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Abstract. This research discusses the use of Cohen’s j (kappa), Brennan and Prediger’s jn, and the coefficient of raw agreement
for the examination of disagreement. Three scenarios are considered. The first involves all disagreement cells in a rater � rater
cross-tabulation. The second involves one of the triangles of disagreement cells. The third involves the cells that indicate
disagreement by one (ordinal) scale unit. For each of these three scenarios, coefficients of disagreement in the form of
j equivalents are derived. The behavior of the coefficients of disagreement in the three situations is studied. The first and the
third case pose no particular problem. The j equivalents and the other coefficients can be interpreted as usual. In the second
case, problems arise such that the range of disagreement js is restricted because the tables are incomplete. Thus, the standard
log-frequency model of rater independence is no longer applicable. When the more general models of quasi-independence are
used, negative degrees of freedom can result for smaller tables. Simulation results illustrate the characteristics of the coefficients
of disagreement for each of the three scenarios. Empirical data examples are given.

Cohen’s (1960) j (kappa) is the most popular coefficient
of rater agreement. j indicates the degree to which two
raters agree beyond chance. It is a summary measure of
agreement in a rater � rater cross-classification. Re-
searchers often ask additional questions concerning
agreement tables. Examples of such questions concern
patterns of disagreement. These questions are of impor-
tance in rater training or when disagreement can have
negative implications, for instance, for patients. In this
article, we propose derivatives of Cohen’s j for the
analysis of such questions. The benefit from such co-
efficients is that interpretation can follow the lines of j,
and no additional line of thinking or comparisons of
results based on different statistical models are needed.

Analyzing Agreement Tables

Four approaches to analyzing cross-classifications of
raters’ judgements, that is, agreement tables, have been
pursued (von Eye & Mun, 2005). The first approach
involves estimating summary coefficients such as Co-
hen’s coefficient j (1960), raw agreement, Cohen’s
weighted j, Brennan and Prediger’s jn (1981), von
Eye’s (2005) j alternative, or intraclass correlations (for
continuous variables). Most of these coefficients share
the characteristics that (1) they summarize the infor-
mation in the table in one coefficient, (2) they are easy
to interpret, typically as proportionate reduction-in-error

(PRE) coefficients, and (3) significance tests exist that
allow one to determine whether agreement occurred be-
yond what was expected based on a chance model.

The second approach to analyzing agreement tables
involves estimating models. Two lines of research have
been developed. The first line focuses on manifest vari-
able models. von Eye and Mun (2005) proposed a fam-
ily of log-linear models that not only allow one to focus
on overall agreement but also on more detailed hypoth-
eses that concern, for instance, specific weights that rat-
ers may have used (cf. Tanner & Young, 1985), scale
characteristics of the rating scales as nominal or ordinal,
the effect of covariates, or classifications of judgements
(see also Agresti, 2002; Fleiss, Levin, & Paik, 2003;
Schuster & Smith, 2002; Schuster & von Eye, 2001).

The second line of research involves the development
of latent variable and mixture models (cf. Agresti, 1992;
Schuster, 2002; Uebersax, 1993). For example, Agresti
(1992) proposed latent class models for the agreement
among three raters. This model assumes an unobserved
categorical variable. The judgements in the categories
of this variable are homogeneous, and the judgements
of the three raters are statistically independent at each
of the levels of the latent variable.

Latent trait models have been proposed, for example,
by Wolfe (2004). These models allow one to test hy-
potheses concerning rater effects, for instance, rater
characteristics, rater-specific accuracy and inaccuracy,
and rater-specific trends such as centrality versus ex-
tremism. Extensions of latent variable models consider,
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for instance, continuous latent variables (Uebersax,
1993) or Rasch models (cf. Lindsay, Clogg, & Grego,
1991).

These approaches are most flexible, and they allow
one to test a large number of hypotheses about the struc-
ture of agreement tables. However, these approaches
have rarely been used. Two reasons why they are rarely
used may be that specific hypotheses do not exist very
often and that model specification may not always be
straightforward, from a user’s perspective. For example,
the number of parameters that need to be estimated for
latent class models for rater agreement is typically large
and models are often not identified. The number of pa-
rameters can be reduced by setting parameters to zero
or by setting parameters equal. Placing such constraints
is not always trivial, and results depend on these deci-
sions. Users often do not entertain hypotheses that cor-
respond to the required decisions. Another downside to
these models is that they are not always applicable. For
example, for binary rating variables, three or more raters
are needed for a latent variable model to be identified.
Accordingly, in log-linear models, degrees of freedom
can be negative as well, for example in the stratified
models proposed by Graham (1995). Here again, deci-
sions need to be made and justified to reduce the number
of parameters in a model.

The third approach involves exploring agreement ta-
bles. von Eye and Mun (2005) proposed using Confi-
gural Frequency Analysis (CFA; von Eye, 2002) to ex-
amine individual cells of agreement tables, and to ask
whether the frequencies in these cells differ from what
was expected under some probability model. CFA mod-
els allow one to search for agreement types (over-fre-
quented main diagonal cells), agreement antitypes (un-
der-frequented diagonal cells), disagreement types
(over-frequented off-diagonal cells), and disagreement
antitypes (under-frequented off-diagonal cells). Covar-
iates can be considered as well as special effects. In
addition, models for ordinal variables can be estimated.
The CFA approach is straightforward and easily imple-
mented. However, it does not lead to a summary state-
ment about characteristics of the agreement table.

A fourth approach was recently proposed by DeCarlo
(2002, 2005). The author presented a latent class exten-
sion of signal detection theory that allows one to test
theories of psychological processes that underlie raters’
behavior. Measures of the precision of raters and the
accuracy of classifications can be calculated. To the best
of our knowledge, there have been no applications of
this approach yet, except DeCarlo’s own (2005).

