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A Review of Methods for Missing Data

Therese D. Pigott
Loyola University Chicago, Wilmette, IL, USA

ABSTRACT

This paper reviews methods for handling missing data in a research study. Many researchers use
ad hoc methods such as complete case analysis, available case analysis (pairwise deletion), or
single-value imputation. Though these methods are easily implemented, they require assump-
tions about the data that rarely hold in practice. Model-based methods such as maximum
likelihood using the EM algorithm and multiple imputation hold more promise for dealing with
difficulties caused by missing data. While model-based methods require specialized computer
programs and assumptions about the nature of the missing data, these methods are appropriate
for a wider range of situations than the more commonly used ad hoc methods. The paper
provides an illustration of the methods using data from an intervention study designed to
increase students’ ability to control their asthma symptoms.

All researchers have faced the problem of missing quantitative data at some
point in their work. Research informants may refuse or forget to answer a
survey question, files are lost, or data are not recorded properly. Given the
expense of collecting data, we cannot afford to start over or to wait until we
have developed foolproof methods of gathering information, an unattainable
goal. We find ourselves left with the decision of how to analyze data when we
do not have complete information from all informants. We are not alone in this
problem; the United States Census Bureau has been involved in a debate with
the U.S. Congress and the U.S. Supreme Court over the handling of the under-
count in the 2000 U.S. Census. Given that most researchers do not have the
resources of the U.S. Census Bureau, what are the options available for
analyzing data with missing information?
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The most common method —and the easiest to apply —is the use of only
those cases with complete information. Researchers either consciously or by
default in a statistical analysis drop informants who do not have complete data
on the variables of interest. As an alternative to complete-case analysis,
researchers may fill in a plausible value for the missing observations, such as
using the mean of the observed cases on that variable. More recently,
statisticians have advocated methods that are based on distributional models
for the data (such as maximum likelihood and multiple imputation). Much has
been published in the statistical literature on missing data (Little, 1992; Little
& Rubin, 1987; Schafer, 1997). However, social science researchers have not
used these methods nor have they heeded the advice from this work. Using the
typical stages of a research study as an organizer, I will provide an overview of
the literature on missing data and suggest ways that researchers without
extensive statistical backgrounds can handle missing data. I will argue that all
researchers need to exercise caution when faced with missing data. Methods
for analyzing missing data require assumptions about the nature of the data
and about the reasons for the missing observations that are often not
acknowledged. When researchers use missing data methods without carefully
considering the assumptions required of that method, they run the risk of
obtaining biased and misleading results. Reviewing the stages of data
collection, data preparation, data analysis, and interpretation of results will
highlight the issues that researchers must consider in making a decision about
how to handle missing data in their work. The paper focuses on commonly
used missing data methods: complete-cases, available-cases, single-value
imputation, and more recent model-based methods, maximum likelihood for
multivariate normal data, and multiple imputation.

DATA COLLECTION

Avoiding missing data is the optimal means for handling incomplete obser-
vations. All experienced researchers take great care in research procedures, in
recruiting informants, and in developing measures. Hard as we try, however,
most researchers still encounter missing information that may occur for
reasons we have not anticipated. During the data collection phase, the
researcher has the opportunity to make decisions about what data to collect,
and how to monitor data collection. The scale and distribution of the variables
in the data and the reasons for missing data are two critical issues for applying
the appropriate missing data techniques.
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An illustration of these ideas comes from a study of an asthma education
intervention in a set of inner-city middle schools (Velsor-Friedrich, in
preparation). In each of eight schools, a randomly chosen set of students with
asthma participated in an education program designed to increase their
knowledge and confidence in controlling their asthma. A set of students also
suffering from asthma served as the control group. Two weeks after the
intervention, students completed a scale to measure their self-efficacy beliefs
with regard to their asthma, and also completed a questionnaire rating the
severity of their symptoms over the 2-week period post-treatment. The next
two sections focus on the importance for the reasons for missing data, and for
the distribution of the variables in the data set in choosing a method for
handling missing data.

Reasons for Missing Data
During data collection, the researcher has the opportunity to observe the
possible explanations for missing data, evidence that will help guide the
decision about what missing data method is appropriate for the analysis.
Missing data strategies from complete-case analysis to model-based methods
each carry assumptions about the nature of the mechanism that causes the
missing data. In the asthma study, several students have missing data on their
rating of symptom severity as is expected with students aged 8 to 14. One
possible explanation is that students simply forgot to visit the school clinic to
fill out the form. If students are missing their symptom severity rating in a
random way —because they forgot or for some other reasons not related to
their health, the observations from the rest of the students should be represen-
tative of the original treatment and control group ratings. Rubin (1976)
introduced the term “missing completely at random” (MCAR) to describe
data where the complete cases are a random sample of the originally identified
set of cases. Since the complete cases are representative of the originally
identified sample, inferences based on only the complete cases are applicable
to the larger sample and the target population. Complete-case analysis for
MCAR data provides results that are generalizable to the target population
with one caveat—the estimates will be less precise than initially planned by
the researcher since a smaller number of cases are used for estimation.
Another plausible explanation for missing values of symptom severity may
relate directly to the missing value. For example, students who miss school
because of the severity of their asthma symptoms also will fail to complete the
symptom severity rating. The value of the missing variable is directly related
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to the value of that variable —students suffering severe asthma attacks (high
ratings for symptom severity) may be more likely to be missing a value for
symptom severity, an example of nonignorable missing data.

With nonignorable missing data, the reasons for the missing observations
depend on the values of those variables. In the asthma data, a censoring
mechanism may operate where students in the upper tail of the distribution
(with high severity of symptoms) are more likely to have missing observations.
The optimal time to investigate the possibility of nonignorable missing data on
symptom severity is during data collection when we are in the field monitoring
data collection. When we suspect a nonignorable missing data mechanism, we
need to use procedures much more complex than will be described here. Little
and Rubin (1987) and Schafer (1997) discuss methods that can be used for
nonignorable missing data. Ruling out a nonignorable response mechanism
can simplify the analysis considerably.

A third possibility also exists for the reasons why symptom severity data are
missing. For example, younger children may be missing ratings of symptom
severity because they have a harder time interpreting the rating form. Younger
students’ lack of experience or reading skill may lead to a greater chance of
missing this variable. Missing values are not missing because these students
have severe symptoms (a nonignorable response mechanism), nor are they
missing in a way that creates a random sample of responses (MCAR data).
Missing values are missing for reasons related to another variable, Age, that is
completely observed. Those with smaller values of Age (younger children)
tend to be missing symptom severity, regardless of those children’s value for
symptom severity. Rubin (1976) uses the term missing at random (MAR) to
describe data that are missing for reasons related to completely observed
variables in the data set.

