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The EM Algorithm

Introduction

The EM algorithm is a very general iterative algorithm for parameter estimation by
maximum likelihood when some of the random variables involved are not observed i.e., con-
sidered missing or incomplete. The EM algorithm formalizes an intuitive idea for obtaining
parameter estimates when some of the data are missing:

i. replace missing values by estimated values,

ii. estimate parameters.

iii. Repeat

• step (i) using estimated parameter values as true values, and

• step (ii) using estimated values as “observed” values, iterating until convergence.

This idea has been in use for many years before Orchard and Woodbury (1972) in their
missing information principle provided the theoretical foundation of the underlying idea.
The term EM was introduced in Dempster, Laird, and Rubin (1977) where proof of general
results about the behavior of the algorithm was first given as well as a large number of
applications.

For this discussion, let us suppose that we have a random vector y whose joint density
f(y;θ) is indexed by a p-dimensional parameter θ ∈ Θ ⊆ Rp. If the complete-data vector y
were observed, it is of interest to compute the maximum likelihood estimate of θ based on
the distribution of y. The log-likelihood function of y

logL(θ; y) = `(θ; y) = log f(y;θ),

is then required to be maximized.
In the presence of missing data, however, only a function of the complete-data vector y, is

observed. We will denote this by expressing y as (yobs, ymis), where yobs denotes the observed
but “incomplete” data and ymis denotes the unobserved or “missing” data. For simplicity of
description, assume that the missing data are missing at random (Rubin, 1976), so that

f(y;θ) = f(yobs, ymis;θ)

= f1(yobs;θ) · f2(ymis|yobs; θ),

where f1 is the joint density of yobs and f2 is the joint density of ymis given the observed
data yobs, respectively. Thus it follows that

`obs(θ; yobs) = `(θ; y)− log f2(ymis|yobs; θ),

where `obs(θ; yobs) is the observed-data log-likelihood.
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EM algorithm is useful when maximizing `obs can be difficult but maximizing the complete-
data log-likelihood ` is simple. However, since y is not observed, ` cannot be evaluated and
hence maximized. The EM algorithm attempts to maximize `(θ; y) iteratively, by replacing
it by its conditional expectation given the observed data yobs. This expectation is computed
with respect to the distribution of the complete-data evaluated at the current estimate of θ.
More specifically, if θ(0) is an initial value for θ, then on the first iteration it is required to
compute

Q(θ;θ(0)) = E
θ(0) [`(θ; y)|yobs] .

Q(θ;θ(0)) is now maximized with respect to θ, that is, θ(1) is found such that

Q(θ(1);θ(0)) ≥ Q(θ;θ(0))

for all θ ∈ Θ. Thus the EM algorithm consists of an E-step (Estimation step) followed by
an M-step (Maximization step) defined as follows:

E-step: Compute Q(θ;θ(t)) where

Q(θ;θ(t)) = E
θ(t) [`(θ; y)|yobs] .

M-step: Find θ(t+1) in Θ such that

Q(θ(t+1);θ(t)) ≥ Q(θ;θ(t))

for all θ ∈ Θ.

The E-step and the M-step are repeated alternately until the difference L(θ(t+1)) − L(θ(t))
is less than δ, where δ is a prescribed small quantity.

The computation of these two steps simplify a great deal when it can be shown that the
log-likelihood is linear in the sufficient statistic for θ. In particular, this turns out to be the
case when the distribution of the complete-data vector (i.e., y) belongs to the exponential
family. In this case, the E-step reduces to computing the expectation of the complete-
data sufficient statistic given the observed data. When the complete-data are from the
exponential family, the M-step also simplifies. The M-step involves maximizing the expected
log-likelihood computed in the E-step. In the exponential family case, actually maximizing
the expected log-likelihood to obtain the next iterate can be avoided. Instead, the conditional
expectations of the sufficient statistics computed in the E-step can be directly substituted for
the sufficient statistics that occur in the expressions obtained for the complete-data maximum
likelihood estimators of θ, to obtain the next iterate. Several examples are discussed below
to illustrate these steps in the exponential family case.

As a general algorithm available for complex maximum likelihood computations, the
EM algorithm has several appealing properties relative to other iterative algorithms such as
Newton-Raphson. First, it is typically easily implemented because it relies on complete-
data computations: the E-step of each iteration only involves taking expectations over
complete-data conditional distributions. The M-step of each iteration only requires complete-
data maximum likelihood estimation, for which simple closed form expressions are already
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available. Secondly, it is numerically stable: each iteration is required to increase the log-
likelihood `(θ; yobs) in each iteration, and if `(θ; yobs) is bounded, the sequence `(θ(t); yobs)
converges to a stationery value. If the sequence θ(t) converges, it does so to a local maximum
or saddle point of `(θ; yobs) and to the unique MLE if `(θ; yobs) is unimodal. A disadvantage
of EM is that its rate of convergence can be extremely slow if a lot of data are missing:
Dempster, Laird, and Rubin (1977) show that convergence is linear with rate proportional
to the fraction of information about θ in `(θ; y) that is observed.

Example 1: Univariate Normal Sample

Let the complete-data vector y = (y1, . . . , yn)T be a random sample from N(µ, σ2).
Then

f(y;µ, σ2) =
(

1

2πσ2

)n/2
exp

{
−1

2

n∑
i=1

(yi − µ)2

σ2

}

=
(

1

2πσ2

)n/2
exp

{
−1/2σ2

(∑
y2
i − 2µ

∑
yi + nµ2

)}

which implies that (
∑
yi,

∑
y2
i ) are sufficient statistics for θ = (µ, σ2)T . The complete-data

log-likelihood function is:

`(µ, σ2; y) = −n
2

log(σ2)− 1

2

n∑
i=1

(yi − µ)2

σ2
+ constant

= −n
2

log(σ2)− 1

2σ2

n∑
i=1

y2
i +

µ

σ2

n∑
i=1

yi −
nµ2

σ2
+ constant

It follows that the log-likelihood based on complete-data is linear in complete-data sufficient
statistics. Suppose yi, i = 1, . . . ,m are observed and yi, i = m + 1, . . . , n are missing (at
random) where yi are assumed to be i.i.d. N(µ, σ2). Denote the observed data vector by
yobs = (y1, . . . , ym)T ). Since the complete-data y is from the exponential family, the E-step
requires the computation of

Eθ

(
n∑
i=1

yi|yobs

)
andEθ

(
N∑
i=1

y2
i |yobs

)
,

instead of computing the expectation of the complete-data log-likelihood function shown

above. Thus, at the tth iteration of the E-step, compute

s
(t)
1 = E

µ(t),σ2(t)

(
n∑
i=1

yi|yobs

)
(1)

=
m∑
i=1

yi + (n−m)µ(t)

since E
µ(t),σ2(t) (yi) = µ(t) where µ(t) and σ2(t)

are the current estimates of µ and σ2, and
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s
(t)
2 = E

µ(t),σ2(t)

(
n∑
i=1

y2
i |yobs

)
(2)

=
m∑
i=1

y2
i + (n−m)

[
σ(t)2

+ µ(t)2
]

since E
µ(t),σ2(t) (y2

i ) = σ2(t)
+ µ(t)2

.