For the reasons listed, applications of modeling ap-
proaches to the analysis of rater agreement have been
rare, although models have been discussed for more than
25 years. In addition, users occasionally question the

benefit from such models. For example, Tanner and
Young’s (1985) model contains a parameter that ex-
presses strength of agreement, and Schuster and Smith’s
(2002) contains a parameter that can be interpreted as
the proportion of systematic agreement. Obviously, the
context of a model can make this kind of parameter
more informative than plain coefficients. This benefit,
however, seems to escape a good number of users, and
the coefficients of rater agreement remain discussed in
the methodological literature, and employed in the ap-
plied literature far more often than models.

In the present article, we look again at Cohen’s j.
Specifically, we ask whether j can be used to create
summary statements about selections of cells in the table
that indicate disagreement. If this is possible, specific
hypotheses in addition to those concerning PRE-type
agreement can be formulated and tested. In the follow-
ing section, we review Cohen’s j, the coefficient of raw
agreement ra, and Brennan and Prediger’s (1981) jn.
Then, we present hypotheses concerning the off-diago-
nal cells of agreement tables, we propose corresponding
j derivatives, and present simulation results that indi-
cate whether these coefficients can be used to test hy-
potheses other than those concerning perfect agreement.
These simulations concern both the coefficients and sta-
tistics used for significance testing.

Coefficients of Agreement

In this article, we consider standard agreement tables
for two raters. These are square, I � I tables, the I rows
of which represent the rating categories used by Rater
A, and the I columns of which represent the rating cate-
gories used by Rater B. These categories are typically
the same. The entries in an agreement table, mi j, indicate
the observed frequencies of agreement–disagreement
patterns. The probabilities of these patterns are pi j.

Cohen’s j

In the case of two raters, Cohen’s j relates the proba-
bilities in the agreement cells, these are the cells with
index ii, to the expected cell probabilities in these cells.
Specifically, let the sum of the probabilities in the agree-
ment cells be

I

h � p1 � ii
i�1

where I is the number of rating categories used by both
raters. Under the assumption of rater independence, the
corresponding sum of expected probabilities in agree-
ment cells is

h � p p2 � i. . j
i�j
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with i, j � 1, . . . , I, and i. indicating the ith row total,
and .j indicating the jth column total. The relation be-
tween h1 and h2 describes the degree to which agreement
deviates from chance. If h1 � h2, the two raters agree to
a degree that exceeds what was expected based on
chance.

To express Cohen’s j in a standardized form, we re-
late the difference between h1 and h2 to the maximum
difference between h1 and h2, that is, to 1 � h2. The
difference h1 � h2, weighted by this maximum differ-
ence, is known as Cohen’s (1960) j,

h � h1 2j � .
1 � h2

j describes the portion of judgements in which the two
raters agree exactly, relative to the expected portion. j
can be estimated for a sample by using the observed cell
frequencies.

Fleiss, Cohen, and Everitt (1969; cf. Hildebrand et
al., 1977) showed that, for sufficiently large samples,
the estimate of j is normally distributed with mean j.
The authors derived the standard error of the estimate
of j. Using this standard error, the test statistic z �j

can be used to test the null hypothesis that j � 0.ĵ/r̂j

As an alternative to this z test, von Eye and Brandtstäd-
ter (1988) proposed using the binomial test.

Characteristics of Cohen’s j.
We now review three of the well known characteristics
of Cohen’s j, including the occasionally critical discus-
sion of the coefficient (cf. von Eye & Mun, 2005).

First, the range of j is �h2/(1 � h2) � j � 1. j �
0 if the probability of disagreement is the same as the
probability of agreement, j can be zero even if raters’
judgements are not independent, and j � 1 only if the
probability of disagreement is zero.

Second, if the probability of disagreement is non-
zero, the maximum value of j decreases as the margin-
als deviate from a uniform distribution. This character-
istic has been termed marginal dependency or
prevalence dependency of chance-corrected agreement
(Guggenmoos-Holzmann, 1995). It is interesting to note
that large parts of the literature view this characteristic
as a negative, and take it as a reason to recommend other
methods of assessment of rater agreement. However,
there are two trends in the recent literature that point to
the positive aspects of this characteristic. The first trend
is that authors suggest viewing the appraisal of the de-
gree of agreement as base model-dependent. Examples
of this approach include the work of von Eye and Sö-
rensen (1991; cf. von Eye & Mun, 2005) who contrast
chance models. The second trend is the repeated attempt
to devise models that include parameters that have the
same interpretation as j. Examples of this work include
the models of Tanner and Young (1985) and Schuster
(2001).

Third, negative values of j, quantifying disagree-
ment, have the same interpretation as positive values.
However, j does not show monotonic behavior when
the probability of disagreement is higher than the prob-
ability of agreement (von Eye & Sörensen, 1991).

Fleiss (1981) proposes, as rules of thumb, that values
of j � 0.4 indicate poor agreement, values of 0.4 � j
� 0.75 indicate good agreement, and larger values in-
dicate excellent agreement (cf. Landis & Koch, 1977).

Cohen’s Weighted j

The original coefficient j places equal weights on all
disagreement patterns. Thus, it does not allow one to
distinguish between minor discrepancies, by say, 1 scale
point, and major discrepancies, by more than 1 scale
point. To allow such a distinction, Cohen (1968) intro-
duced weighted j for ordinal scales, or for nominal
scales in which different types of disagreement come
with different implications. We define, in a fashion par-
allel to the previous one,

h* � x p1 � � i j i j
i j

and

h* � x p p ,2 � � i j i. . j
i j

where the probabilities are defined as before, and the xij

are the weights. Cohen specified that these weights (1)
range 0 � x � 1, and (2) be ratios. The second speci-
fication implies that a score of x � 1 carries twice the
weight of a score of x � 0.5. As for j, one can define
weighted j by

h* � h*1 2j � .w 1 � h*2

For the standard error of jw, see Fleiss, Cohen, and Ev-
eritt (1969).