When data are MCAR or MAR, the response mechanism is termed
ignorable. Ignorable response mechanisms are important because when they
occur, a researcher can ignore the reasons for missing data in the analysis of
the data, and thus simplify the model-based methods used for missing data
analysis. (A more thorough discussion of this issue is given by Heitjan &
Basu, 1996). Both maximum likelihood and multiple imputation methods
require the assumption of an ignorable response mechanism. As discussed
later in the paper, it is difficult to obtain empirical evidence about whether
or not the data are MCAR or MAR. Recording reasons for missing data can
allow the researcher to present a justification for the missing data method
used.
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One strategy for increasing the probability of an ignorable response
mechanism is to use more than one method for collecting important infor-
mation. Sensitive survey items such as income may produce much missing
data, but less sensitive, surrogate variables such as years of education or type
of employment may be less subject to missingness. The statistical relationship
between income and other income-related variables increases the chance that
information lost in missing variables is supplemented by other completely
observed variables. Model-based methods use the multivariate relationship
between variables to handle the missing data. Thus, the more informative the
data set — the more measures we have on important constructs the better the
estimation using model-based methods.

Scale and Distribution of Variables

Another issue related to the data collection stage concerns assumptions we
make about the distribution of the variables in the model. When considering a
statistical model for a study, we choose analysis procedures appropriate to the
scale and distribution of the variables. In the model-based methods I will
discuss here, the researcher must make the assumption that the data are
multivariate normal, that the joint distribution of all variables in the data set
(including outcome measures) is a multivariate normal. This assumption at the
outset seems to preclude the use of nominal (non-ordered categorical)
variables. As Schafer (1997) discusses, this assumption can be relaxed to the
assumption that the data are multivariate normal conditional on the fully
observed nominal variables. For example, if we gather information on gender
and group assignment in a two-group experiment, we will assume that the
variables in the data are multivariate normal within each cell defined by the
crossing of gender and group (males and females in the treatment and control
group). Two implications arise from this assumption. First, the use of the
model-based methods that I will describe here requires that the categorical
variables in the model are completely observed. As just discussed, one
strategy to help ensure completely observed categorical variables is to gather
more than one measure of important variables. Second, if categorical variables
in the data have high rates of missing observations, then methods using
the multivariate normal assumption should not be used. When categorical
variables have small amounts of missing values or are completely observed,
Schafer (1997) reports on simulation studies that provide evidence of the
robustness of the method to moderate departures from normality. In the
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analysis section, I will return to the implications of assuming multivariate
normal data.

During data collection, the researcher has the opportunity to observe
reasons for missing data, and to collect more information for variables
particularly susceptible to missing values. Complete-case analysis and the
model-based methods described here provide trustworthy results only when
the assumptions for the response mechanism and distribution of the data hold.
As we will see later in the paper for the illustration case, it is too late in the
data analysis stage to gather any information about possible reasons for
missing data. The next section discusses what we can learn about missing data
from the next stage in a research study.

DATA PROCESSING

During the data collection phase, we carefully obtain as much information as
possible, trying to get complete data on all informants, and using more than
one way to obtain important variables such as income. The next stage involves
processing the data, and the critical task for the researcher is to understand the
amount and pattern of missing observations. The researcher needs to have an
idea of what variables are missing observations to understand the scope of the
missing data problem. Typical univariate statistics often do not give a full
account of the missing data; researchers also need to understand the amount of
data missing about relationships between variables in the data. I will use data
from the asthma study (Velsor-Friedrich, in preparation) to illustrate issues
that arise at this stage of a research study.

When first processing the data, we often look at univariate statistics such as
the mean, standard deviation, and frequencies to check the amount of missing
data. Table 1 describes a set of variables from a study examining the effects of
a program to increase students’ knowledge of their asthma. I am interested in
examining how a measure of a student’s self-efficacy beliefs about controlling
their asthma symptoms relates to a number of predictors. These predictors are
Group, participation in a treatment or control group; Docvis, the number of
doctor visits in a specified period post-treatment; Symsev, rating of the
severity of asthma symptoms post-treatment; Reading, score on state-wide
assessment of reading; Age in years; Gender; and Allergy, the number of
allergies suffered by the student.
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Table 1. Variable Descriptions.

Variable Definition Possible values M (SD) N
Asthma belief Level of confidence in Range from 1, little 4.057 (0.713) 154
Survey controlling asthma confidence to 5, lots
of confidence
Group Treatment or control 0 = Treatment 0.558 (0.498) 154
group 1 = Control
Symsev Severity of asthma 0 =no symptoms 0.235 (0.370) 141
symptoms in 2 week 1 =mild symptoms
period post-treatment 2 = moderate symptoms
3 =severe symptoms
Reading Standardized state Grade equivalent scores, 3.443 (1.636) 79
reading test score ranging from 1.10 to 8.10
Age Age of child in years Range from 8 to 14 10.586 (1.605) 152
Gender Gender of child 0=Male 0.442 (0.498) 154
1 =Female
Allergy Number of allergies Range from 0 to 7 2783 (1.919) 83
reported

As seen in Table 1, missing data occurs on six of the seven predictors with
Reading and Allergy missing almost half of the observations. Using these
statistics may imply that we have complete data on about half of the data set.
However, Table 2 presents an alternative data summary, the patterns of
missing data that exist. The column totals of Table 2 provide the number of
cases missing each variable, similar to the number of values observed as in
Table 1. A display similar to the one given here can be generated in the SPSS
Missing Value Analysis module (SPSS, 1999) as well as in Schafer’s (1999)
NORM freeware program. The frequencies of each missing data pattern, given
in the row totals, shows that 19 (12.3%) of all cases observe all variables. One
hundred and eleven cases (72.1%) are missing just one variable, either
Reading or Allergy. The remaining 24 cases (15.5%) are missing two or more
variables. It is difficult from the univariate statistics alone to anticipate that
only 19 cases have complete data on all variables.

Before selecting an appropriate method for dealing with the missing data
problem, we need to make a judgment about the most plausible assumptions
for the response mechanism, the reasons for the missing data. As Schafer
(1997) discusses, a researcher rarely has detailed information about the
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Table 2. Missing Data Patterns.

