you set it to 0.35 ...

     Overall Solution Kernel Distance Smoothed Similarity =  0.80009         [Scaling Smoother value =  0.35000 ]

A final adjustment
It's probably as well to check how this performs on another adjusted matrix where the loadings are not that similar but where the monotonicity is maintained to a
degree ...

 Target file : C:\Facsim\Eight Physical Variables Matrix_1.vf                                                                                                                                      
 Datafile Title : Eight Physical Variables - Matrix No. 1                                         

 Comparison file : C:\Facsim\Eight Physical Variables Matrix_2 - adjusted.vf                                                                                                                           
 Datafile Title : Eight Physical Variables - Matrix No. 2 - adjusted loadings                     

                                        Input TARGET factor/coordinate matrix
                                        *************************************

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.8560   -0.3240
Var_2       0.8480   -0.4120
Var_3       0.8080   -0.4090
Var_4       0.8310   -0.3420
Var_5       0.7500    0.5710
Var_6       0.6310    0.4920



65Chapter 5: Orthosim, Scaling, and Order

2006: Paul Barrett

Var_7       0.5690    0.5100
Var_8       0.6070    0.3510

 HYP.COUNT       0         0
 VARIANCE    4.4481    1.5104

                    Eight Physical Variables - Matrix No. 2 - adjusted loadings                     
                    *******************************************************************************************

                                        Input COMPARISON factor/coordinate matrix
                                        *****************************************

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.1000    0.1000
Var_2       0.2000    0.1000
Var_3       0.3000    0.1000
Var_4       0.4000    0.1000
Var_5       0.1000    0.1000
Var_6       0.1000    0.2000
Var_7       0.1000    0.2000
Var_8       0.0000    0.9000

 HYP.COUNT       5         5
 VARIANCE    0.3300    0.9400

   Orthogonalised Non-Procrustes EFA Input Target Matrix: Eight Physical Variables - Matrix No. 1                                  
     

             FAC. 1    FAC. 2
             ------    ------
Var_1       0.8560   -0.3240
Var_2       0.8480   -0.4120
Var_3       0.8080   -0.4090
Var_4       0.8310   -0.3420
Var_5       0.7500    0.5710
Var_6       0.6310    0.4920
Var_7       0.5690    0.5100
Var_8       0.6070    0.3510

 HYP.COUNT       0         0
 VARIANCE    4.4481    1.5104

   Orthogonal Maximally Congruent Comparison Matrix: Eight Physical Variables - Matrix No. 2 - adjusted loadings                  
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             FAC. 1    FAC. 2
             ------    ------
Var_1       0.1414    0.0018
Var_2       0.2130   -0.0680
Var_3       0.2847   -0.1377
Var_4       0.3563   -0.2075
Var_5       0.1414    0.0018
Var_6       0.2112    0.0735
Var_7       0.2112    0.0735
Var_8       0.6281    0.6446

 HYP.COUNT       0         5
 VARIANCE    0.7770    0.4930

             Matching Coefficients - by variable across dimensions (factors), and an overall mean congruence (of the variable
congruences)
            
*****************************************************************************************************************************

 ***** Factor Analysis Unit-Vectors - No Procrustes (no row normalization) 

     Overall Solution Congruence = 0.94329

     Overall Solution Double-Scaled Euclidean Similarity =  0.77991          [Scaling Minimum =  -1.0000       Maximum =   1.0000 ]

     Overall Solution Kernel Distance Smoothed Similarity =  0.51217         [Scaling Smoother value =  0.35000 ]

     Root Mean Square deviation between the actual input target and original comparison matrix =  0.73562

     Root Mean Square deviation between the orthogonalised target and orthogonalised comparison matrix =  0.73562

     Root Mean Square deviation between the orthogonalised target and now maximally congruent comparison matrix =  0.63050

Maybe the DSED suits you best? The overall solution congruence coefficient certainly looks a little high at 0.94 given the obvious magnitude discrepancies
between the target and orthogonally congruent matrices. 

Anyway, I hope the above helped clarify somewhat the effect of the smoothing coefficient.

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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5.4 Example 4: Using a synthetic orthogonal target matrix

Well, the input target matrix for 8 physical variables example is relevant here ...