For the M-step, first note that the complete-data maximum likelihood estimates of µ and
σ2 are:

µ̂ =

∑n
i=1 yi
n

and σ̂2 =

∑n
i=1 y

2
i

n
−
(∑n

i=1 yi
n

)2

The M-step is defined by substituting the expectations computed in the E-step for the
complete-data sufficient statistics on the right-hand side of the above expressions to obtain
expressions for the new iterates of µ and σ2 . Note that complete-data sufficient statistics
themselves cannot be computed directly since ym+1, . . . , yn have not been observed. We get
the expressions

µ(t+1) =
s

(t)
1

n
(3)

and

σ2(t+1)

=
s

(t)
2

n
− µ(t+1)2

. (4)

Thus, the E-step involves computing evaluating (1) and (2) beginning with starting values

µ(0) and σ2(0)
. M-step involves substituting these in (3) and (4) to calculate new values µ(1)

and σ2(1)
, etc. Thus, the EM algorithm iterates successively between (1) and (2) and (3) and

(4). Of course, in this example, it is not necessary to use of EM algorithm since the maximum
likelihood estimates for (µ, σ2) are clearly given by µ̂ =

∑m
i=1 yi/m and σ̂2 =

∑m
i=1 y

2
i /m−µ̂22.

Example 2: Sampling from a Multinomial population

In the Example 1, “incomplete data” in effect was “missing data” in the conventional
sense. However, in general, the EM algorithm applies to situations where the complete data
may contain variables that are not observable by definition. In that set-up, the observed
data can be viewed as some function or mapping from the space of the complete data.

The following example is used by Dempster, Laird and Rubin (1977) as an illustration
of the EM algorithm. Let yobs = (38, 34, 125)T be observed counts from a multinomial
population with probabilities: (1

2
− 1

2
θ, 1

4
θ, 1

2
+ 1

4
θ). The objective is to obtain the maximum

likelihood estimate of θ. First, to put this into the framework of an incomplete data problem,
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define y = (y1, y2, y3, y4)T with multinomial probabilities (1
2
− 1

2
θ, 1

4
θ, 1

4
θ, 1

2
) ≡ (p1, p2, p3, p4).

The y vector is considered complete-data. Then define yobs = (y1, y2, y3 + y4)T . as the
observed data vector, which is a function of the complete-data vector. Since only y3 + y4 is
observed and y3 and y4 are not, the observed data is considered incomplete. However, this
is not simply a missing data problem.

The complete-data log-likelihood is

`(θ; y) = y1 log p1 + y2 log p2 + y3 log p3 + y4 log p4 + const.

which is linear in y1, y2, y3 and y4 which are also the sufficient statistics. The E-step requires
that Eθ(y|yobs) be computed; that is compute

Eθ(y1|yobs) = y1 = 38

Eθ(y2|yobs) = y2 = 34

Eθ(y3|yobs) = Eθ(y3|y3 + y4) = 125(
1

4
θ)/(

1

2
+

1

4
θ)

since, conditional on (y3 + y4), y3 is distributed as Binomial(125, p) where

p =
1
4
θ

1
2

+ 1
4
θ
.

Similarly,

Eθ(y4|yobs) = Eθ(y4|y3 + y4) = 125(
1

2
)/(

1

2
+

1

4
θ),

which is similar to computing Eθ(y3|yobs). But only

y
(t)
3 = Eθ(t)(y3|yobs) =

125(1
4
)θ(t)

(1
2

+ 1
4
θ(t))

(1)

needs to be computed at the tth iteration of the E-step as seen below.
For the M-step, note that the complete-data maximum likelihood estimate of θ is

y2 + y3

y1 + y2 + y3

(Note: Maximize

`(θ; y) = y1 log(
1

2
− 1

2
θ) + y2 log

1

4
θ + y3 log

1

4
θ + y4 log

1

2

and show that the above indeed is the maximum likelihood estimate of θ). Thus, substitute
the expectations from the E-step for the sufficient statistics in the expression for maximum
likelihood estimate θ above to get

θ(t+1) =
34 + y

(t)
3

72 + y
(t)
3

. (2)

Iterations between (1) and (2) define the EM algorithm for this problem. The following table
shows the convergence results of applying EM to this problem with θ(0) = 0.50.
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Table 1. The EM Algorithm for Example 2 (from Little and Rubin (1987))

t θ(t) θ(t) − θ̂ (θ(t+1) − θ̂)/(θ(t) − θ̂)
0 0.500000000 0.126821498 0.1465
1 0.608247423 0.018574075 0.1346
2 0.624321051 0.002500447 0.1330
3 0.626488879 0.000332619 0.1328
4 0.626777323 0.000044176 0.1328
5 0.626815632 0.000005866 0.1328
6 0.626820719 0.000000779 ·
7 0.626821395 0.000000104 ·
8 0.626821484 0.000000014 ·

Example 3: Sample from Binomial/ Poisson Mixture

The following table shows the number of children of N widows entitled to support from
a certain pension fund.

Number of Children: 0 1 2 3 4 5 6
Observed # of Widows: n0 n1 n2 n3 n4 n5 n6

Since the actual data were not consistent with being a random sample from a Poisson dis-
tribution (the number of widows with no children being too large) the following alternative
model was adopted. Assume that the discrete random variable is distributed as a mixture
of two populations, thus:

Population A: with probability ξ, the random
variable takes the value 0, and

Mixture of Populations:

Population B: with probability (1− ξ), the random
variable follows a Poisson with mean λ

Let the observed vector of counts be nobs = (n0, n1, . . . , n6)T . The problem is to obtain the
maximum likelihood estimate of (λ, ξ). This is reformulated as an incomplete data problem
by regarding the observed number of widows with no children be the sum of observations
that come from each of the above two populations.
Define

n0 = nA + nB

nA = # widows with no children from population A

nB = no − nA = # widows with no children from population B

Now, the problem becomes an incomplete data problem because nA is not observed. Let
n = (nA, nB, n1, n2, . . . , n6) be the complete-data vector where we assume that nA and nB
are observed and n0 = nA + nB .
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Then

f(n; ξ, λ) = k(n) {P (y0 = 0)}n0 Π∞i=1 {P (yi = i)}ni

= k(n)
[
ξ + (1− ξ) e−λ

]n0

[
Π6
i=1

{
(1− ξ) e

−λλi

i!

}ni ]

= k(n)
[
ξ + (1− ξ)e−λ

]nA+nB
{

(1− ξ)e−λ
}∑6

i=1
ni
[
Π6
i=1

(
λi

i!

)ni]
.

where k(n) =
∑6
i=1 ni/n0!n1! . . . n6!. Obviously, the complete-data sufficient statistic is

(nA, nB, n1, n2, . . . , n6) . The complete-data log-likelihood is

`(ξ, λ; n) = n0 log(ξ + (1− ξ)e−λ)

+ (N − n0) [log(1− ξ)− λ] +
6∑
i=1

i ni log λ+ const.