Symsev Reading Age Allergy # of cases % of cases
(6] (0} (0) 0] 19 12.3
M (0} (0] (0] 1 0.6
(¢} M (0] 0] 54 35.1
(¢} (0} (0] M 56 36.4
M M (0] 0] 9 5.8
M (0} (0] M 1 0.6
(¢} M (0] M 10 6.5
(¢} (0} M M 2 1.3
M M (0] M 2 1.3
# missing # missing # missing # missing 154

13 (8.4%) 75 (48.7%) 2 (1.3%) 71 (46.1)

reasons for missing data. We rely on our knowledge of the data collection
procedures as described in the previous section, and our substantive
knowledge of the research area. We can use Rubin’s (1976) categories to
develop conjectures about the reasons for missing data in the asthma data set.
Are the data likely missing completely at random (MCAR)? We might
eliminate this possibility given our knowledge of the study and the study
participants respondents often do not answer questions, especially pre-
adolescents and adolescents. Other researchers have suggested empirical ways
for examining MCAR. Cohen and Cohen (1975) have suggested developing
missing data dummy codes for each variable with missing data, and using this
missing variable code as a predictor in a regression model. For example, |
could create a variable that takes the value 1 when Allergy is observed and 0
when Allergy is missing. The missing Allergy dummy code could then serve
as a predictor in the model, thus allowing the use of all cases. When the
regression coefficient for the missing data code is significant, the researcher
may infer that the cases missing the variable tend to have a conditional mean
value of the outcome different from cases observing that variable. Jones
(1996), however, examines the use of missing-indicator variables, finding that
this method results in the overestimation of the residual variance of the
regression. Alternatively, Little (1988) provides a likelihood ratio test of
the assumption of missing completely at random (MCAR). This test is part of
the program BMDPAM, in the BMDP (Dixon, 1992) statistical package. In
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this example, the value of the likelihood ratio test is x> = 256.61 p = 0.000,
indicating that the data in this example are not missing completely at random.
If we reject the MCAR assumption, can we assume the incomplete
predictors are missing at random? We do not and cannot have direct
information on this assumption. Assuming that the data are MAR means that
the reasons for missing values on five of the predictor variables depend on one
or more of the completely observed variables in the data set: Asthma Belief
Score, Group, Age and Gender. As in the MCAR case, we cannot gather direct
evidence about whether MAR is a reasonable assumption for the data.

Alternatively, we could assume that the variables with missing values are
subject to a censoring mechanism where the probability of observing a value
depends on the actual value of that variable. For example, we may be more
likely to observe a Reading score in the middle or upper part of the distribution
rather than at the lower tail. When the researcher assumes missing data result
from a nonignorable response mechanism, more complex methods of analysis
apply, namely adding an explicit model for the response mechanism to the
model. Schafer (1997) discusses options when the missing data mechanism is
nonignorable.

Given that one cannot obtain direct, empirical information about the
response mechanism, an alternative strategy is to examine the sensitivity of
results to the MCAR and MAR assumptions by comparing several analyses,
such as complete case and the model-based methods described in the next
section. Differences in results across several analyses may provide some
information about what assumptions may be most relevant.

The first two stages of a research study provide the researcher with
information about the nature of the data—the number and pattern of missing
observations, plausible reasons for the missing data, and descriptive statistics
of the observed data. Having this information may help a researcher to choose
an appropriate analysis, or conduct a sensitivity analysis when missing data
occur.

DATA ANALYSIS

Many researchers are limited in their data analysis options by the statistical
computing packages available, as well as knowledge of alternatives. The most
widely used methods are complete case analysis, available case analysis, and
single-value imputation. Another set of strategies, maximum likelihood and
multiple imputation, are based on models for the data, in this case, the



362 THERESE D. PIGOTT

multivariate normal distribution. This section focuses on these five methods
for analyzing data with missing observations, examining the assumptions of
each method, and describing how one analyzes the data with current software.
Although current software provides options such as complete case analysis,
available case analysis, and mean substitution, these methods do not have
equivalent assumptions about the data, nor do they provide similar results.
Many statistical techniques appeal to researchers because of their applicability
in a wide range of contexts and data given a set of clearly defined assumptions.
Only complete case analysis and model-based methods can apply broadly
across a number of data contexts with the fewest number of assumptions.

While the discussion thus far has not distinguished between problems with
missing outcomes and missing predictor variables in an analysis, the
researcher does need to keep in mind the nature of the variables with missing
observations, and the goal of the statistical analysis. As Little (1992)
discusses, missing outcomes pose different problems from missing predictors.
When the outcomes are MAR, those cases with missing outcomes and
completely observed predictors do not contribute any information to a linear
model looking at the relationships between the outcome and the predictors.
When outcomes and predictors are MAR, cases missing both outcomes and
predictors contribute some information about the joint distribution of the
missing predictors. When outcomes are not MAR, then more complex
modeling procedures are needed. The methods described here will focus on
MAR data only.

Commonly-Used Missing Data Methods

Complete-Case Analysis

When a researcher is estimating a model, such as a linear regression, most
statistical packages use listwise deletion by default. Cases that are missing
variables in the proposed model are dropped from the analysis, leaving only
complete cases. A researcher using complete cases assumes that the observed
complete cases are a random sample of the originally targeted sample, or in
Rubin’s (1976) terminology, that the missing data are MCAR. When a data set
has only a few missing observations, the assumption of MCAR data is more
likely to apply; there is a greater chance of the complete cases representing the
population when only a few cases are missing. A researcher faces a more
difficult decision when much data are missing as in the asthma study example.
Approximately 88% of the informants fail to report one or more variables,
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leaving only 19 out of 154 cases for analysis. As seen earlier, some preli-
minary evidence from Little’s (1988) MCAR test indicates that the assumption
of MCAR data may not apply.

Even when the data are MCAR, complete case analysis has some potential
difficulties. With large amounts of missing data (as may occur when several
predictor variables are missing observations), relatively few cases may be left
for the analysis as in the asthma data set. Complete case analysis may not be a
viable option in all instances of MCAR data. The main advantage of the
method is ease of implementation since the researcher can use standard
methods for computing estimates for a proposed model. One disadvantage of
the method centers on the number of cases that observe all variables of interest
in the data; a researcher cannot anticipate if an adequate amount of data
remain for the analysis.

Available Case Analysis

Available case analysis, or pairwise deletion, uses all available data to
estimate parameters of the model. When a researcher looks at univariate
descriptive statistics of a data set with missing observations, he or she is using
available case analysis, examining the means and variances of the variables
observed throughout the data set. This strategy is illustrated in Table 1 where
we see descriptive statistics computed on different sets of cases.