Brennan and Prediger’s jn

One of the major criticisms of Cohen’s j is that its max-
imum value is less than 1.0 if both (1) the marginal
distributions are not uniform, and (2) not all off-diago-
nal probabilities are zero. To remedy this problem,
Brennan and Prediger (1981) suggested replacing the
main effect model of rater independence by the null
model of a uniform response distribution. The resulting
coefficient of rater agreement is then

h � 1/I1j � ,n 1 � 1/I

where I is the number of categories that both raters used.
As for j, jn can be estimated from the observed fre-
quencies in an agreement table.
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The coefficient jn is sensitive to deviations from a
null model (uniform distribution) as well as to devia-
tions from a main effect model. It indicates the magni-
tude of agreement instead of agreement beyond chance.
jn can reach its maximum value of 1.0 even if the mar-
ginal probabilities are not uniform. The magnitude of
the coefficient itself serves as an indicator of the type
of deviation only if a table possesses marginal homo-
geneity. This coefficient has recently been criticized be-
cause it can be large when raters randomly assign cases
to rating categories while using these categories at dif-
ferent base rates (Hsu & Field, 2003; for significance
testing and distributional characteristics see von Eye &
Mair, 2005).

The Coefficient of Raw Agreement

The coefficient of raw agreement indicates the proba-
bility for two or more raters’ judgements to match per-
fectly. This corresponds to the probability for two judge-
ments to be located in the main diagonal of an
agreement matrix. More specifically, ra, the coefficient
of raw agreement, is

ra � p � h .� ii 1
i

This coefficient can also be estimated from the observed
frequencies by substituting pii with mii/N, where mii is
the frequency observed for cell ii and N is the total num-
ber of judgements in an agreement matrix.

Often, researchers report both jn and ra. However,
there is no need to report both jn and ra because, as was
shown by von Eye and Mair (2005), the two measures
are linear transformations of each other such that

1 1
j � � � ra 1 � .n � �I � 1 I � 1

Three Questions Concerning
Disagreement Cells

In this section, we discuss three questions concerning
disagreement cells, that is, the off-diagonal cells in an
agreement table. For each of these questions, we ask
whether it can be answered by applying j, jn, and ra to
the cells addressed by these questions.

To introduce these questions and to illustrate the use
of the coefficients reviewed in the previous sections, we
present a data example (adapted from Schuster & Smith,
2002; Table 1). In a study on the agreement between
service facility and research diagnoses of 223 psychi-
atric patients, patients were classified into four mutually
exclusive ordered diagnostic categories. We name these

(1) severe psychosis, (2) average severity psychosis, (3)
mild psychosis, and (4) no clinical diagnosis. Table 1
gives the cross-classification of the facility with the re-
search diagnoses.

Raw agreement between the two diagnostic proce-
dures is 58.74%. This is 43.15% better than chance (j).
The improvement over the chance model of indepen-
dence of diagnoses is significant (zj � 10.48; p � 0.01).
Brennan and Prediger’s (1981) jn assumes the value of
0.45. From these results, we conclude that the two di-
agnostic procedures represent judgements that are sig-
nificantly in better agreement than expected based on
chance for both the independence and the null models.

We now discuss questions researchers may have in
addition to rater agreement. Specifically, we discuss
three questions concerning disagreement. The first ques-
tion is whether the off-diagonal cells, both above and
below the main diagonal, allow one to make statements
about whether significant lack of disagreement exists.
The second question concerns the disagreement cells in
the triangular either above or below the main diagonal.
This question addresses issues such as trends in dis-
agreement. For example, one rater may systematically
select higher (or lower) scores, on ordinal rating scales.
The third question concerns selections of disagreement
cells, for example, the cells that are adjacent to the
agreement cells in the diagonal. These cells indicate dis-
agreement by just one scale point. The second and third
questions are meaningful in particular when rating
scales are used that are at least ordinal in nature. They
can also be meaningful for nominal level ratings, for
example, when cells with similar implications (in terms
of, e.g., costs and treatment options) can be grouped into
such patterns.

Is There Significant Lack of Disagreement?

For the examination of disagreement cells in a square
rater � rater table, we propose derivatives of the co-
efficients j, jn, and ra.

Cohen’s j as a Measure of Disagreement.
To introduce Cohen’s j as a measure of disagreement,
we proceed as for the derivation of j. First, we define
the probability of disagreement as

dh � p � 1 � p � 1 � h .1 � i j � ii 1
i j i

Accordingly, we define the expected probability of dis-
agreement under the assumption of rater independence
as

dh � p p � 1 � p p � 1 � h .2 � i. . j � i. .j 2
i j i�j

Using these measures, we can define the proportionate
reduction in error measure of disagreement
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Table 1. Cross-classification of facility and research diagnoses for 223 psychiatric patients (Fenig et al., 1994); estimated expected cell
frequencies in italic.

Facility Diagnosis Research Diagnosis

1 2 3 4 Totals
1 40 18.95 6 13.41 4 11.08 15 21.57 65
2 4 10.20 25 7.22 1 5.96 5 11.61 35
3 4 10.49 2 7.43 21 6.14 9 11.95 36
4 17 25.36 13 17.95 12 14.83 45 28.87 87

Totals 65 46 38 74 223

d dh � h (1 � h ) � (1 � h ) �h � h1 2 1 2 1 2dj � � � .
d1 � h 1 � (1 � h ) h2 2 2

The coefficient jd indicates the reduction in the propor-
tion of disagreements that results from comparing the
observed with the expected frequencies in the off-di-
agonal cells, when the latter are estimated based on the
assumption of rater independence. In the typical data
situation in which disagreement is less likely than ex-
pected, we find that h2 � h1. Therefore, the numerator
of the formula for jd is typically negative. Thus, the
coefficient jd is typically negative, indicating that the
agreement table contains fewer cases of disagreement
than expected.