Thus, the complete-data log-likelihood is linear in the sufficient statistic. The E-step requires
the computing of

Eξ,λ(n|nobs).

This computation results in

Eξ,λ(ni|nobs) = ni for i = 1, ..., 6,

and

Eξ,λ(nA|nobs) =
n0ξ

ξ + (1− ξ) exp(−λ)
,

since nA is Binomial(n0, p) with p = pA
pA+pB

where pA = ξ and pB = (1 − ξ) e−λ. The

expression for Eξ,λ(nB|nobs) is equivalent to that for E(nA) and will not be needed for E-
step computations. So the E-step consists of computing

n
(t)
A =

n0ξ
(t)

ξ(t) + (1− ξ(t)) exp(−λ(t))
(1)

at the tth iteration.
For the M-step, the complete-data maximum likelihood estimate of (ξ, λ) is needed.

To obtain these, note that nA ∼ Bin(N, ξ) and that nB, n1, . . . , n6 are observed counts for
i = 0, 1, . . . , 6 of a Poisson distribution with parameter λ. Thus, the complete-data maximum
likelihood estimate’s of ξ and λ are

ξ̂ =
nA
N

,

7



and

λ̂ =
6∑
i=1

i ni
nB +

∑6
i=1 ni

.

The M-step computes

ξ(t+1) =
n

(t)
A

N
(2)

and

λ(t+1) =
6∑
i=1

i ni

n
(t)
B +

∑6
i=1 ni

(3)

where n
(t)
B = n0 − n(t)

A .

The EM algorithm consists of iterating between (1), and (2) and (3) successively. The
following data are reproduced from Thisted(1988).

Number of children 0 1 2 3 4 5 6
Number of widows 3,062 587 284 103 33 4 2

Starting with ξ(0) = 0.75 and λ(0) = 0.40 the following results were obtained.

Table 2. EM Iterations for the Pension Data
t ξ λ nA nB
0 0.75 0.40 2502.779 559.221
1 0.614179 1.035478 2503.591 558.409
2 0.614378 1.036013 2504.219 557.781
3 0.614532 1.036427 2504.704 557.296
4 0.614651 1.036747 2505.079 556.921
5 0.614743 1.036995 2505.369 556.631

A single iteration produced estimates that are within 0.5% of the maximum likelihood
estimate’s and are comparable to the results after about four iterations of Newton-Raphson.
However, the convergence rate of the subsequent iterations are very slow; more typical of
the behavior of the EM algorithm.

8



Example 4: Variance Component Estimation (Little and Rubin(1987))

The following example is from Snedecor and Cochran (1967, p.290). In a study of artificial
insemination of cows, semen samples from six randomly selected bulls were tested for their
ability to produce conceptions. The number of samples tested varied from bull to bull and
the response variable was the percentage of conceptions obtained from each sample. Here
the interest is on the variability of the bull effects which is assumed to be a random effect.
The data are:

Table 3. Data for Example 4 (from Snedecor and Cochran(1967))
Bull(i) Percentages of Conception ni

1 46,31,37,62,30 5
2 70,59 2
3 52,44,57,40,67,64,70 7
4 47,21,70,46,14 5
5 42,64,50,69,77,81,87 7
6 35,68,59,38,57,76,57,29,60 9

Total 35

A common model used for analysis of such data is the oneway random effects model:

yij = ai + εij, j = 1, ..., ni, i = 1, ..., k;

where it is assumed that the bull effects ai are distributed as i.i.d. N(µ, σ2
a) and the within-

bull effects (errors) εij as i.i.d. N(0, σ2) random variables where ai and εij are independent.
The standard oneway random effects analysis of variance is:

Source d.f. S.S. M.S. F E(M.S.)
Bull 5 3322.059 664.41 2.68 σ2 + 5.67σ2

a

Error 29 7200.341 248.29 σ2

Total 34 10522.400

Equating observed and expected mean squares from the above gives s2 = 248.29 as the
estimate of σ2 and (664.41 - 248.29)/5.67 = 73.39 as the estimate of σ2

a.
To construct an EM algorithm to obtain MLE’s of θ = (µ, σ2

a, σ
2), first consider the joint

density of y∗ = (y, a)T where y∗ is assumed to be complete-data. This joint density can
be written as a product of two factors: the part first corresponds to the joint density of yij
given ai and the second to the joint density of ai.

f(y∗;θ) = f1(y|a;θ)f2(a;θ)

= Πi Πj

{
1√
2πσ

e−
1

2σ2 (yij−ai)2

}
Πi

{
1√

2πσa
e
− 1

2σ2
a

(ai−µ)2
}
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Thus, the log-likelihood is linear in the following complete-data sufficient statistics:

T1 =
∑

ai

T2 =
∑

a2
i

T3 =
∑
i

∑
j

(yij − ai)2 =
∑
i

∑
j

(yij − ȳi.)2 +
∑
i

ni(ȳi. − ai)2

Here complete-data assumes that both y and a are available. Since only y is observed, let y∗obs

= y. Then the E-step of the EM algorithm requires the computation of the expectations of
T1, T2 and T3 given y∗obs, i.e., Eθ(Ti|y) for i = 1, 2, 3. The conditional distribution of a given
y is needed for computing these expectations. First, note that the joint distribution of y∗ =
(y, a)T is (N + k)-dimensional multivariate normal: N(µ∗,Σ∗) where µ∗ = (µ, µa)

T , µ =
µjN , µa = µjk and Σ∗ is the (N + k)× (N + k) matrix

Σ∗ =

(
Σ Σ12

ΣT
12 σ2

aI

)
.

Here

Σ =


Σ1 0

Σ2

. . .

0 Σk

 , Σ12 = σ2
a


jn1 0

jn2

. . .

0 jnk


where Σi = σ2Ini+σ

2
aJni is an ni×ni matrix. The covariance matrix Σ of the joint distribution

of y is obtained by recognizing that the yij are jointly normal with common mean µ and
common variance σ2 +σ2

a and covariance σ2
a within the same bull and 0 between bulls. That

is

Cov(yij, yi′j′) = Cov(ai + εij, ai′ + εi′j′)

= σ2 + σ2
a if i = i

′
, j = j

′
,

= σ2
a if i = i

′
, j 6=j ′ ,

= 0 if i 6=i′ .

Σ12 is covariance of y and a and follows from the fact that Cov(yij, ai) = σ2
a if i = i

′
and

0 if i 6=i′ . The inverse of Σ is needed for computation of the conditional distribution of a
given y and obtained as

Σ−1 =


Σ−1

1 0
Σ−1

2
. . .