When interest focuses on bivariate or multivariate relationships, the
potential problems increase. Figure 1 illustrates a simple two-variable data
matrix with only one variable subject to nonresponse. In pairwise deletion, all
cases would be used to estimate the mean of X, but only the complete cases
would contribute to an estimate of X5, and the correlation between X; and X5.
Different sets of cases are used to estimate parameters of interest in the data.
While Kim and Curry (1977) argue that estimates can be improved by using
available cases instead of complete cases, others (Anderson, Basilevsky, &
Hum, 1983; Haitovsky, 1968; Little, 1992; Little & Rubin, 1987) have pointed
out problems with the procedure.

When the data are MCAR — when the remaining observations are
representative of the originally identified data set—Little (1992) shows that
available case analysis provides consistent estimates (the correct point
estimates, see e.g., Cox & Hinckley, 1974) when variables are moderately
correlated in regression models. When variables are highly correlated,
available case analysis provides estimates that are inferior to complete case
results as illustrated in simulations by Haitovsky (1968).
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Fig. 1. Illustration of missing data restricted to one variable.
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Another difficulty is that available case analysis can produce estimated
covariance matrices that are implausible, such as estimating correlations
outside of the range of —1.0 to 1.0. Errors in estimation occur because of the
differing numbers of observations used to estimate components of the
covariance matrix as illustrated in Figure 1 above. The relative performance of
complete-case analysis and available case analysis, with MCAR data, depends
on the correlation between the variables; available case analysis will provide
consistent estimates only when variables are weakly correlated. The major
difficulty with available case analysis lies in the fact that one cannot predict
when available case analysis will provide adequate results, and is thus not
useful as a general method.

Single-Value Imputation

In order to preserve the number of cases originally identified for the review,
some researchers fill in the missing value with a plausible one, such as the
mean for the cases that observe the variable. The analyst continues with the
statistical method as if the data are completely observed. While this strategy
allows the inclusion of all cases in a standard analysis procedure, replacing
missing values with a single value changes the distribution of that variable by
decreasing the variance that is likely present.

Little (1992) points out that while mean imputation results in overall means
that are equal to the complete case values, the variance of these same variables
is underestimated. This underestimation derives from two sources. First,
filling in the missing values with the same mean value does not account for the
variation that would likely be present if the variables were observed. The true
values probably vary from the mean. Second, the smaller standard errors due
to the increased sample size do not adequately reflect the uncertainty that does
exist in the data. A researcher does not have the same amount of information
present when some cases are missing important variables as he or she would
have with completely observed data. Bias in the estimation of variances and
standard errors are compounded when estimating multivariate parameters
such as regression coefficients. Under no circumstances does mean imputation
produce unbiased results.

Recommendations Concerning Widely Used Methods

Only complete case analysis provides valid estimates under the least number
of conditions, and is thus applicable to a wider range of situations than
available case analysis. Complete case analysis requires the assumption of
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MCAR data, and enough complete cases to estimate the desired model. While
available case analysis produces valid estimates with MCAR data, its
properties are dependent on the magnitude of the correlations that exist
between variables, thus limiting the method’s applicability. Available case
analysis also potentially produces invalid estimates due to the varying samples
used to estimate parameters. There exist no systematic methods for
determining when invalid estimates can occur with available case analysis,
again limiting how generally the method can be applied. Mean imputation
cannot be recommended under any circumstances.

Model-Based Methods for Multivariate Normal Missing Data

When a researcher decides that complete case or available case analysis will
not provide adequate results, the researcher has alternative analysis proce-
dures that come with the price of added assumptions about the distribution of
the data and the nature of the missing data mechanism. The methods described
in this section are called model-based methods since the researcher must make
assumptions about the joint distribution of all variables in the model
(including both outcomes and predictors). The discussion of the methods in
this section is necessarily conceptual. Several works such as Little and Rubin
(1987) and Schafer (1997) provide detailed and elegant treatments of the
theory and analysis of missing data. The interested reader is referred to these
references for the full exposition of the statistical theory underlying these
methods. My goal is to introduce researchers to two model-based methods
based on the multivariate normal distribution, and to provide suggestions for
how a researcher might implement and interpret these methods. The major
advantage of these two methods is that given the assumptions, the results
obtained apply to a broader range of contexts with fewer conditions than the
methods of the previous section. Though model-based methods require more
complex computations, the availability of software in the near future should
allow wider use.

The two model-based methods for missing data described in this section are
maximum likelihood using the EM algorithm, and multiple imputation. The
methods share two assumptions: that the joint distribution of the data is multi-
variate normal, and that the missing data mechanism is ignorable. Assuming
that the data are multivariate normal is different from our typical assumptions
about the relationship between an outcome variable and several predictor
variables. For example, in a linear regression analysis, we assume that the
outcome variable is univariate normal conditional on the values of the fixed
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predictors. For the model-based methods discussed here, we assume that the
joint distribution of all variables, including outcomes and predictors is
multivariate normal. Multivariate normal distributions have the advantage that
any marginal, conditional distribution, such as that for predictor X, is a
normal distribution conditional on all other variables in the model including
the outcome variable, a property utilized in the estimation procedures. A
disadvantage of the multivariate normal assumption concerns the inclusion of
categorical variables. When nominal data are included in the model, we need
to assume that these variables are completely observed, and that the remaining
continuous variables are multivariate normal conditional on these categorical
variables.

As discussed in a previous section, the assumption of an ignorable response
mechanism requires MAR data. The assumption of an ignorable response
mechanism is less restrictive than the assumption of MCAR data needed in
complete-case analysis. The difficulty researchers have, however, lies in
gathering empirical evidence about the response mechanism. The best we can
do as researchers is to examine the sensitivity of results to different assump-
tions about the response mechanism. Comparing results from complete-case
analysis and model-based methods may provide clues about the nature of the
data. Even without direct evidence of MAR, the two model-based methods do
have the advantage of using all information available in the data, a property
that makes available case analysis seem reasonable. The next two sections
provide a conceptual overview of two model-based methods for multivariate
normal data.

Maximum Likelihood Methods Using the EM Algorithm

One method for estimating unknown parameters of a model is the use of
maximum likelihood. When a researcher has complete data, quantities such as
the mean and linear regression coefficients are easily computed, and are
maximum likelihood estimates, based on maximizing the likelihood of the
observed data. The same principle holds when missing data occur; we can
base estimation on the likelihood of the observed data. The difficulty lies in
specifying the likelihood of the observed data. The likelihood of the observed
data is more complex when missing data occur than in our usual data analysis
situation, and there is no simple solution to the problem of finding an estimate
that maximizes the likelihood of the observed data. However, Dempster,
Laird, and Rubin (1977) proposed the use of an iterative solution, termed the
EM algorithm, to find the estimate of a parameter (such as the means and
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covariance matrix) when closed form solutions to the maximization of a
likelihood are not possible. Both Little and Rubin (1987) and Schafer (1997)
provide the theory of the EM algorithm for missing data analysis assuming
multivariate normal data. Here, I will provide a conceptual overview of the
concepts.