The range of jd is . The up-
dh2 d� � j � � 1

d1 � h2

per limit is reached for h1 � 0. The lower limit is
reached for h1 � 1. Thus, jd has a range comparable to
j. In fact, jd is the same measure as j, just applied to

the disagreement cells, and .
j(1 � h )2dj � �

h2

Brennan and Prediger’s jn as a Measure
of Disagreement
In a fashion similar to the one in the previous section,
we can derive a Brennan and Prediger measure of dis-
agreement, , as follows. The term is defined asd dj hn 1

for jd. The comparison term is derived from the base
model that proposes a uniform probability distribution.

In the off-diagonals, we find
2 I (I � 1)I

2 � �� �2 2
cells. Each of these has a probability of 1/I2.I (I � 1)

The total probability for all off-diagonal cells is thus

. We now set , for the com-
I (I � 1)

dp � h � pij n,2 i�j2I
parison term for the Brennan and Prediger coefficient of
disagreement, and obtain

1 1(1 � h ) � 1 �1 � h� � 1d d Ih � h I1 n,2dj � � � .n d1 � h 11n,2 1 � 1 �� � II

As in the case of jd, we expect here that, in the usual
data situation, in which raters tend to agree more than

disagree, . The coefficient will thus be nega-d dh � h1 n,2

tive, in most instances. The range of isdjn

. As for j and jd, is the same
dhn,2 d d� � j � 1 jn nd1 � hn,2

measure as jn, just applied to the disagreement cells. In

fact, .
j (1 � 1/I )ndj � � � � j (I � 1)n n1/I

The Coefficient ra as a Measure of Raw Disagreement.
In a fashion analogous to the previous two sections, the
measure can be defined as a coefficient of raw dis-dh1

agreement, or rad. It is the complement of h1, because
. rad ranges 0 � rad � 1.dh � h � 11 1

The previous sections introduced the complements to
three coefficients of agreement, the coefficients of dis-
agreement. Barring differences in power that may result
from differences in the number of agreements versus
disagreements, null hypothesis tests concerning dis-
agreement carry the same information as null hypothesis
tests of agreement. The coefficients of disagreement
carry no additional information, except that they express
degree of disagreement in a form comparable to their
agreement equivalents. In the following sections, the co-
efficients introduced above are used as starting points
for the development of coefficients that address more
specific questions concerning the structure of disagree-
ment.

Disagreement in a Triangle of
Off-Diagonal Cells

In the present section, we ask new questions. Specifi-
cally, we ask whether a specific pattern of disagreement
exists. We focus on the upper triangle of an agreement
matrix. This selection is arbitrary. Focusing on the lower
triangle would lead to the same appraisals. We ask
whether disagreement differs from chance. First, we de-
fine the chance model as the model of rater indepen-
dence, as for Cohen’s j. Second, we define the chance
model as the null model, as for Brennan and Prediger’s
jn. Third, we present the coefficient of raw disagreement
for the upper triangle of an agreement table, analogous
to the ra coefficients in the previous sections.
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A coefficient of disagreement in the upper triangle of
an agreement table that is analogous to Cohen’s j can
be defined as follows. The probability of disagreement
in those cells in which Rater B (columns) selects higher
scores than Rater A (rows) is

th � p � 1 � p � p1 � i j � ii � i j ,
i�j i i�j

where the superscript indicates that we consider the dis-
agreement cells in the upper triangle. Accordingly, the
expected probability of disagreements in the upper tri-
angle is, under the model of rater independence,

th � p p � 1 � p p � p p ,2 � i. . j � i. .i � i. . j
i�j i i�j

and the resulting coefficient, jt, is

t th � h1 2tj � ,
t1 � h2

with a range of -� � jt � 1. The smallest possible value
of jt is

t 2�h (N � I � 1)2,maxt tj � with h �min 2,maxt1 � h N2,max

I
� 2(I � 1) � 1� �2N � I � 1

� 2(I � 1) � .
N N

It should be noted that if , jt cannot be cal-th � 11

culated based on the standard log-linear model of rater
independence because implies that the first col-th � 11

umn and the last row of the agreement table are empty.
If this is the case, h2 is not always defined if the standard
log-frequency model of rater agreement is used (for an
illustration, see Appendix A). In this situation, two op-
tions may be considered. First, if the expected proba-
bilities are not estimated from the data at hand but are
derived from other information, a score for h2 can be
determined. Second, if such information is unavailable,
the column that contains Cell 11 and the row that con-
tains Cell II can be declared structural zeros, and models
of quasi-independence can be used to estimate expected
cell frequencies. The resulting table can then be treated
as other incomplete tables (Bishop, Fienberg, & Hol-
land, 1975).

A Brennan and Prediger measure can be derivedtjn

in an analogous manner. Specifically, is defined asth1

for jt, and

1 I � 1I
th � � .n,2 � � 22 I 2I

We thus obtain

t th � h1 n,2tj � .n t1 � hn,2

The range of is . The smallest pos-t tj � � � j � 1n n

sible value of istjn

t�h �(I � 1)/2I �I � 1n,2tk � � � .n,min tI � h 1 � (I � 1)/2I I � 1n,2

Following the same approach as before, the measure of
raw disagreement is with a range of 0 � ratt tra � h1

� 1.
The measures jt, , and rat assess disagreement intjn

the upper triangular of the disagreement cells in an
agreement table. jt compares the rate of disagreement
to the rate that is expected under the model of rater
independence. compares the rate of disagreement totjn

the rate that is expected under the null model. rat indi-
cates the proportion of incidences of disagreement in
the selected cells. A trend exists if the measures jt, ,tjn

and rat differ from the ones that result for all disagree-
ment cells, that is, from the measures introduced in Sec-
tion 3.1. Specifically, Rater B (columns) tends toward
using higher scores on the ordinal rating scale than Rater
A (rows) if jd � jt, , and rad � rat. This appliesd tj � jn n

accordingly for the comparison of the estimates for the
upper with the estimates for the lower triangular of the
agreement table, and to the case in which Rater B tends
toward using lower scores than Rater A.