The file itself is: Eight Physical Variables Matrix_2.vf

Eight Physical Variables - Matrix No. 2
 2  8
Var_1   Var_2   Var_3   Var_4   Var_5   Var_6   Var_7   Var_8
(8F12.6)
(8F6.3)
       1.0         1.0         1.0         1.0         0.0         0.0        0.0       0.0
       0.0         0.0         0.0         0.0         1.0         1.0        1.0       1.0   
  1.000  0.000
  0.000  1.000

which displays as:

             FAC. 1    FAC. 2
             ------    ------
Var_1       1.0000    0.0000
Var_2       1.0000    0.0000
Var_3       1.0000    0.0000
Var_4       1.0000    0.0000
Var_5       0.0000    1.0000
Var_6       0.0000    1.0000
Var_7       0.0000    1.0000
Var_8       0.0000    1.0000

This kind of synthentic target is useful when trying to fit the "scorekey" of a questionnaire say, to a set of factor loadings, or even an "ideal" factor pattern or
idealised data model drawn from theory. 

The example output in the Understanding Orthosim Output section shows the results of such synthetic target fitting. 

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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5.5 Example 5: Inputting obliquely rotated matrices

This example shows you the output when two obliquely rotated matrices are input to Orthosim ...

 Target Datafile : C:\Facsim\epqr48m.vf                                                                                                                                                                
 Datafile Title :  EPQR Short Form - item numbers referred to 100 item EPQR - MALES ONLY          

 Comparison Datafile : C:\Facsim\epqr48f.vf                                                                                                                                                                
 Datafile Title :  EPQR Short Form - item numbers referred to 100 item EPQR - FEMALES only        

The short-form EPQR data for the males serves at the target, with the females being compared to these ...

The Input target matrix which has previously been obliquely rotated via direct oblimin looks like ... (a section of) 

             FAC. 1    FAC. 2    FAC. 3    FAC. 4
             ------    ------    ------    ------
 Psy   5    0.1177   -0.2026    0.0982   -0.4767
 Psy   7   -0.1476   -0.1991   -0.1012   -0.3404
 Psy  25   -0.1508    0.1537   -0.1554   -0.3272
 Psy  29   -0.0064    0.0438   -0.0853   -0.4474
 Psy  41    0.1842    0.0154   -0.0733   -0.4402
 Psy  48    0.0336    0.0278    0.1543   -0.3619
 Psy  54    0.3581    0.0282    0.0344   -0.4601
 Psy  59   -0.1251   -0.0965   -0.0356   -0.4145
 Psy  75   -0.0411    0.0374   -0.0290   -0.3730
 Psy  79   -0.0635    0.0205   -0.0685   -0.4615
 Psy  88   -0.0139    0.0328   -0.1399   -0.4278
 Psy  91   -0.1371    0.2021   -0.0005   -0.4234
Extr   6   -0.6584    0.0584    0.0581   -0.0637
Extr  11   -0.7479    0.0030    0.0460   -0.0233
Extr  16   -0.6298   -0.0351   -0.0842    0.0599
Extr  20   -0.5488    0.0125   -0.0767    0.1021
Extr  24   -0.7164   -0.0975   -0.0254    0.0351
Extr  45   -0.6743   -0.0272    0.1384   -0.0048
Extr  47   -0.6605   -0.0427    0.0273   -0.0090
Extr  51   -0.6502    0.0208    0.0840   -0.1435
Extr  58   -0.6497   -0.0315   -0.0868    0.2411
Extr  78   -0.6960   -0.0062    0.0414   -0.1088
Extr  90   -0.6026    0.0045   -0.2225    0.0439
Extr  94   -0.7078   -0.0065    0.0593   -0.0904
Neur   3   -0.1298    0.5993   -0.1377   -0.1060
Neur   8    0.0696    0.5907   -0.0987   -0.0481
Neur  17   -0.0024    0.5314   -0.0176   -0.1618
Neur  22   -0.0252    0.5649   -0.0008    0.1537
Neur  26    0.0154    0.6207   -0.0491   -0.0649
Neur  31   -0.0588    0.5355   -0.1720    0.1312
Neur  35    0.0841    0.5549    0.0363   -0.0692
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Neur  38    0.0620    0.6863   -0.0192    0.1853
Neur  46   -0.0001    0.6089    0.2438   -0.1948

and factor correlations of:

           FAC. 1    FAC. 2    FAC. 3    FAC. 4
           ------    ------    ------    ------
 FAC. 1    1.0000    0.0961    0.1773    0.0991
 FAC. 2    0.0961    1.0000   -0.1227   -0.0491
 FAC. 3    0.1773   -0.1227    1.0000    0.1107
 FAC. 4    0.0991   -0.0491    0.1107    1.0000

With the Orthogonalised Target as :