0 Σ−1
k


where Σ−1

i = 1
σ2

[
Ini −

σ2
a

σ2+niσ2
a
Jni
]
. Using a well-known theorem in multivariate normal

theory, the distribution of a given y is given by N(α, A) where α = µa + Σ
′
12Σ−1(y − µ)

and A = σ2
aI − Σ

′
12Σ−1Σ12. It can be shown after some algebra that

ai|y
i.i.d∼ N (wiµ+ (1− wi)ȳi., vi)
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where wi = σ2/(σ2 + niσ
2
a), ȳi. = (

∑ni
j=1 yij)/ni, and vi = wiσ

2
a. Recall that this conditional

distribution was derived so that the expectations of T1, T2 and T3 given y (or y∗obs) can be
computed. These now follow easily. Thus the tth iteration of the E-step is defined as

T
(t)
1 =

∑[
w

(t)
i µ

(t) + (1− w(t)
i )ȳi.

]
T

(t)
2 =

∑[
w

(t)
i µ

(t) + (1− w(t)
i )ȳi.

]2
+
∑

v
(t)
i

T
(t)
3 =

∑
i

∑
j

(yij − ȳi.)2 +
∑
i

ni
[
w

(t)2

i (µ(t) − ȳi.)2 + v
(t)
i

]
Since the complete-data maximum likelihood estimates are

µ̂ =
T1

k

σ̂2
a =

T2

k
− µ̂2

and

σ̂2 =
T3

N
,

the M-step is thus obtained by substituting the expectations for the sufficient statistics
calculated in the E-step in the expressions for the maximum likelihood estimates:

µ(t+1 =
T

(t)
1

k

σ2(t+1)

a =
T

(t)
2

k
− µ(t+1)2

σ2(t+1)

=
T

(t)
3

N

Iterations between these 2 sets of equations define the EM algorithm. With the starting
values of µ(0) = 54.0, σ2(0)

= 70.0, σ2(0)

a = 248.0, the maximum likelihood estimates of
µ̂ = 53.3184, σ̂2

a = 54.827 and σ̂2 = 249.22 were obtained after 30 iterations. These can
be compared with the estimates of σ2

a and σ2 obtained by equating observed and expected
mean squares from the random effects analysis of variance given above. Estimates of σ2

a and
σ2 obtained from this analysis are 73.39 and 248.29 respectively.

Convergence of the EM Algorithm

The EM algorithm attempts to maximize `obs(θ; yobs) by maximizing `(θ; y), the complete-
data log-likelihood. Each iteration of EM has two steps: an E-step and an M-step. The tth

E-step finds the conditional expectation of the complete-data log-likelihood with respect to
the conditional distribution of y given yobs and the current estimated parameter θ(t):

Q(θ;θ(t)) = E
θ(t) [`(θ; y)|yobs]

=
∫
`(θ; y)f(y|yobs; θ

(t))dy ,
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as a function of θ for fixed yobs and fixed θ(t). The expectation is actually the conditional
expectation of the complete-data log-likelihood, conditional on yobs.

The tth M-step then finds θ(t+1) to maximize Q(θ;θ(t)) i.e., finds θ(t+1) such that

Q(θ(t+1);θ(t)) ≥ Q(θ;θ(t)),

for all θ ∈ Θ . To verify that this iteration produces a sequence of iterates that converges to
a maximum of `obs(θ; yobs), first note that by taking conditional expectation of both sides of

`obs(θ; yobs) = `(θ; y)− log f2(ymis|yobs; θ),

over the distribution of y given yobs at the current estimate θ(t), `obs(θ; yobs) can be expressed
in the form

`obs(θ; yobs) =
∫
`(θ; y)f(y|yobs; θ

(t))dy −
∫

log f2(ymis|yobs; θ)f(y|yobs; θ
(t))dy

= E
θ(t) [`(θ; y)|yobs]− Eθ(t) [log f2(ymis|yobs; θ)|yobs]

= Q(θ;θ(t))−H(θ;θ(t))

where Q(θ;θ(t)) is as defined earlier and

H(θ;θ(t)) = E
θ(t) [log f2(ymis|yobs; θ)|yobs].

The following Lemma will be useful for proving a main result that the sequence of iterates
θ(t) resulting from EM algrithm will converge at least to a local maximum of `obs(θ; yobs).

Lemma: For any θ ∈ Θ,
H(θ;θ(t)) ≤ H(θ(t);θ(t)).

Theorem: The EM algorithm increases `obs(θ; yobs) at each iteration, that is,

`obs(θ
(t+1); yobs) ≥ `obs(θ

(t); yobs)

with equality if and only if
Q(θ(t+1);θ(t)) = Q(θ(t);θ(t)).

This Theorem implies that increasing Q(θ;θ(t)) at each step leads to maximizing or at least
constantly increasing `obs(θ; yobs).

Although the general theory of EM applies to any model, it is particularly useful when the
complete data y are from an exponential family since, as seen in examples, in such cases the
E-step reduces to finding the conditional expectation of the complete-data sufficient statis-
tics, and the M-step is often simple. Nevertheless, even when the complete data y are from
an exponential family, there exist a variety of important applications where complete-data
maximum likelihood estimation itself is complicated; for example, see Little & Rubin (1987)
on selection models and log-linear models, which generally require iterative M-steps.
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In a more general context, EM has been widely used in the recent past in computations re-
lated to Bayesian analysis to find the posterior mode of θ, which maximizes `(θ|y)+log p(θ)
for prior density p(θ) over all θ ∈ Θ. Thus in Bayesian computations, log-likelihoods used
above are substituted by log-posteriors.

Extensions of the EM Algoirthm

Some Definitions and Notations

• Regular Exponential Family (REF).
The joint density of an Exponential family may be written in the form :

f(y;θ) = b(y) exp
{
c(θ)Ts(y)

}/
a(θ)

where
s(y) is a k × 1 vector of sufficient statistics

c(θ) is a k × 1 vector of parameters

θ is a d× 1 vector ∈ Ω, a d dimensional convex set s.t. f(y;θ) is a p.d.f.

b(y) and a(θ) are scalars

c(θ) is called the natural or canonical parameter vector. If k = d and the Jacobian
of c(θ), ∂c

∂θ is a full rank k × k matrix, then f(y;θ) is said to belong to a Regular

Exponential Family (REF). In this case

f(y;θ) = b(y) exp
{
θTs(y)

}/
a(θ)

• Complete-data score vector

S(θ;y) =
∂`(θ;y)

∂θ

• Observed-data score vector

Sobs(θ;yobs) =
∂`obs(θ;yobs)

∂θ

Also can show that
Sobs(θ;yobs) = Eθ

[
S(θ;y)

∣∣∣yobs

]
assuming conditions for interchanging the operations of expectation and differentiation
hold.