When missing data occur, the observed data likelihood is difficult to maxi-
mize. For example, when we have completely observed data, the maximum
likelihood estimate of the mean is the sum of the values of a particular variable
divided by the sample size. When some values of that variable are missing, we
do not know the value of the sum, and thus cannot compute the value of the
estimate of the mean. The EM algorithm splits up the problem into two
estimation problems. For the first estimation, imagine that we knew the value
of the population mean and variance. With the value of the population mean
and variance, we have the specification of the population distribution. From
the population distribution, we could estimate the expected value of the sum of
a variable, which is the mean of the variable multiplied by the number in the
sample. For the second estimation problem, if we knew the value of the sum of
a variable, we could get an estimate of the population mean (and with the sums
of squares and crossproducts, we could get the covariance matrix). The
estimation or E-step of the EM algorithm computes the expected value of the
sum of the variables with missing data assuming that we have a value for the
population mean, and variance-covariance matrix. The maximization, or M-
step, uses the expected value of the sum of a variable to estimate the popula-
tion mean and covariance. The process cycles back and forth until the
estimates do not change substantially. In each step, we assume that we know
one of the two unknown pieces of information (e.g., either the value of the
population mean we are estimating, or the sum of the variable), and then
compute the other parameter.

Maximum likelihood methods for missing multivariate normal data focus
on the estimation of the parameters of the observed data, namely the mean
vector and variance-covariance matrix. Because we assume the data multi-
variate normal, we can utilize the well-known properties of conditional normal
distributions to estimate the expected values of the sums and crossproducts of
the variables. Using maximum likelihood with the EM algorithm does not
result in values for individual missing variables. The researcher obtains
estimates for the means and the variance-covariance matrix of the variables of
interest, and then uses these parameter estimates to obtain model parameters
such as the coefficients of a linear regression model.
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As the reader may guess, estimation of parameters using the EM algorithm
requires some specialized computing. Both BMDP (Dixon, 1992) and SPSS
(1999) have modules that compute the maximum likelihood estimates of the
mean vector and covariance matrix of a multivariate normal data set. The
program NORM written by Schafer (1999) also computes the maximum
likelihood estimates. The one major difficulty with all of the above-mentioned
programs is the computation of the standard errors of estimates (such as the
standard error of the mean). Testing whether a mean is significantly different
from zero, for example, requires an estimate of how accurate our estimate is.
In maximum likelihood theory, the negative second derivative of the observed
data loglikelihood is needed to obtain standard errors of the estimated mean
vector and covariance matrix. This quantity requires algebraic analysis to
compute, and is unique to every set of multivariate data. Another method for
obtaining the standard errors of parameters when missing data occur has been
suggested by Meng and Rubin (1991). Meng and Rubin’s method entails
adding steps to the EM algorithm code, and requires specialized computing
knowledge. Unfortunately, the standard errors given in BMDP and SPSS are
not those computed using the negative second derivative nor the process
suggested by Meng and Rubin. Without adding to the EM code, the best a
researcher can do is to examine maximum likelihood estimates with a
conservative estimate of standard errors such as those obtained from complete
case analysis. The computation difficulties and inability to compute standard
errors does limit the usefulness of this method.

Multiple Imputation with Multivariate Normal Data
Multiple imputation avoids two of the difficulties associated with maximum
likelihood methods using the EM algorithm. With multiple imputation, a
researcher will use standard methods of analysis once imputations are com-
puted, and can easily obtain standard errors of estimates. Though specialized
computing is required in multiple imputation, the method provides much more
flexibility than in the method described in the previous section. Rubin (1987,
1996) and Schafer (1997) provide comprehensive discussions of the statistical
theory of multiple imputation, as well as several examples of its use. The
discussion here will be conceptual, and the reader is urged to examine these
texts for more detailed information.

In multiple imputation, the researcher generates several possible values for
each missing observation in the data in order to obtain a set of three or more
parallel completed data sets. Using standard analysis procedures, the resear-
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cher analyzes each completed data set, and then combines these estimates to
obtain the multiply-imputed estimates. Thus, multiple imputation has two
stages: the generation of the parallel completed data sets, and the computation
of the multiply-imputed estimates. The major work involved in multiple
imputation involves generating possible values for each missing observation.

The set of possible values for missing observations are based on the
distribution of the data, in this case the multivariate normal. Unlike maximum
likelihood, the goal of multiple imputation is to obtain estimates of the
missing values rather than the expected values of the sufficient statistics.
Estimates of missing values are obtained by simulating random draws from
the distribution of the missing variables given the observed variables.
Distributions of the data are derived from Bayesian theory, so that the
researcher samples values from the posterior probability distribution of the
missing values given the observed variables. Assuming a multivariate
distribution, a distribution whose properties are well-known, provides a way
to posit the distribution of a variable missing observations, and then to draw
random samples from that distribution as possible values for the missing
value. As in maximum likelihood, the posterior probability distribution of the
missing variables given the observed variables is complex, and requires a two-
step algorithm, referred to as data augmentation, with a logic similar to that of
the EM algorithm.

As in maximum likelihood with the EM algorithm, we are interested in
estimating the parameter of the joint distribution of the data, such as the mean
vector and covariance matrix. If we knew the values of the missing observa-
tions, we could easily estimate 6 using well-known estimates (such as the sum
of a variable divided by the sample size for the mean). Similarly, if we knew
all the means and covariance matrix, then we could specify the marginal dis-
tribution of the missing values given the observed data, and sample plausible
values for the missing data from that distribution (akin to drawing names out
of a hat). The first step of the estimation process is to assume € is known, and
to sample values for the missing observations from the conditional distribution
of the missing data given the observed data and the current estimate of 6. The
second step is to assume that we have complete data, and re-estimate 6. The
estimation procedures cycle back and forth between these two steps.

The discussion above represents a simplistic view of the estimation process.
Schafer (1997) and Tanner (1993) discuss methods for data augmentation in
detail. Data augmentation requires several hundred and sometimes thousands
of iterations before one can begin to save completed data sets for analysis.
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Each iteration of the data augmentation algorithm as implemented in the
example of this paper generates one completed data set, so that the researcher
may go through thousands of iterations to obtain three to five completed data
sets for analysis. The number of iterations needed in a given application
depends on the fractions of missing data in any given analysis. Schafer (1997)
provides a number of convergence diagnostics that help a researcher assess
whether the number of iterations is sufficient; these diagnostics will be
illustrated in the example.