The problem addressed with jt is that one rater may
tend to systematically assign higher rating categories.
One might be tempted to use tests of differences in cen-
tral tendency instead of jt. Clearly, such tests will allow
one to test the null hypotheses that, on average, two or
more raters use the same category level. However, these
tests do not allow one to test this hypothesis under dif-
ferent base models. In addition, results from such tests
do not correspond directly with results obtained with
plain j or its derivatives. Therefore, researchers may
find jt useful because it does have the same interpreta-
tion as plain j, and results are directly comparable.

Disagreement by One Scale Point

Thus far, the development of measures of disagreement
has rarely used the idea that disagreement by one scale
point may be less damaging than disagreement by more
than one scale point (Cohen, 1968; Lawlis & Lu, 1972).
Here, we focus on a selection of disagreement cells and
ask whether, in those cells that contain the cases of dis-
agreement by one scale point, disagreement differs from
what was expected based on the chance models used for
Cohen’s j and for Brennan and Prediger’s jn. We de-
velop measures in a fashion parallel to the measures in
the previous sections.

A measure parallel to j can be developed as follows.
We define

I�1 I

1h � p � p ,1 � i,t�1 � i,i�1
i�1 i�2
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and, under the model of rater independence,

I�1 I

1h � p p � p p .2 � i. .i�1 � i. .i�1
i�1 i�2

Together, these two measures can be used to define the
j-analogous measure of degree of disagreement by one

scale point, . The range of this measure
1 1h � h1 21j �

11 � h2

is .
1�h2 1� j � 1

11 � h2

In an analogous way, we define a Brennan and Pre-
diger–type measure of disagreement by one scale point
using and1h1

2(I � 1)
1h � ,n,2 2I

and obtain

1 1h � h1 n,21j � .n 11 � hn,2

The range of this measure is .
1�hn,2 1� j � 1n11 � hn,2

Finally, the coefficient of raw disagreement by one
scale point is , with a range of 0 � ra1 � 1.1 1ra � h1

The coefficients of disagreement by one scale point
are of interest because researchers often consider dis-
agreements by one scale point minor. Minor disagree-
ments are expected to occur more often than disagree-
ments by two or more scale points. Therefore, one
would anticipate that null hypotheses concerning minor
disagreements can be retained quite frequently.

In addition, the coefficients of disagreement by one
scale point can be used to examine trends such that mi-
nor disagreement occurs more often than disagreement
by two or more scale points. Specifically, if j1, , and1jn

ra1 are closer to zero than their counterparts for all or
the more extreme disagreement cells, one can conclude
that disagreement by two or more scale points occurs
less often, relative to expectancy, than disagreement by
one scale point.

There have been early attempts to consider the case
of disagreement by one scale point. Examples of such
attempts include Cohen’s weighted j (see below in the
discussion section), and Lawlis and Lu’s (1972) co-
efficient. The relationship of the present approach to
weighted j is illustrated in the discussion section. The
difference to Lawlis and Lu’s coefficient is that j1, and

were designed to examine only the cells above and1jn

below the main diagonal, under different chance mod-
els, whereas Lawlis and Lu’s coefficient was designed
to examine agreement and one-point disagreement si-
multaneously. A version of j1 parallel to Lawlis and

Lu’s coefficient can be devised using the methods em-
ployed in this article.

Characteristics of the Coefficients of
Disagreement: Simulation Results

In this section, we present simulation results concerning
the distributional characteristics of the coefficients of
disagreement presented in the preceding sections.

If j and jd are complements of each other, their sam-
pling distribution should be the same. The same applies
to jn and ra and their counterparts, and rad. To illus-djn

trate this and, more generally, to describe the charac-
teristics of the coefficients discussed in this article, a
series of simulation runs were performed as follows.
Square tables were created of sizes 3 � 3 through
10 � 10. For each of the tables, frequencies were ran-
domly assigned to each cell. Two programs were written
for the simulations. The first program was written in
FORTRAN90. The random numbers were created using
the generator RANDOM_NUMBER that is available in
the MS Fortran Power Station. The generator returns
uniformly distributed pseudorandom numbers within
the interval 0 � m � 1.0. This generator can be used to
assign random numbers to arrays. The algorithm used
to create the random numbers is that of a prime modulus
M multiplicative congruential generator (Park & Miller,
1988). The resulting numbers were, for the present pur-
poses, multiplied by 100 and then rounded to the nearest
integer. The maximum cell frequency was set to a fre-
quency that varied from mij,max � 5 to mij,max � 50. If a
frequency ended up outside the predetermined range, it
was replaced by a new random number that was sub-
jected to the same procedure. Assignment of frequencies
to cells was performed using multinomial sampling. For
each maximum cell size, 1,000, 2,000, 3,000, or 5,000
samples were processed, thus varying both the number
of samples and the maximum cell size. For each of the
resulting sample distributions, the derivatives j, jn, and
ra, and the z statistic of j, applied to the j derivatives,
were calculated.

To ensure reliability of results and to check whether
the following simulation results are specific to the ran-
dom number generator RANDOM_NUMBER, all runs
were repeated using a second program written in the
Mathematica environment (Wolfram, 1991). With the
rounding algorithm and the random number generator
the only exceptions, the programs were equivalent. Spe-
cifically, the random number generator in Mathematica,
Random[], returns pseudorandom numbers on the inter-
val 0 � m � 1.0. As previously mentioned, this gen-
erator is used to assign values to an array. These random
numbers were scaled to lie within the predetermined
range of frequencies, and then rounded to the nearest
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Figure 1. Probability plots for jd for the maximum cell sizes of 10 (left panel) and 50 (right panel), 1000 samples, in 3 � 3 tables.

integer. This procedure guaranteed that replacement as
described previously was not necessary. The parameters
were varied and the coefficients of the resulting distri-
butions were calculated as in the FORTRAN program.