• Complete-data Information Matrix

I(θ;y) =
−∂2`(θ;y)

∂θ ∂θT

13



• Complete-data Expected Information Matrix

I(θ;y) = Eθ

[
I(θ;y)

]
• Observed-data Information Matrix

Iobs
(
θ;yobs

)
=
−∂2`(θ;yobs)

∂θ ∂θT

• Observed-data Expected Information Matrix

Iobs(θ;yobs) = Eθ

[
I(θ;yobs

]
• Conditional Expected Information Matrix

Ic(θ;yobs) = Eθ

[
I(θ;y)

∣∣∣yobs]
• Missing Information Principle

Recall
`obs(θ;yobs) = `(θ;y)− log f2(ymis|yobs;θ)

Differentiating twice w.r.t. θ, we have

Iobs(θ;yobs) = I(θ;y) +
∂2 log f2(ymis|yobs;θ)

∂θ ∂θT

Now taking expectation over the conditional distribution y|yobs:

Iobs(θ;yobs) = Ic(θ;yobs)− Imis(θ;yobs)

where we denote the missing information matrix as

Imis(θ;yobs) = −Eθ

{
∂2f2(ymis|yobs; θ)

∂θ ∂θT

∣∣∣∣∣yobs
}

In other words, the missing information principle asserts that

Observed Information = Complete Information - Missing Information

Convergence Rate of EM

EM algorithm implicitly defines a mapping

θ(t+1) = M(θ(t)) t = 0, 1, . . .

where M(θ) =
(
M1(θ), . . . ,Md(θ)

)
. For the problem of maximizing Q(θ;θ), it can be

shown that M has a fixed point and since M is continuous and monotone θ(t) converges to
a point θ∗ ∈ Ω.

14



Consider the Taylor series expansion of

θ(t+1) = M(θ(t))

about θ∗ noting that θ∗ = M(θ∗) :

M(θ(t)) = M(θ∗) + (θ(t) − θ∗) ∂M(θ(t))

∂θ

∣∣∣∣∣
θ=θ∗

which leads to
θ(t+1) − θ∗ = (θ(t) − θ∗)DM

where DM = ∂M (θt)
∂θ

∣∣∣
θ=θ∗

is a d× d matrix.

Thus near θ∗, EM algorithm is essentially a linear iteration with the rate matrix DM .

Definition Recall that the rate of convergence of an iterative process is defined as

= lim
t→∞

‖θ(t+1) − θ∗‖
‖θ(t) − θ∗‖

where ‖ · ‖ is any vector norm.
For the EM algorithm, the rate of convergence is thus r

r = λmax = largest eigen value ofDM

Dempster, Laird, and Rubin (1977) have shown that

DM = Imis
(
θ∗; yobs

)
I−1
c

(
θ∗;yobs

)
Thus the rate of convergence is the largest eigen value of Imis

(
θ∗;yobs

)
I−1
c

(
θ∗;yobs

)
.

Obtaining the covariance matrix of MLE from the EM Algorithm

In maximum likelihood estimation, the large-sample covariance matrix of the mle θ̂ is
usually estimated by the observed information matrix. When using the EM Algorithm for
computing the maximum likelihood estimates, once convergence is reached we can evaluate
I(θ̂;yobs) directly. However, this involves calculation of the second order derivatives of the
observed-data log-likelihood `obs(θ;yobs). This is not a viable option since, we have appealed
to EM algoirthm expressly to avoid the complexity of evaluating `obs(θ;yobs) itself. Thus
we need to be able to approximate I(θ̂; yobs) by other methods if EM Algorithm is to be a
useful alternative for maximum likelihood estimation using other iterative techniques. For
this we need some more results:

We can use Ic(θ̂;yobs) = I(θ̂; y) to obtain the conditional expected information matrix in
the REF case, because

Ic
(
θ;yobs

)
= Eθ

{
I(θ;y)

∣∣∣yobs}
= Eθ {I(θ;y)} = I(θ;y)

as I(θ,y) is not a function of y in the REF case.
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That is Ic(θ̂;yobs) can be obtained by replacing the sufficient statistic s(y) by its conditional
expectation evaluated at θ = θ̂ in I(θ;y), the complete-data information matrix.

Example (continued from page 5)

`(θ;y) = y1 log
(1− θ

2

)
+ y2 log

θ

4
+ y3 log

θ

4
+ y4 log 1/2

∂`(θ;y)

∂θ
=
−y1

1− θ
+
y2

θ
+
y3

θ

∂2`(θ; y)

∂θ2
=

−y1

(1− θ)2
− y2

θ2
− y3

θ2

I(θ;y) =
y1

(1− θ)2
+
y2 + y3

θ2

E[I(θ;y)|yobs] = Ic(θ;yobs) =
38

(1− θ)2
+

34

θ2
+

125θ

(2 + θ)θ2

Ic(θ̂;yobs) =
38

(1− θ̂)2
+

34

θ̂2
+

125

(2 + θ̂)θ̂

Complete this computation using θ̂ from previous results. Also the convergence rate can be
calculated simialry and shown to be .1328 which is the value obtained in the actual iteration.
Generalized EM Algorithm (GEM)

Recall that in the M-step we maximize Q(θ,θ(t)) i.e., find θ(t+1) s.t.

Q
(
θ(t+1);θ(t)

)
≥ Q

(
θ;θ(t)

)
for all θ. In the generalized version of the EM Algorithm we will require only that θ(t+1) be
chosen such that

Q
(
θ(t+1);θ(t)

)
≥ Q

(
θ(t);θ(t)

)
holds, i.e., θ(t+1) is chosen to increase Q(θ;θ(t)) over its value at θ(t) at each iteration t. This
is sufficient to ensure that

`
(
θ(t+1);y

)
≥ `

(
θ(t);y

)
at each iteration, so GEM sequence of iterates also converges to a local maximum.

GEM Algorithm based on a single N-R step

We use GEM-type algorithms when a global maximizer of Q(θ;θ(t)) does not exist in
closed form. In this case, possibly an iterative method is required to accomplish the M-step,
which might prove to be a computationally infeasible procedure. Since it is not essential to
actually maximize Q in a GEM, but only increase the likelihood, we may replace the M-step
with a step that achieves that. One possibilty of such a step is a single iteration of the
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Newton-Raphson(N-R) algorithm, which we know is a descent method.

Let θ(t+1) = θ(t) + a(t)δ(t)

where δ(t) = −
[
∂2Q(θ;θ(t)

)

∂θ ∂θT

]−1

θ=θ(t)

[
∂Q(θ;θ(t)

)

∂θ

]
θ=θ(t)

i.e., δ(t) is the N-R direction at θ(t) and 0 < a(t) ≤ 1. If a(t) = 1 this will define an exact N-R
step. Here we will choose a(t) so that this defines a GEM sequence. This will be achieved if
a(t) < 2 as t→∞.

General Mixed Model

The general mixed linear model is given by

y = Xβ +
r∑
i=1

Ziui + ε

where yn×1 is an observed random vector, X is an n × p, and Zi are n × qi, matrices of
known constants, βp×1 is a vector of unknown parameters, and ui are qi × 1 are vectors of
unobservable random effects.

εn×1 is assumed to be distributed n-dimensional multivariate normal N(0, σ2
0In) and each

ui are assumed to have qi-dimensional multivariate normal distributions Nqi(0, σ
2
i Σi) for

i = 1, 2, . . . , r, independent of each other and of ε.