   Orthogonalised Input Target Matrix:  EPQR Short Form - item numbers referred to 100 item EPQR - MALES - DirObl      

             FAC. 1    FAC. 2    FAC. 3    FAC. 4
             ------    ------    ------    ------
 Psy   5   -0.0809   -0.0974   -0.4831    0.1257
 Psy   7   -0.3123   -0.2181   -0.2296    0.0818
 Psy  25   -0.4231    0.0935   -0.1529   -0.0458
 Psy  29   -0.3278    0.0746   -0.3258    0.0476
 Psy  41   -0.1926    0.1536   -0.3704    0.1525
 Psy  48   -0.0767    0.0395   -0.3654   -0.0539
 Psy  54   -0.0219    0.2453   -0.4681    0.1826
 Psy  59   -0.3147   -0.1229   -0.3101    0.0191
 Psy  75   -0.2644    0.0363   -0.2811   -0.0011
 Psy  79   -0.3532    0.0207   -0.3346    0.0201
 Psy  88   -0.3587    0.0684   -0.2868    0.0757
 Psy  91   -0.3664    0.1238   -0.2932   -0.1346
Extr   6   -0.4074   -0.3212    0.0759   -0.3943
Extr  11   -0.4359   -0.4194    0.1272   -0.4128
Extr  16   -0.4040   -0.3707    0.2187   -0.2721
Extr  20   -0.3357   -0.2882    0.2383   -0.2570
Extr  24   -0.4142   -0.4809    0.1856   -0.3191
Extr  45   -0.3066   -0.4205    0.0843   -0.4104
Extr  47   -0.3783   -0.4082    0.1219   -0.3387
Extr  51   -0.4202   -0.3487   -0.0068   -0.3826
Extr  58   -0.3167   -0.3890    0.3737   -0.2931
Extr  78   -0.4538   -0.3927    0.0462   -0.3746
Extr  90   -0.5060   -0.2982    0.2616   -0.2024
Extr  94   -0.4375   -0.4034    0.0565   -0.3909
Neur   3   -0.3699    0.4749    0.0712   -0.2503
Neur   8   -0.1853    0.5687    0.0576   -0.1664
Neur  17   -0.2211    0.4710   -0.0607   -0.2137
Neur  22   -0.0523    0.4660    0.2008   -0.2669
Neur  26   -0.1981    0.5575    0.0389   -0.2324
Neur  31   -0.2041    0.4506    0.2570   -0.1815
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Neur  35   -0.0820    0.5254   -0.0232   -0.2122
Neur  38   -0.0212    0.6207    0.2299   -0.2666

** Note that the orthogonalised version has now lost it's clean simple structure ...and is almost uninterpretable.

     Overall Solution Congruence = 0.97452

     Overall Solution Double-Scaled Euclidean Similarity =  0.96679          [Scaling Minimum =  -1.0000       Maximum =   1.0000 ]

     Overall Solution Kernel Distance Smoothed Similarity =  0.94818         [Scaling Smoother value =  0.20000 ]

     Root Mean Square deviation between the actual input target and original comparison matrix =  0.65994

     Root Mean Square deviation between the orthogonalised target and orthogonalised comparison matrix =  0.91150

     Root Mean Square deviation between the orthogonalised target and now maximally congruent comparison matrix =  0.13416

The problem here is that although the overall similarities are useful - when you come to the factor by factor results, it's unclear how to interpret the "factor
similarity" - because the factors you and the routine are now looking at are those in the "Orthogonalised Input Target Matrix" - and not the obliquely rotated
simple structure factors in the target matrix.

 Congruence Coefficients:  between the target and maximally congruent comparison matrix
 **************************************************************************************

           FAC. 1    FAC. 2    FAC. 3    FAC. 4
           ------    ------    ------    ------
 FAC. 1    0.9795    0.0951   -0.1495    0.1364
 FAC. 2    0.1048    0.9871   -0.0170    0.0797
 FAC. 3   -0.1781   -0.0184    0.9484   -0.1182
 FAC. 4    0.1489    0.0790   -0.1084    0.9698

If we were to reverse the target and comparison matrix input order - as per example 2,  this factor-by-factor matrix is:

 Congruence Coefficients:  between the target and maximally congruent comparison matrix
  **************************************************************************************

           FAC. 1    FAC. 2    FAC. 3    FAC. 4
           ------    ------    ------    ------
 FAC. 1    0.9871   -0.0101    0.1090   -0.1214
 FAC. 2   -0.0100    0.9759    0.1095   -0.1206
 FAC. 3    0.0962    0.0977    0.9509   -0.1321
 FAC. 4   -0.1179   -0.1182   -0.1453    0.9682

whic is close - but not identical - as expected from the data in this example ...