The results obtained with the two simulations were
virtually identical. Therefore, we use the results from
the Mathematica program in all sections.

Characteristics of jd

We ask first, whether the measure jd and the corre-
sponding z statistic are normally distributed. To answer
this question, we create a probability plot that allows
one to compare the observed distribution with the ex-
pected normal distribution. Figure 1 displays the distri-
butions for for the maximum cell sizes of 10 and 50,
runs with 1,000 samples, in tables of size 3 � 3.

The graphs in Figure 1 suggest that jd is normally
distributed when the maximum cell size is 50 (see right
panel; sample sizes varied from 91 to 387 with a mean
of 224.98). For a maximum cell size of 10, j seems to
be slightly overdispersed and skewed (see left panel;
sample sizes varied from 19 to 72 with a mean of 44.59).
The variation of table sizes had the effect that the range
of jd changed systematically. Specifically, the range of
jd was largest for 3 � 3 tables, and smallest for 10 �
10 tables. To give an example, in 3 � 3 tables, jd ranged
from �2 to �1, in 5 � 5 tables, jd ranged from �1.2
to 1, and for 7 � 7 tables, jd ranged from �1 to �1.

For significance testing, the distributions of the cor-
responding z statistics are more important than the dis-
tributions of the coefficients themselves. Therefore, we
also examine the distributions of z for the two sample
cases. The distributions of both the coefficients and their
z statistics for the remaining samples, as well as for dif-
ferent cell sizes, show the same characteristics as the
results shown here. Figure 2 shows the distributions of
the z statistics for the cases shown in Figure 1.

The graphs in Figure 2 suggest that, for a maximum
cell size of 10, the z statistic for j is already nearly
normally distributed. Its mean is close to 0, but it is,
compared to the standard normal distribution, slightly
skewed and underdispersed. In contrast, for a maximum
cell size of 50, the statistic is better behaved. We con-
clude that this statistic can be used to test hypotheses
concerning jd when maximum cell sizes are 10 or
higher. However, when the maximum cell sizes are
small, the binomial test may be preferable. The table
size had no effect on the distribution of zj. The range of
zj varied only with the maximum cell size.

The distributional characteristics of (not showndjn

here), indicate that, for all cell sizes, the distributions
are fairly symmetric, but slightly heavy tailed. In addi-
tion, the distributions show a wide range of values,djn

including or approximating the extremes. The values of
were also dependent on the size of the tables. Similardjn

to jd, shows the largest range for small tables, anddjn

the smallest range for large tables.
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Figure 2. Probability plots for the z-statistics of jd for the maximum cell sizes of 10 (left panel) and 50 (right panel), 1000 samples,
in 3 � 3 tables.

Figure 3. Scatterplot matrix of the coefficient of raw disagree-
ment rad, jd, , and the z-statistic for jd, for a maximum celldjn

size m � 5, 1000 samples, in 3 � 3 tables

We now ask how the coefficient jd, the coefficient of
raw agreement rad, and relate to each other. To an-djn

swer this question, we examine the scatterplot matrix of
these coefficients and the z statistic for j in Figure 3.
We use the data for the 1000 runs with a maximum cell
size of 5, in 3 � 3 tables. The results for the larger
maximum cell sizes, larger tables, and larger numbers
of samples are, for all practical purposes, identical.

The scatterplot matrix shows first that the correlation
between N and the measures included in this study is
zero. In addition, each of the four measures is symmet-
rically distributed. The third result is that the correla-
tions among the four measures are all very strong. The
correlation between the measure of raw agreement and
jn is equal to 1.0, as one would expect given that these
two coefficients are linear transformations of each other.
These results very closely replicate earlier results by von
Eye (2005). However, the earlier results describe the
behavior of these coefficients for the usual case in which
agreement cells are examined; here, we study disagree-
ment cells. In the next sections, we ask whether jd and
the other measures can also be used for selections of
disagreement cells.

Disagreement in a Triangular of Disagreement
Cells: The Characteristics of jt, , and rattjn

In this section, we examine the distributions of the mea-
sures jt, , and rat as well as the z statistic for jt whentjn

applied to the upper triangular of an agreement matrix.
The distribution of jt (not shown here) approximates the
normal for all cell sizes. However, the range of jt is
restricted (Figure 4). The reason for this restricted range
is that the extreme cases in which all or almost all judg-
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Figure 4. Probability plots for j1 for the maximum cell sizes of 10 (left panel) and 20 (right panel), for 3000 samples in 3 � 3 tables.

ments are in one of the triangulars did not occur in the
simulations. They can occur under conditions other than
those considered here (see Appendix A). Our simula-
tions showed that both the number of runs and the size
of the table influence the range of observed values for
jt. For instance, a sample run with 10,000 samples in-
creased the range of jt by 0.1 in both the positive and
the negative domains, and the distribution of j was close
to perfectly normal. The dependency of jt on the size
of the table was similar to the dependency found for jd.
However, the largest range included only the values of
� 0.7 and �0.9 (for 3 � 3 tables), and shrunk to �
0.2 to �0.2 for 7 � 7 tables.

One may wonder whether the distribution of the z
statistic of jt can be expected to be restricted in range
too. An inspection of the distribution of z (not shown
here) indicates that the range of the statistic for j is not
restricted by the range of j, but depends in its range on
the maximum cell size. The statistic is fairly normally
distributed, even for cells with maximum frequencies of
5, and, for cell sizes of up to 30, slightly heavy in its
tails. We thus conclude that the statistic can be used to
test hypotheses about jt, although the range of jt is re-
stricted.