We take the complete data vector to be (y, u1, . . . , ur) where y is the incomplete or the
observed data vector. It can be shown easily that the covariance matrix of y is the n × n
matrix V where

V =
r∑
i=1

ZiZ
T
i σ

2
i + σ2

0In

Let q =
∑r
i=0 qi where q0 = n. The joint distribution of y and u1, . . . , ur is q-dimensional

multivariate normal N(µ, Σ) where

µ =
q × 1


Xβ
0
...
0

 and Σ =
q × q


V

{
r
σ2
iZi

}r
i=1{

c
σ2
iZ

T
i

}r
i=1

{
d
σ2
i Iqi

}r
i=1


Thus the density function of y, u, . . . , ur is

f(y, u1, u2, . . . , ur) = (2π)−
1
2
q |Σ|−

1
2 exp(−1

2
wTΣ−1w)

where w =
[
(y −Xβ)T , uT1 , . . . , u

T
r

]
. This gives the complete data loglikelihood to be

l = −1

2
q log(2π)− 1

2

r∑
i=0

qi log σ2
i −

1

2

r∑
i=0

uTi ui
σ2
i
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where u0 = y−Xβ−∑r
i=1Ziui = (ε). Thus the sufficient statistics are: uTi ui i = 0, . . . , r,

and y −∑r
i=1Ziui and the maximum likelihood estimates (m.l.e.’s) are

σ̂2
i =

uTi ui
qi

, i = 0, 1, . . . , r

β̂ = (XTX)−XT (y −
r∑
i=1

Ziui)

Special Case: Two-Variance Components Model

The general mixed linear model reduces to:

y = Xβ +Z1u1 + ε where ε ∼ N(0, σ2
0I) and u1 ∼ N(0, σ2

1In)

and the covariance matrix of y is now

V = Z1Z
T
1 σ

2
1 + σ2

0In

The complete data loglikelihood is

l = −1

2
q log(2π)− 1

2

1∑
i=0

qi log σ2
i −

1

2

1∑
i=0

uTi ui
σ2
i

where u0 = y −Xβ −Z1u1. The m.l.e.’s are

σ̂2
i =

uTi ui
qi

i = 0, 1

β̂ = (XTX)−XT (y −Z1u1)

We need to find the expected values of the sufficient statistics uTi ui, i = 0, 1 and y −
Z1u1 conditional on observed data vector y. Since ui|y is distributed as qi-dimensional
multivariate normal

N(σ2
iZ

T
i V

−1(y −Xβ), σ2
i Iqi − σ4

iZ
T
i V

−1Zi)

we have

E(uTi ui | y) = σ4
i (y −Xβ)TV −1ZiZ

T
i V

−1(y −Xβ) + tr(σ2
i Iqi − σ4

iZ
T
i V

−1Zi)

E(y −Z1u1 | y) = Xβ + σ2
0V
−1(y −Xβ)

noting that

E(u0 | y) = σ2
0V
−1(y −Xβ)

E(uT0u0 | y) = σ4
0(y −Xβ)TV −1Z0Z

T
0V

−1(y −Xβ) + tr(σ2
0Iqi − σ4

0Z
T
0V

−1Z0)

where Z0 = In.
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From the above we can derive the following EM-type algorithms for this case:

Basic EM Algorithm

Step 1 (E-step) Set V (t) = Z1Z
′
1σ

2(t)

1 + σ2(t)

0 In and for i = 0, 1 calculate

ŝ
(t)
i = E(uTi ui|y) |

β=β(t)
, σ2
i=σ

2(t)
i

= σ4(t)

i (y −Xβ(t))TV (t)ZiZ
T
i V

(t)(y −Xβ(t))

+ tr(σ2(t)

i Iqi − σ4(t)

i ZT
i V

(t)−1

Zi) i = 0, 1

ŵ(t) = E(y −Z1u1|y) |
β=β(t)

, σ2
i=σ2(t)

i

= Xβ(t) + σ2(t)

0 V (t)−1

(y −Xβ(t))

Step 2 (M-step)

σ2(t+1)

i = ŝ
(t)
i /qi i = 0, 1

β(t+1) = (XTX)−1X ′ŵ(t)

ECM Algorithm

Step 1 (E-step) Set V (t) = Z1Z
′
1σ

2(t)

1 + σ2(t)

0 In and, for i = 0, 1 calculate

ŝ
(t)
i = E(uTi ui|y) |

β=β(t)
, σ2
i=σ2(t)

i

= σ4(t)

i (y −Xβ(t))TV (t)−1

ZiZiV
(t)−1

(y −Xβ)

+ tr(σ2(t)

i Iqi − σ4(t)

i ZT
i V

(t)−1

Zi)

Step 2 (M-step)

Partition the parameter vector θ = (σ2
0, σ

2
1, β) as θ1 = (σ2

0, σ
2
1) and θ2 = β

CM-step 1

Maximize complete data log likelihood over θ1

σ2(t+1)

i = ŝ
(t)
i /qi i = 0, 1

CM-step 2

Calculate β(t+1) as
β(t+1) = (XTX)−1XT ŵ(t)

where
ŵ(t+1) = Xβ(t) + σ2(t+1)

0 V (t+1)−1

(y −Xβ(t))
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ECME Algorithm

Step 1 (E-step) Set V (t) = Z1Z
′
1σ

2(t)

1 + σ2(t)

0 In and, for i = 0, 1 calculate

ŝ
(t)
i = E(uTi ui|y) | σ2

i = σ
2(t)
i

= σ4(t)

i yTP (t)ZiZ
T
i P

(t)y + tr(σ2(t)

i Iqi − σ4(t)

i ZT
i V

(t)−1

Zi)

where P (t) = V (t)−1 − V (t)−1

X(XTV (t)−1

X)−XTV (t)−1

Step 2 (M-step)

Partition θ as θ1 = (σ2
0, σ

2
1) and θ2 = β as in ECM.

CM-step 1

Maximize complete data log likelihood over θ1

σ2(t+1)

i = ŝ
(t)
i /qi i = 0, 1

CM-step 2

Maximize the observed data log likelihood over θ given θ
(t)
1 = (σ2(t)

0 , σ2(t)

0 ):

β(t+1) = (XTV (t+1)−1

X)−1(XTV (t+1)−1

)y

(Note: This is the WLS estimator of β.)
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Example of Mixed Model Analysis using the EM Algorithm

The first example is an evaluation of the breeding value of a set of five sires in raising pigs,
taken from Snedecor and Cochran (1967). (The data is reported in Appendix 4.) The
experiment was designed so that each sire is mated to a random group of dams, each mating
producing a litter of pigs whose characteristics are criterion. The model to be estimated is

yijk = µ+ αi + βij + εijk, (4)

where αi is a constant associated with the i-th sire effect, βij is a random effect associated
with the i-th sire and j-th dam, εijk is a random term. The three different initial values for
(σ2

0, σ
2
1) are (1, 1), (10, 10) and (.038, .0375); the last initial value corresponds to the estimates

from the SAS ANOVA procedure.