A second issue centers on the number of completed data sets needed for
multiple imputation. Schafer (1997) discusses why m = 5 completed data sets
typically result in unbiased estimates. Once the researcher has the m
completed data sets, he or she performs the targeted statistical analysis on
each data set separately, obtaining m estimates of the parameters of the model.
These parameters may be regression coefficients of a linear model, the means
and covariance matrix of the data, or any other set of model parameters. These
estimates are combined using rules discussed by both Rubin (1987) and
Schafer (1997). Schafer (1999) provides a stand-alone program, NORM, that
will generate the multiple imputations for a multivariate normal data set. The
researcher inputs these data sets into another statistical computing program of
the researcher’s choice, obtaining m estimates of the target parameters. The
researcher then inputs the m estimates of the model parameters into the
NORM program, and can obtain the multiply-imputed estimates along with
the standard errors of these estimates.

The assumptions of multivariate normality and an ignorable response
mechanism apply to multiple imputation as well as maximum likelihood using
the EM algorithm. The same difficulties apply as well; the multivariate normal
assumption makes the use of non-ordered categorical variables problematic,
and evidence about the ignorability of the response mechanism is difficult to
obtain. Again, comparing results from several analyses may provide clues
about the nature of the data. Multiple imputation provides an added feature. A
researcher could generate imputations using alternative assumptions about the
response mechanism generating imputations using a censoring mechanism,
for example. Though this strategy may require specialized computing, the
researcher could systematically examine the sensitivity of results to assump-
tions about the nature of the missing data mechanism.

How do the results of multiple imputation and maximum likelihood with
the EM algorithm compare? Both multiple imputation and maximum
likelihood are based on the likelihood theory. Multiple imputation results do
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converge to the maximum likelihood results given the data model used for
both is the same. Computationally, multiple imputation is easier to implement
with the introduction of specialized computer packages as well as planned
modules in both SPSS and SAS (Barnard, 2000). Analytically, multiple
imputation provides more flexibility. Maximum likelihood with the EM
algorithm results in point estimates of the mean vector and variance-
covariance matrix. Any subsequent analysis of the data, such as estimating
parameters of a linear regression model, are computed as functions of these
means and variances. Multiple imputation results in completed data sets so
that the analysis consists of performing standard analyses on more than one
data set, and then combining those estimates into multiply-imputed estimates.
From these multiple imputation data sets, one can conduct different analyses.
Thus, multiple imputation is particularly useful in large public use data sets;
once imputations are performed, different analysts can use the data to explore
different models. As Barnard (2000) points out, multiple imputation separates
the task of imputing the data from analyzing the completed data sets so that
researchers using the data do not have to handle difficulties from the missing
data as well as analyze the data.

While multiple imputation appears the most promising of current missing
data methods, Rubin (1996) critically reflects on the use of multiple imputa-
tion over the past 20 years. Some criticisms of the method center on the
amount of computing and analysis time. Analyzing five sets of data is certainly
more costly than one analysis, and the method does require specialized
software. A more critical assessment comes from Fay (1991, 1992, 1993,
1994, 1996) and is also addressed by Meng (1994). Fay focuses on the use of
multiple imputation in large, public-use data sets where the person imputing
the data is separate from the analyst. Whatever model the analyst fits using the
imputed data sets must be congenial to (must include the same variables) as
the model used by the person who originally imputed the data. As Rubin
(1996) notes, the model used to generate the multiple imputations should
include all the variables likely to be used in subsequent analyses. The
statistical literature on missing data continues to grow, and we in the social
sciences are bound to have more tools at our disposal in the future.

Data Analysis Examples using Complete Cases, Maximum

Likelihood and Multiple Imputation

For the example, I use the asthma study data as described in Tables 1 and 2.
The analysis examines the relationship of a student’s self-efficacy in
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controlling their asthma (Belief) and the following predictors: participation in
the treatment or control group (Group), self-rating of symptom severity for a
2-week period post-treatment (Symsev), reading test score on a state
standardized test (Reading), age of child in years (Age), gender of child
(Gender), and number of allergies reported by child’s parent (Allergy).

Complete and Available Case Analyses

As illustrated in Table 2, there are 19 cases with complete data on all the
variables of interest. When we use a statistical package like SPSS, the default
procedure when missing data occurs is listwise deletion, so that only the 19
cases are used for the analysis. The complete case results are given in the first
two columns of Table 3. The regression coefficients for the intercept and
Reading are significantly different from zero at p < 0.05 ; Group, Symsev and
Age have regression coefficients that are significantly different from zero at
p < 0.10. Each Reading grade equivalent score increase is associated with
almost one-half of a point increase on the Belief scale. The students in the
control group tend to score one-half of a point lower than treatment students
on the Belief scale, indicating a moderate effect of the treatment in raising
self-efficacy levels while controlling for all other variables. Those with more
severe symptoms also score lower. Students whose average symptom ratings
were higher (indicating more severe symptoms) over the course of the 2 weeks
after treatment tended to have a lower score on self-efficacy. Age has a
puzzling relationship with Belief score; older children tend to score lower on
the Belief scale than younger children. The correlation between Reading score
and Age is 0.658, a fairly large correlation. The negative coefficient could
relate to collinearity between Reading score and Age, though the two variables
are not perfectly correlated. From Table 1, we see that the grade equivalent
Reading scores for the students in the sample span a wider range (1st through
8th grades) while the age range would imply students in the third through
ninth grades. Many students are not reading at their grade level.

The available case analysis, presented here for comparison, provides a
different set of model estimates. None of the predictors are significantly
different from zero. The R? value is given as 0.215, with an adjusted R? of
—0.147, an implausible value. The available case results would seemingly not
fit the data well. Inferences about the model from this analysis would also lead
to differences from the complete case model. For example, the treatment
group difference is no longer close to statistical significance, and Reading



Table 3. Results.