We also performed a comparison of jt to the measures
, and rat. Results indicate first that the distributions oftjn

all calculated measures are symmetrical. None of the
distributions is skewed, and only the distribution for the
z-statistic for j shows some elevated level of kurtosis.
This can be explained as previously mentioned. Second,

the comparison shows again that the correlation between
and rat is 1.0. This is by definition. The correlationstjn

among the calculated measures are relatively high
throughout, but lower than in the first simulation. Again,
the restricted range is the reason. The lowest correlation
is r � 0.559 between rat and jt. The highest is r �
0.985, between jt and zj. As previously, the correlations
of the calculated measures with the sample size are all
zero.

Disagreement by One Scale Point: The
Characteristics of j1, , and ra11jn

In this section, we examine the distributions of the mea-
sures j1, , and ra1 as well as the z-statistic for jt when1jn

applied to the diagonals right above and right below the
main diagonal of an agreement matrix. The distributions
of j1 for tables of all simulated sizes and for all simu-
lated cell sizes are very similar to each other, and not
shown here. The only systematic difference was that the
range of the js was reduced for larger tables. This was
parallel to the observation discussed in the previous sec-
tions.

The scatterplot matrix of the measures j1, , and ra11jn

as well as the z-statistic for j1 are not shown here. That
matrix indicates that the variable relationships are very
similar to what we found in the previous sections. With
increasing maximum cell sizes, numbers of samples,
and table sizes, however, the distributions approximate
those obtained for all off-diagonal cells in Figure 3.
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1 j2 and j3 can be constructed parallel to j1. These measures help appraise disagreement two and three categories away from the main
diagonal.

Data Example

In this section, we present a data example in which we
analyze the data in Table 1 under the three scenarios
discussed in this article. The estimated expected fre-
quencies under the uniform distribution model that is
used for Brennan and Prediger’s (1981) jn, are all 223/
16 � 13.9375.

For the case in which all disagreement cells are taken
into account, we calculate jd � (�0.5874 �0.2743)/
0.2743 � �1.142. This value indicates that the differ-
ence between observed and expected frequencies in the
disagreement cells is 0.5874 � 0.2743 � 0.3131. That
is, the disagreement cells contain 31.31 percent fewer
cases than expected under the assumption of rater in-
dependence. Weighted by the difference to the maxi-
mum number of cases that could possibly be found in
the disagreement cells, we note that the reduction in
error on the disagreement side is better than 114%.

Accordingly, we calculate dj � �0.45(4 � 1) �n

. Under the base model of a uniform distribution�1.35
of judgments, the reduction in error is thus 135 percent.
The coefficient of raw disagreement for all disagreement
cells is calculated to be rad � 1 � 131/223 � 1 �
0.5874 � 0.4125. This indicates that 41.25% of the two
institutions’ judgments fail to be exact matches.

We now ask whether disagreement is particularly rare
for those cases in which the Facility Diagnosis suggests
less severe caseness than the Research Diagnosis. These
are the cases in the upper triangle of off-diagonal cells.
We calculate jt � �0.24. This value suggests that the
proportionate reduction in these error cells is 24.14%, a
value clearly less extreme than the one calculated for
the entire table. For the jn equivalent, we calculate

, which indicates that 31.30% discrepanttj � �0.31n

diagnoses are made less than expected under the as-
sumption of a uniform diagnoses distribution. The co-
efficient of raw disagreement for the upper triangle of
the disagreement cells is rat � 0.18.

Finally, we ask whether disagreement about the di-
agonal is less rare than disagreement by more than one
scale point. First, we calculate j1 � �0.19, 1j � �n

, and ra1 � 0.15, indicating that 15.25% of the di-0.36
agnoses are located in the cells one step away from the
main diagonal. However, it can be hazardous to com-
pare jt with j1 and jd, and, accordingly, the ra or the jn

derivatives with each other. There are three problems
that can prevent such comparisons from being valid.
First, the range of the derivatives of j depends on the
number of summands used in the equation (compare
Figures 1 and 4). Second, counterbalancing this effect

only slightly, j becomes more extreme when certain
cells cannot be used for analysis. This comes into play
when, for example, a coefficient j3 is calculated, that is,
a j-equivalent for disagreement three categories away
from the main diagonal. In the present data example,
this equivalent would prevent the middle two rows and
the middle two columns from making a contribution to
j3. Third, and most important, the reference used for
each of the coefficients, h2, varies across the coefficients.

So, what can be done to answer the previous ques-
tion? We propose two solutions. The first involves cal-
culating the average raw residual. In our data example,
we obtain for jd: �5.82; for j1: �4.96; for j2: �6.28;
and, for j3: �7.47.1 Looking at the values for j1, j2,
and j3, it becomes clear that disagreement increases
with the distance from the main diagonal.

The second solution involves taking the number of
summands, ns, into account. As the number of sum-
mands decreases, the value of h2 in the equation will
decrease also, and so will the value of h1. However, the

discrepancy in the denominator of in-
h � h1 2j �
1 � h2

creases, and the value of j decreases for given values
of the numerator. One way to take the number of sum-
mands into account involves dividing the calculated j
values by the number of summands. This yields, for the
present data, the values j1/(ns � 6) � �0.031, j2/(ns

� 4) � �0.035, and j3/(ns � 2) � �0.04, where ns

is given by the number of cells included in an analysis.
In other words, the average negative reduction in error
increases as we move away from the main diagonal.
This result again supports the conclusion that disagree-
ment increases as one moves away from the main di-
agonal.

Discussion

We begin the discussion with a summary of the char-
acteristics of the 12 coefficients discussed here. Table 2
presents information on range, the case of agreement as
expected from the base model, distribution and test sta-
tistics, and the selection of cells to which a coefficient
is applied.

