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1 Metric Multidimensional Scaling (MDS)

An alternative perspective on dimensionality reduction is offered by Multidimensional scaling
(MDS). MDS is another classical approach that maps the original high dimensional space to
a lower dimensional space, but does so in an attempt to preserve pairwise distances. That
is MDS addresses the problem of constructing a configuration of ¢ points in Euclidean space
by using information about the distances between the ¢ patterns.

A t x t matrix D is called a distance or affinity matrix if it is symmetric, d; = 0, and
d;; >0, 7#j.

Given a distance matrix DX) MDS attempts to find ¢ data points 1, ..., 4, in d dimen-
sions, such that if dg) denotes the Euclidean distance between y; and y;, then DY is similar

to DX, In particular, we consider metric MDS [1], which minimizes
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Figure 1: MDS applied to the same data set. A two-dimensional projection is shown, with a

sample of the original input images.

The distance matrix DX). can be converted to a kernel matrix K by

1
K=—--HD®™H (2)
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where H = I — ee” and e is a column vector of all 1.
Theorem: Let D be a distance matrix and define K by (2). Then D is Euclidean if and
only if K is positive semi-definite. (For detail see [1], page 397)
Since K is p.s.d., it can be written as K = X7 X. Now (1) can be reduced to
t t
min ; ;(%ij — i)’

The norm can be converted into a trace.

min Tr(XTX —YTY)?



By singular value decomposition X7 X and Y?Y can be decomposed as:
XTX =VAVT
YTy = QAQ”

! Since YTY is p.s.d., A has no negative value and therefore:

N|=

Y = A2Q7. (3)

The above definitions help rewrite the cost function as:

min Tr(VAVT — QAQT)?
Q.A

= minTr(A — VTQAQTV)?
QA

Let
G=V"Q (4)
min Tr(A — GAGT)?

G,A

Expand out the square.

min Tr(A? + GAGTGAGT — 2AGAGT)
G,A

For a fixed A we can minimize for G and the result is that

G=1 (5)

Tt is known that an arbitrary matrix X can be decomposed as X = UAVT by SV D. Note that the

matrix X7 X is symmetric and so we can conclude that in its SV D, U =V



min Tr(A? + A% — 2AA)
A

~

= min Tr(A — A)?
A

To make the two matrices A and A as similar as possible we can make A be the top d diagonal

elements of A. Also 4 and 5 imply that ) = V. Therefore 3 can be written as:
Y =APyT (6)

where V is the eigenvectors of X7 X corresponding to the top d eigenvalues, and A is the
top d eigenvalues of X7 X. Clearly the solution for MDS is identical to dual PCA. As far
as Euclidean distance is concerned, MDS and PCA produce the same results. However, the
distances in MDS need not be based on Euclidean distances and can represent many types

of dissimilarities between objects.

2 Isomap

Similar to PCA, MDS has been recently extended to perform nonlinear dimensionality reduc-
tion. A recent approach to nonlinear dimensionality reduction based on MDS is the Isomap
algorithm.

Isomap is a nonlinear generalization of classical MDS. The main idea is to perform MDS,
not in the input space, but in the geodesic space of the nonlinear data manifold. The geodesic
distances represent the shortest paths along the curved surface of the manifold measured as
if the surface were flat. This can be approximated by a sequence of short steps between

neighboring sample points. Isomap then applies MDS to the geodesic rather than straight



line distances to find a low-dimensional mapping that preserves these pairwise distances.

Like LLE, the Isomap algorithm proceeds in three steps:

1. Find the neighbors of each data point in high-dimensional data space.

2. Compute the geodesic pairwise distances between all points.

3. Embed the data via MDS so as to preserve these distances.

Again like LLE, the first step can be performed by identifying the k nearest neighbors,
or by choosing all points within some fixed radius, e. These neighborhood relations are
represented by a graph G in which each data point is connected to its nearest neighbors,
with edges of weight dx (7, j) between neighbors.

The geodesic distances dy(7, j) between all pairs of points on the manifold M are then
estimated in the second step. Isomap approximates dys(i,7) as the shortest path distance
dg(i,j) in the graph G. This can be done in different ways including Dijkstra’s algorithm
and Floyd’s algorithm.

These algorithms find matrix of graph distances D9 contains the shortest path distance
between all pairs of points in G. In its final step, Isomap applies classical MDS to D9
to generate an embedding of the data in a d-dimensional Euclidean space Y. The global
minimum of the cost function is obtained by setting the coordinates of y; to the top d

eigenvectors of the inner-product matrix B obtained from D)
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