Table 1: Average Daily Gain of Two Pigs of Each Litter (in pounds)

Sire Dam Gain Sire Dam Gain
1 1 2.77 3 2 2.72
1 1 2.38 3 2 2.74
1 2 2.58 4 1 2.87
1 2 2.94 4 1 2.46
2 1 2.28 4 2 2.31
2 1 2.22 4 2 2.24
2 2 3.01 5 1 2.74
2 2 2.61 5 1 2.56
3 1 2.36 5 2 2.50
3 1 2.71 5 2 2.48
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###########################################################

# Classical EM algorithm for Linear Mixed Model #

###########################################################

em.mixed <- function(y, x, z, beta, var0, var1,maxiter=2000,tolerance = 1e-0010)

{

time <-proc.time()

n <- nrow(y)

q1 <- nrow(z)

conv <- 1

L0 <- loglike(y, x, z, beta, var0, var1)

i<-0

cat(" Iter. sigma0 sigma1 Likelihood",fill=T)

repeat {

if(i>maxiter) {conv<-0

break}

V <- c(var1) * z %*% t(z) + c(var0) * diag(n)

Vinv <- solve(V)

xb <- x %*% beta

resid <- (y-xb)

temp1 <- Vinv %*% resid

s0 <- c(var0)^2 * t(temp1)%*%temp1 + c(var0) * n - c(var0)^2 * tr(Vinv)

s1 <- c(var1)^2 * t(temp1)%*%z%*%t(z)%*%temp1+ c(var1)*q1 -

c(var1)^2 *tr(t(z)%*%Vinv%*%z)

w <- xb + c(var0) * temp1

var0 <- s0/n

var1 <- s1/q1

beta <- ginverse( t(x) %*% x) %*% t(x)%*% w

L1 <- loglike(y, x, z, beta, var0, var1)

if(L1 < L0) { print("log-likelihood must increase, llikel <llikeO, break.")

conv <- 0

break

}

i <- i + 1

cat(" ", i," ",var0," ",var1," ",L1,fill=T)

if(abs(L1 - L0) < tolerance) {break} #check for convergence

L0 <- L1

}

list(beta=beta, var0=var0,var1=var1,Loglikelihood=L0)

}
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#########################################################

# loglike calculates the LogLikelihood for Mixed Model #

#########################################################

loglike<- function(y, x, z, beta, var0, var1)

{

n<- nrow(y)

V <- c(var1) * z %*% t(z) + c(var0) * diag(n)

Vinv <- ginverse(V)

xb <- x %*% beta

resid <- (y-xb)

temp1 <- Vinv %*% resid

(-.5)*( log(det(V)) + t(resid) %*% temp1 )

}

> y <- matrix(c(2.77, 2.38, 2.58, 2.94, 2.28, 2.22, 3.01, 2.61,

+ 2.36, 2.71, 2.72, 2.74, 2.87, 2.46, 2.31, 2.24,

+ 2.74, 2.56, 2.50, 2.48),20,1)

> x1 <- rep(c(1,0,0,0,0),rep(4,5))

> x2 <- rep(c(0,1,0,0,0),rep(4,5))

> x3 <- rep(c(0,0,1,0,0),rep(4,5))

> x4 <- rep(c(0,0,0,1,0),rep(4,5))

> x <- cbind(1,x1,x2,x3,x4)

> x

x1 x2 x3 x4

[1,] 1 1 0 0 0

[2,] 1 1 0 0 0

[3,] 1 1 0 0 0

[4,] 1 1 0 0 0

[5,] 1 0 1 0 0

[6,] 1 0 1 0 0

[7,] 1 0 1 0 0

[8,] 1 0 1 0 0

[9,] 1 0 0 1 0

[10,] 1 0 0 1 0

[11,] 1 0 0 1 0

[12,] 1 0 0 1 0

[13,] 1 0 0 0 1
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[14,] 1 0 0 0 1

[15,] 1 0 0 0 1

[16,] 1 0 0 0 1

[17,] 1 0 0 0 0

[18,] 1 0 0 0 0

[19,] 1 0 0 0 0

[20,] 1 0 0 0 0

> beta <- lm(y~ x1 + x2 + x3 +x4)$coefficients

> beta

[,1]

(Intercept) 2.5700

x1 0.0975

x2 -0.0400

x3 0.0625

x4 -0.1000

> z=matrix(rep( as.vector(diag(1,10)),rep(2,100)),20,10)

> z

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 0 0 0 0 0 0 0 0 0

[2,] 1 0 0 0 0 0 0 0 0 0

[3,] 0 1 0 0 0 0 0 0 0 0

[4,] 0 1 0 0 0 0 0 0 0 0

[5,] 0 0 1 0 0 0 0 0 0 0

[6,] 0 0 1 0 0 0 0 0 0 0

[7,] 0 0 0 1 0 0 0 0 0 0

[8,] 0 0 0 1 0 0 0 0 0 0

[9,] 0 0 0 0 1 0 0 0 0 0

[10,] 0 0 0 0 1 0 0 0 0 0

[11,] 0 0 0 0 0 1 0 0 0 0

[12,] 0 0 0 0 0 1 0 0 0 0

[13,] 0 0 0 0 0 0 1 0 0 0

[14,] 0 0 0 0 0 0 1 0 0 0

[15,] 0 0 0 0 0 0 0 1 0 0

[16,] 0 0 0 0 0 0 0 1 0 0

[17,] 0 0 0 0 0 0 0 0 1 0

[18,] 0 0 0 0 0 0 0 0 1 0

[19,] 0 0 0 0 0 0 0 0 0 1

[20,] 0 0 0 0 0 0 0 0 0 1

> tolerance <- 1e-0010
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> maxiter <- 2000

> seed <- 100

> tr <- function(x) sum(diag(x))

> pig.em.results=em.mixed(y,x,z,beta,1,1)

Iter. sigma0 sigma1 Likelihood
1 0.355814166666667 0.672928333333333 1.79926992591149
2 0.161289219777595 0.41563069748673 7.67656899233908
3 0.0876339412658286 0.251467232868861 12.1211098467902
4 0.0572854577134676 0.154608860144254 15.1706421424132
5 0.0442041832136993 0.0994160507019009 17.130593350043
6 0.0383642480366208 0.0681788894372488 18.3694784469532
7 0.0356787493219611 0.0501555498139391 19.1464492643216
8 0.0344485615271845 0.0393230630005528 19.630522654304
9 0.0339421060204835 0.032463488015722 19.9344237098546
10 0.0338157550885801 0.0278799360094821 20.1296516102853
11 0.0338906702246361 0.0246617461868549 20.2590878975877
12 0.0340677808426562 0.0223026501468333 20.3478401280992
13 0.0342914060268899 0.02050908367209 20.4106731999847
14 0.0345307406853334 0.0191033399491361 20.4564548122603
15 0.0347693177408093 0.0179733335898586 20.4906651701558
16 0.0349988121264555 0.0170456362588657 20.5167959381214
17 0.0352154250729573 0.0162704665032569 20.5371387472463
18 0.0354178131324059 0.0156130259538466 20.5532397057213
19 0.035605923319033 0.0150483214110959 20.5661685104734
20 0.0357803477632565 0.0145579670979211 20.5766822585211
. . . .
. . . .
. . . .