Complete Case

Available Case

Maximum Likelihood

Multiple Imputation

Analysis Analysis Analysis Analysis

(N=19) N=19) (N=154) (N=154)
Variable B SE B B SE B B SE B B SE B % Mis. Info.
Intercept 4.617* 0.838 3.794%* 1.219 4.083 0.362 3.994% 0.412 24.0
Trt group —0.550 0.276 —0.038 0.388 —0.132 0.112 —0.119 0.123 17.7
Symsev —0.315 0.161 —0.485 0.503 —0.480 0.144 —0.498* 0.147 1.6
Reading 0.409* 0.096 0.171 0.132 0.218 0.039 0.201* 0.046 40.7
Age —0.211 0.115 —0.025 0.139 —0.089 0.043 —0.067 0.053 41.8
Gender 0.198 0.189 0.053 0.364 0.084 0.104 0.046 0.110 10.6
Allergy —0.005 0.057 0.018 0.099 0.063 0.029 0.045 0.053 75.6

VLE
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level is not associated with Belief score. All of the standard errors for the
regression coefficients are larger than in the complete case analysis.

Checking the Multivariate Normality Assumption

For the two model-based procedures, we need to assume that the data are
multivariate normal, and that the response mechanism is ignorable. To
examine the normality assumption, Figure 2 shows the histograms of each of
the continuous variables. Three of the predictors — Age, Reading and Allergy —
all have fairly normal distributions. The histograms for both Symsev and
Belief are skewed. Both variables suffer from range restrictions. Many of the
students did not experience symptoms in the 2 weeks post-treatment, while a
few did have active asthma episodes. The opposite was true for the belief
scale. On average, most students rated their self-efficacy for handling their
asthma as high; the average item rating was close to the maximum value of 4,
meaning that students felt much confidence in handling their symptoms. The
two categorical data variables in the data, Group and Gender are completely
observed. Within the four cells defined by these two variables, we need to
assume that the variables have normal distributions, or in other words, that
variables in the model must have normal distributions conditional on these two
variables. The histograms by Group and Gender are similar to those presented
in Figure 2.

Results Using Maximum Likelihood with the EM Algorithm

I used the program NORM (Schafer, 1999), to obtain the maximum likelihood
estimates of the mean and correlation matrix. Alternatively, one could also use
BMDPAM (Dixon, 1992) or SPSS Missing Values Analysis (SPSS, 1999) to
compute the maximum likelihood estimates of the mean and covariance
matrix. After obtaining the maximum likelihood estimates, I used SPSS
(1999) to estimate the parameters of the linear regression model from the
mean vector and correlation matrix. The SPSS syntax for computing the
regression estimates from the mean vector and correlation matrix is given in
the Appendix.

The middle right two columns of Table 3 provide the maximum likelihood
estimates for the linear model and the standard errors obtained from SPSS.
Note that the standard errors for the estimates will be biased, since they are not
based on the negative second derivative of the loglikelihood, nor do they use
Meng and Rubin’s (1991) SEM algorithm. The standard errors are computed
as if the mean and correlation matrix imported into the regression module are
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from a complete data set. Looking at Table 3, we see that the standard errors
computed by the standard regression program are smaller than from the
complete case analysis given that the errors are computed with 154 cases. We
could utilize the more conservative standard errors from complete cases to
give a rough approximation of which estimates are significantly different from
zero. This standard would suggest that the intercept, Symsev, and Reading
may have associations with Belief that are worth interpretation. The maximum
likelihood estimates suggest a somewhat stronger relationship between ratings
of symptom severity and self-efficacy; every increase in average ratings of
severity of symptoms results in an almost one-half of a point decrease in self-
efficacy beliefs. Reading score is moderately related to self-efficacy beliefs
though the magnitude of the relationship is about half of that estimated by the
19 complete cases. Using maximum likelihood, we do not find a significant
difference between the treatment and control groups though the direction of
the difference favors the treatment. Age is not associated with Belief score in
the maximum likelihood analysis.

Multiple Imputation Results

For multiple imputation, I used Schafer’s (1999) NORM program. At present,
only Schafer’s program provides multiple imputation that is based on the
statistical theory discussed in Schafer (1997). As Schafer (1997) and Tanner
(1993) discuss, the data augmentation procedures used to compute the
multiple imputations can produce sample estimates that are correlated with
each other in early rounds of iterations, before estimates converge.
Researchers using data augmentation must check the correlations between
adjacent iterations to ensure independent samples are obtained, and must
allow the algorithm to run for several hundred iterations. After 20,000
iterations of data augmentation using a noninformative prior distribution,
estimates from adjacent iterations for Allergy were still highly correlated
indicating that the data augmentation algorithm had not converged. Schafer
(1997) discusses the uses and interpretations of the diagnostic plots in detail.
Looking at Table 2, we see that almost half of the cases are missing an
observation for Allergy. As suggested by Schafer (1997), I then standardized
all the variables in the data set to have a standard normal distribution, and then
used a ridge prior, what in Bayesian terms is called a weak prior. Using this
prior distribution can stabilize the estimation procedures. After 20,000
iterations, the adjacent estimates of all the variables including Allergy showed
little or no correlation. I then ran a second chain of the data augmentation
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algorithm with the ridge prior, saving the augmented data sets at iterations
22,000; 24,000; 26,000; 28,000 and 30,000. Using Schafer’s NORM program,
the iterations took about 2 minutes to complete.

To obtain the multiply-imputed estimates of the linear regression model, I
entered each completed data set into SPSS (1999) to obtain five sets of
estimates. Schafer’s NORM program (1999) provides the multiply-imputed
estimates for the linear regression model using the combining rules discussed
by both Schafer (1997) and Rubin (1987). The last three columns of Table 3
provide information on the multiple imputation analysis. Note that all of the
standard errors of the estimates of the regression coefficients have values that
lie between those based on the 19 complete cases, and those based on the
incorrect assumption in the maximum likelihood analysis that all 154 cases
are complete. The intercept, Symsev, and Reading have estimates that are
significantly different from zero. As in the maximum likelihood analysis,
those students with higher ratings for the severity of their asthma symptoms
tended to score about one-half a point lower on self-efficacy, an estimate larger
than the complete case analysis. Higher reading scores are also associated
with a small increase in Belief scores though as in the maximum likelihood
case the estimate is half as large as in complete cases.

Neither treatment group nor age is associated with Belief score in either
multiple imputation or in maximum likelihood. The treatment group effect
(Group) is not significantly different from zero in either maximum likelihood
or multiple imputation. The two model-based methods also do not observe any
significant relationship with Age.

The last column of Table 3 provides another diagnostic important for
interpreting the results of the maximum likelihood and multiple imputation
analyses. Both Rubin (1987) and Schafer (1997) discuss the derivation and
justification of the percent of missing information for each variable.
Conceptually, the percent or fraction of missing information gives an estimate
of how much information we do not have about the parameters of interest
given the amount of missing data. This diagnostic is based on the ratio of the
variance we estimate for a given parameter from multiple imputation and the
estimated variance if we had no missing data on that parameter. Three
variables have percentages of missing information near 50%, indicating that
the data set provides a small amount of information about how Reading, Age,
and Allergy relate to the other variables in the model. The percentage of
missing information on these variables reiterates the fact that both Reading
and Allergy have much missing data. The correlation between Age and
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Reading and the narrow range of Age in the sample may contribute to the large
amount of missing data we estimate for Age even though we have almost
complete data on that variable.