     Overall Solution Congruence = 0.97452
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     Overall Solution Double-Scaled Euclidean Similarity =  0.96655          [Scaling Minimum =  -1.0000       Maximum =   1.0000 ]

     Overall Solution Kernel Distance Smoothed Similarity =  0.94771         [Scaling Smoother value =  0.20000 ]

     Root Mean Square deviation between the actual input target and original comparison matrix =  0.65994

     Root Mean Square deviation between the orthogonalised target and orthogonalised comparison matrix =  0.91150

     Root Mean Square deviation between the orthogonalised target and now maximally congruent comparison matrix =  0.13416.

Paul Barrett,  24th January, 2006,      email: p.barrett@xtra.co.nz
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6 What size Coefficient Indicates Similarity?

6.1 Recommendations

This section is mainly for those using Orthosim-2 for comparison of factor analysis matrices. However, it still has some relevance to those using it for MDS
coordinate configural similarity calculation. 

Given you observe a congruence coefficient of say 0.85, what do you conclude? Is this good, bad, or indifferent? What about 0.90 or 0.95? Likewise, what about a
DSD or KSD or Pearson coefficient of 0.80?

First, let's look at what some investigators/researchers have recommended for a congruence coefficient:

Mulaik, S. (1972) The foundations of factor analysis. New York: McGraw-Hill 
Recommends 0.85 and above indicates similarity.

Eysenck, H.J. and Eysenck, S.B.G. (1982) Recent advances in the cross-cultural study of personality. In C.D. Spielberger and and J.N. Butcher (eds.) Advances
in Personality Assessment. Hillsdale: Lawrence Erlbaum.
Recommends 0.95 and above indicates similarity, 0.98 and above indicates essential identity.

Barrett, P. (1986) Factor comparison: An examination of three methods. Personality and Individual Differences, 7, 3, 327-340.
Recommends 0.90 and above for mean solution cosine (overall solution congruence) prior to interpreting factor congruences. Below 0.90 for this overall
congruence, the researcher is advised to check the variable-pair congruences for those which are causing a problem. If the congruences fall below certain values,
then appropriate warnings will be given at the side of each variable:

If a congruence is less than or equal to 0.4, then the message "Trivial Variable Similarity" is printed alongside the variable congruence.
If a congruence is less than or equal to 0.6 but greater than 0.4, then the message "Bad Match" is printed alongside the variable congruence.
If a congruence is less than or equal to 0.8 but greater than 0.6 then the message "Poor Match" is printed alongside the variable congruence.

A minimum factor congruence of 0.80 was suggested as indicative of useful conceptual similarity, with values above these indicating increasing similarity.

Ten Berge, J. M. F. (1986) Rotation to perfect congruence and the cross-validation of component weights across populations. Multivariate Behavioural Research,
21, , 41-64.
Recommends 0.85 and above indicates similarity.

Van de Vijver, F.J.R., and Leung, K. (1997) Methods and Data Analysis for Cross-Cultural Research. Newbury Park, CA: Sage.
Recommends 0.90 as the lower bound for similarity

Given the Pearson correlation is not recommended for use at all, we are left with the distance coefficients. 
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The distance coefficients are virtually direct estimates of disparity - hence it is a trivial matter to check the actual factor loading discrepancies against the factor
distance coefficients for conceptual significance. Obviously, above 0.90 would indicate a a high degree of similarity. Below this I recommend double-checking the
loadings for where the disparity is arising from - an overall "distance" effect or perhaps located most substantially on a few variables out of the total set.
Remember also, the KSD coefficient may be designed to substantially  penalise any discrepancy, so it's value will reflect how you have chosen to weight
discrepancies i.e. 0.90 with a heavy distance penalty is actually indicative of probably greater similarity than a KSD with a lenient penalty function. This is in fact
being determined by how you wish to define similarity itself by using such a coefficient. You must go back to the comparison data with a KSD to check where that
discrepancy is arising from, and the effect of the weighting on its final value.

Finally, when using raw factor loading comparisons (where no procrustean row normalization has been requested), never use a congruence coefficient
now without confirming the validity of its value using a distance function alongside it. Example 1 shows why in all its horror! This dual-coefficient approach
(covariance and distance) guards against inflated congruences caused by loading monotonicity with magnitude discrepancies between two sets of factor loadings.
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