It was the goal of this research to study the behavior
of three popular measures of rater agreement when ap-
plied to specific hypotheses concerning rater disagree-
ment. Coefficients were derived for these applications,
and simulations were performed to illustrate the behav-
ior of these coefficients. Results showed that all coef-
ficients and the z-statistic for the j equivalents per-
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Table 2. Characteristics of 12 coefficients of rater agreement/disagreement.

Coefficient Applied To Range No Effect If Significance Tests

Analysis of Agreement

j diagonal cells �h2/(1 � h2) � j � 1 j � 0 z-, binomial test

jn diagonal cells
1/I

� � j � 1n1 � 1/I
jn � 0

binomial test (von
Eye & Mair, 2005)

ra diagonal cells 0 � ra � 1 ra � N/I binomial test

Analysis of Disagreement

jd off-diagonal cells
dh2 d� � j � �1

d1 � h2

jd � 0 z-test

djn off-diagonal cells
dhn,2 d� � j � 1nd1 � hn,2

dj � 0n binomial test

rad off-diagonal cells 0 � rad � 1 rad � N/(I(I � 1)) binomial test

jt upper or lower triangular
t�h2,max t� j � 1

t1 � h2,max

jt � 0 z-test

tjn upper or lower triangular t(�I � 1)/(I � 1) � j � 1n
tjn binomial test

rat upper or lower triangular 0 � rat � 1 rat � N/(0.5(I(I � 1))) binomial test

j1 deviation from i � j by � 1
1�h2 1� j � 1

11 � h2

j1 � 0 z-test

1jn deviation from i � j by � 1
1�hn,2 1� j � 1n11 � hn,2

1j � 0n binomial test

ra1 deviation from i � j by � 1 0 � ra1 � 1 ra1 � N/(2(I � 1)) binomial test

formed well under all conditions. Specifically, the
coefficients performed well when all disagreement cells
were taken into account, and when disagreement by
only one scale point was considered. In the case of dis-
agreement of the cells above the main diagonal of an
agreement table, the coefficients performed differently.
The reason for this difference is a restricted range of
possible scores. When only the cells above (or below)
the main diagonal are taken into account, the coeffi-
cients cannot reach the maximum score of 1.0 because
the table under study will be incomplete. This restriction
goes above and beyond the known restrictions for j that
result from unequal marginals.

One might consider using the more general models
of quasi-independence for the estimation of the expected
cell frequencies when hypotheses about the upper (or
lower) triangular are tested. This option, however, is
available only for tables of size 4 � 4 or greater. For
smaller tables, the degrees of freedom become negative
(see Appendix A).

It is interesting to note that the new coefficients, jd,
jt, and j1 can be recast as special cases of Cohen’s
weighted j. One benefit from using weighted j is that
specific aspects of the cross-classification of ratings can
be examined. This article presents three examples of

cases in which specific aspects of such cross-classifi-
cations are examined. However, instead of requiring that
the user specify appropriate weight matrices, the present
approach enables the user to test the same hypotheses
using the simple arsenal provided by plain j, using the
coefficients proposed in this article. Thus, the specifi-
cation of weight matrices is not required. It is easy to
show that similar reformulations can be performed that
allow one to inspect other selections of cells.

To illustrate, consider the two sets of cells, H and E.
H contains the cells of interest, for example the dis-
agreement cells, and E contains all other cells. Consider
also the parameter x, defined as

1 if ij � H
x �i j �0 if ij � E.

Using x, one can redefine h1 and h2 in a fashion anal-
ogous to the h parameters for weighted j, in Section
2.2. Using this notation, one can demonstrate the rela-
tionship of the measures proposed here to weighted j,
and recast the three cases using the following specifi-
cations for x.
Case 1: All disagreement cells.

1 if i � j
x �i j �0 else.
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Case 2: Cells above main diagonal.

1 if i � j
x �i j �0 else.

Case 3: Cells right above or below main diagonal.

1 if i � j � 1 or i � j � 1
x �i j �0 else.

Accordingly, additional scenarios can be specified.
We conclude that the derivatives of j can be used for

the analysis of hypotheses concerning rater disagree-
ment. The magnitude of the new coefficients is com-
parable with the magnitude of the original j, even if the
range of a coefficient is restricted under the described
conditions. In all cases, the j derivatives are interpret-
able as PRE measures. The significance statistics can
also be interpreted. They do not seem to display re-
stricted range, and they seem to work appropriately even
for cell sizes as small as 5. Because the j derivatives
are interpretable as, and comparable to the original Co-
hen’s j, neither the specification of other statistical
models nor the comparison of results from different sta-
tistical models is required. Therefore, users will find it
easy to apply the new coefficients and interpret results.
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Appendix A

Estimating j for Triangles of Disagreement Cells
Table A1. Cross-classification with empty cells (shaded).

Rater B Rating Categories

Rater A Rating Categories

1 2 3

1

2

3

In this appendix, we illustrate the problems that arise
when estimating j coefficients for triangles of disagree-
ment cells. Specifically, we show that tables (1) are in-
complete and (2) can have negative degrees of freedom.

Consider the I � I cross-classification in which only
the cells in the triangle above the main diagonal are
frequented. In this table, the column that contains Cell
1 1 is empty, and the row that contains Cell I I is also
empty. Table A1 illustrates this scenario using a 3 � 3
table.

Table A1 shows that 3 � 3 agreement tables that
contain cases only in the triangular above the diagonal
include six empty cells (shaded). In general, the degrees
of freedom for estimating such a table under the base
model of rater independence are, when each empty cell
is blanked out costing one df,

I
2df � I � 1 � 2(I � 1) � � I.� �2

This equation shows that the base model of rater inde-
pendence cannot be employed for small tables because
degrees of freedom can become negative. The degrees
of freedom will be negative for I � 4. This illustration
helps explain why the range of jt values in Section 4.3
was limited: The simulation included only those tables
for which the base model of rater independence was
applicable without taking into account structural zeros.
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