56 0.0381179518848995 0.00973330752818472 20.6382666130708
57 0.0381395936235214 0.00969817892685448 20.6383975558995
58 0.0381603337241741 0.00966462573503992 20.6385178920802
59 0.0381802168890155 0.00963256091234115 20.6386285603282
60 0.0381992850741614 0.00960190350873251 20.6387304072052
61 0.0382175776978136 0.00957257813571635 20.6388241972305
62 0.0382351318295782 0.00954451449226923 20.6389106217546
63 0.0382519823629303 0.0095176469390277 20.6389903067599
64 0.0382681621725531 0.00949191411504429 20.639063819736
65 0.0382837022580806 0.00946725859219654 20.639131675748
66 0.0382986318756009 0.00944362656297278 20.6391943428055
67 0.038312978658123 0.00942096755790665 20.6392522466191
68 0.0383267687260784 0.00939923418940295 20.6393057748245
69 0.0383400267888113 0.0093783819191014 20.6393552807376
70 0.0383527762379075 0.00935836884627387 20.6394010866997
71 0.0383650392331249 0.00933915551505174 20.6394434870619
72 0.0383768367816026 0.00932070473854103 20.639482750852
73 0.0383881888109615 0.00930298143810976 20.6395191241599
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74 0.0383991142368419 0.00928595249632906 20.6395528322763
75 0.0384096310253713 0.00926958662222157 20.6395840816114
76 0.0384197562510039 0.00925385422762105 20.6396130614187
77 0.0384295061501315 0.00923872731357883 20.6396399453462
78 0.0384388961708265 0.00922417936586811 20.6396648928339
79 0.0384479410190403 0.00921018525873869 20.6396880503735
80 0.038456654701554 0.00919672116616442 20.639709552647
81 0.0384650505659457 0.00918376447990421 20.6397295235547
. . . .
. . . .
. . . .
148 0.0386757695291326 0.00886369156913502 20.6399971471733
149 0.038676564371102 0.00886250240210069 20.6399973283659
150 0.0386773329964768 0.00886135258462483 20.6399974978113
151 0.0386780762792084 0.00886024079675071 20.6399976562748
152 0.0386787950635179 0.00885916576395544 20.6399978044714
153 0.0386794901649452 0.00885812625551144 20.6399979430694
154 0.0386801623713602 0.00885712108291183 20.6399980726932
155 0.0386808124439345 0.00885614909835692 20.6399981939264
156 0.0386814411180777 0.00885520919329904 20.6399983073142
157 0.0386820491043391 0.0088543002970433 20.6399984133665
158 0.0386826370892749 0.00885342137540194 20.6399985125595
159 0.0386832057362845 0.00885257142939978 20.6399986053387
160 0.0386837556864153 0.0088517494940289 20.6399986921201
161 0.0386842875591385 0.00885095463705022 20.639998773293
162 0.038684801953096 0.00885018595784018 20.6399988492209
163 0.0386852994468205 0.0088494425862806 20.6399989202439
164 0.0386857805994294 0.00884872368168998 20.6399989866798
165 0.0386862459512932 0.00884802843179444 20.6399990488258
166 0.0386866960246808 0.00884735605173682 20.6399991069597
167 0.03868713132438 0.0088467057831223 20.6399991613413
168 0.0386875523382973 0.00884607689309907 20.6399992122135
169 0.0386879595380351 0.00884546867347273 20.6399992598033
170 0.0386883533794493 0.00884488043985296 20.639999304323
171 0.0386887343031859 0.00884431153083127 20.6399993459712
. . . .
. . . .
. . . .
200 0.0386957009460699 0.00883391223498804 20.6399998631143
201 0.0386958413121088 0.00883370281147353 20.6399998687721
202 0.0386959770906578 0.00883350023633904 20.6399998740661
203 0.0386961084319343 0.00883330428508165 20.6399998790199
204 0.0386962354812184 0.00883311474059363 20.6399998836552
205 0.0386963583790162 0.00883293139291657 20.6399998879925
206 0.0386964772612182 0.00883275403900379 20.6399998920511
207 0.0386965922592513 0.00883258248249084 20.6399998958488
208 0.038696703500227 0.0088324165334737 20.6399998994025
209 0.0386968111070837 0.00883225600829448 20.6399999027278
210 0.0386969151987245 0.00883210072933436 20.6399999058394
211 0.0386970158901508 0.00883195052481344 20.639999908751
212 0.0386971132925907 0.00883180522859742 20.6399999114756
213 0.0386972075136236 0.00883166468001066 20.6399999140251
214 0.0386972986573006 0.0088315287236556 20.6399999164108
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215 0.0386973868242609 0.00883139720923821 20.6399999186432
216 0.0386974721118441 0.00883126999139926 20.6399999207322
217 0.0386975546141991 0.00883114692955128 20.639999922687
218 0.0386976344223887 0.00883102788772094 20.6399999245163
219 0.0386977116244922 0.00883091273439672 20.639999926228
. . . .
. . . .
. . . .
243 0.0386989678273622 0.00882903917935159 20.6399999460984
244 0.0386990015024108 0.00882898895948373 20.6399999464241
245 0.0386990340785396 0.00882894037866968 20.6399999467289
246 0.0386990655916262 0.00882889338338294 20.6399999470141
247 0.038699096076376 0.00882884792184704 20.639999947281
248 0.0386991255663601 0.00882880394397821 20.6399999475308
249 0.038699154094053 0.00882876140132994 20.6399999477646
250 0.0386991816908679 0.00882872024703932 20.6399999479833
251 0.0386992083871918 0.00882868043577519 20.639999948188
252 0.0386992342124192 0.00882864192368795 20.6399999483796
253 0.0386992591949842 0.00882860466836104 20.6399999485588
254 0.0386992833623921 0.00882856862876405 20.6399999487266
255 0.0386993067412498 0.00882853376520732 20.6399999488836
256 0.0386993293572951 0.00882850003929805 20.6399999490305
257 0.0386993512354253 0.00882846741389785 20.639999949168
258 0.0386993723997246 0.00882843585308171 20.6399999492966
259 0.0386993928734904 0.00882840532209825 20.639999949417
260 0.0386994126792596 0.00882837578733138 20.6399999495297
261 0.0386994318388329 0.00882834721626309 20.6399999496351
262 0.0386994503732993 0.00882831957743758 20.6399999497338

> pig.em.results

$beta:

[,1]

[1,] 2.5700

[2,] 0.0975

[3,] -0.0400

[4,] 0.0625

[5,] -0.1000

$var0:

[,1]

[1,] 0.03869945

$var1:

[,1]

[1,] 0.00882832

$Loglikelihood:

[,1]

[1,] 20.64
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