DATA INTERPRETATION

The small number of cases with complete data pose a problem in this
intervention study. Given that 154 students participated in the study, using
only 19 cases to represent the whole does not appear justified; we do not
believe that the 19 cases are a random sample from the whole data set though
we do not have direct evidence of this assumption. Instead, we can make a
somewhat less demanding assumption by considering the data MAR. With
MAR data, we can use maximum likelihood methods or multiple imputation.
Assuming the data multivariate normal, we obtain estimates for our regression
model. As anticipated, there are few differences in the magnitude of the
estimates from maximum likelihood and multiple imputation since multiple
imputation methods converge to those from maximum likelihood. The
difference, however, is in the computation of the standard errors as well as in
overall ease of computation. Programs such as NORM (Schafer, 1999)
provide both maximum likelihood and multiple imputation results, and more
programs are likely to be available in the near future (Barnard, 2000).

The interpretation of the models do differ between the model-based and
complete case estimates. The treatment group did not score appreciably higher
on the measure of self-efficacy while controlling for reading ability, gender,
age, severity of symptoms, and overall number of allergies suffered. Children
who do report more severe symptoms, however, do tend to doubt their ability
to control their asthma. The study does, however, suffer from a common
problem —much incomplete data on important measures. The number of
allergies suffered by a child provides one measure of the risks that the child
may suffer an acute episode, especially if the asthma is not under control.
Children in this population attended schools in the inner-city, and are likely to
frequent environments where their allergies and asthma symptoms are
exacerbated. An alternative measure to Allergy of a student’s risk for asthma
episodes may provide more information for examining the model. In addition,
the inclusion of both Age and Reading may result in collinearity problems in
the model itself. However, using both in the model to create the multiple
imputations is warranted given the correlation between these two variables.
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The Reading variable may also be one more likely to be missing for reasons
that are nonignorable; schools with low reading scores may have been less
likely to share that information with the researchers. One way to increase the
possibility of MAR data with the Reading score is to include more variables in
the imputation stage that could relate to the ability of a student to read and
interpret the Belief scale such as Age or grades in school. The data set does
contain many other health outcomes and attitude data that may prove useful in
improving our estimates of the relationships between Allergy and Belief and
between reading ability and Belief score.

While the available case analysis provides point estimates close to those
from model-based methods, we cannot be sure under what conditions
available case analysis will provide unbiased estimates. Both Schafer (1997)
and Barnard (2000) refer to model-based methods as principled methods,
meaning that they are based on statistical theory, and can be shown to produce
unbiased estimates when the assumptions of the method are met. Available
case analysis is not a principled method, and thus cannot be relied on to
produce unbiased estimates in a wide range of missing data problems.

RECOMMENDATIONS

A significant amount of research has appeared in the statistics literature to
convince social scientists to use methods other than available case and mean
imputation to handle missing data. When few cases are missing values,
complete case analysis methods can provide unbiased estimates. In other
circumstances, as in the asthma intervention study, the number of complete
cases is a small fraction of the total. The expense and investment in the study
warrant our using methods that utilize as much data as possible.

Social scientists do face major hurtles in implementing innovations that
occur in the statistical literature. We often do not have the needed expertise or
technology for implementing these methods. Even when software is available,
we often witness the misuse of methods because of the ease of computations.
Complete case analysis as well as available cases and mean substitution are
used most frequently since they are included as options in many statistical
packages. However, as others have warned repeatedly (Little & Rubin, 1987;
Rubin, 1987; Schafer, 1997), these methods do not provide adequate results in
all instances, and in fact, available case and mean substitution provide
problematic estimates in almost all instances. When missing data occur, we
need to acknowledge the limitations of our data. Model-based methods
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provide this acknowledgment through added assumptions about the nature of
the missing data, and the greater effort required to analyze the data.

One of the major contributions of the missing data literature is the emphasis
on explicitly stating the assumptions used to analyze the data. While we
cannot necessarily provide empirical evidence for the appropriateness of the
assumption, we can openly discuss the assumption with the final judgement
left to the readers. We can also examine the sensitivity of our results to
differing assumptions. In our asthma intervention example, the complete case
analysis differs from those using model-based procedures. Given that my
assumptions for the model-based procedures (namely MAR data and
multivariate normality) are less restrictive than the complete case analysis
assumptions (MCAR data), I am inclined to accept the results from the model-
based procedures.

The likely introduction of missing data methods in major statistical
packages should allow the greater use of the methods discussed here, as well
as for methods dealing with more complex forms of missing data. The use of
model-based methods will aid in the analysis of much social science data, data
which are often incomplete and missing. I also hope that the availability of
software for missing data analysis brings an increased willingness by
researchers to state explicitly the assumptions used in the analysis and to
explore the sensitivity of results to those assumptions. Both of these
innovations will serve to strengthen our research efforts.
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APPENDIX

SPSS Syntax for Linear Regression Using Means and Correlation Matrix

* Matrix data with procedure REGRESSION.
MATRIX DATA VARIABLES=group symsev igap age gender belief2 allergy
/CONTENTS=MEAN SD N CORR /FORMAT=LOWER DIAGONAL.

BEGIN DATA

0.558 0.244 4.062 10.578 .442 4.057 2.869
0.496 0.370 1.790 1.597 0.496 0.711 1.908
154 154 154 154 154 154 154

1.0

-0.318 1.0

0.276 -0.173 1.0

0.175 -0.128 0.611 1.0

-0.157 -0.0271 0.0621 0.121 1.0

0.0752 -0.296 0.418 0.188 0.0801 1.0
-0.116 -0.0262 -0.184 0.170 -0.0566 0.0476 1.0
END DATA.

REGRESSION Matrix = in(*)
/VARIABLES=group symsev igap age gender
belief2 allergy

[criterion tolerance(.0000000001)
/DEP=belief2 / method=ENTER.

The / CONTENTS line provides the format of the data. The first line after the
BEGIN DATA line contains the maximum likelihood estimates of the means,
the second line, the maximum likelihood estimates of the standard deviations
of the variables, the sample size used for each estimate (here the hypothetical
complete sample size), and the lower half of the maximum likelihood estimate
of the correlation matrix.



