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Abstract 

Mixed-effects models have emerged as the “gold standard” of statistical analysis in different sub-fields of 
linguistics (Baayen, Davidson & Bates, 2008; Johnson, 2009; Barr, et al, 2013; Gries, 2015). One problematic feature 
of these models is their failure to converge under maximal (or even near-maximal) random effects structures.  
Convergence tests are themselves different from version to version of statistical packages for mixed effects models 
and also differ across platforms (e.g. R, SPSS and SAS). The lack of convergence is relatively unaddressed in 
linguistics and when it is addressed has resulted in statistical practices (e.g. Jaeger, 2009; Gries, 2015; Bates, et al, 
2015b;) that are premised on the idea that non-convergence is an indication that a random effects structure is over-
specified (or not parsimonious), the parsimonious convergence hypothesis (PCH).  

We test the PCH by running simulations in lme4 under two sets of assumptions for both a linear dependent 
variable and a binary dependent variable in order to assess the rate of non-convergence for both types of mixed effects 
models when a known maximal effect structure is used to generate the data (i.e. when non-convergence cannot be 
explained by random effects with zero variance).  Data are simulated under two sets of conditions and for each 
simulated data set we fit the non-zero random effect structure used to simulate the data in lme4: 

(1) With the simulation assumptions reported in Barr, et al. (2013) with 24 subjects and 24 Items and one binary 
predictor for both linear and logistic models. 

(2) Across a range of imbalance in the data, with one binary and one three-level predictor, with a maximal 
random subject effect structure for 30-60 subjects (and no items).   

In the case of (1), there are low rates of non-convergence for linear and logistic models. In (2), however, there is a 
much higher rate of non-convergence.  Under the PCH, lack of convergence is treated as evidence against a more 
maximal random effects structure, but that result is not upheld with our simulations. We provide an alternative model, 
fully specified Bayesian models implemented in rstan (Stan Development Team, 2016; Carpenter, et al, in press) that 
removed the convergence problems almost entirely in simulations of the same conditions.  These results indicate that 
when there is known non-zero variance for all slopes and intercepts, under realistic distributions of data and with 
moderate to severe imbalance, mixed effects models in lme4 have moderate to high non-convergence rates which can 
cause linguistic researchers to wrongfully exclude random effect terms.  
 
1. Introduction 

Over the last ten years, mixed effects models have become the gold standard of statistical 
analysis in linguistics and adjacent language sciences to replace ANOVA and regression models 
(linear and generalized linear) in the modeling of experimental, quasi-experimental and 
observational data. They provide several conveniences for data that come from repeated 
measures on participants and across items.  They allow researchers to fully model all the sources 
of variability in the data, including repeated measures on the same subject and with the same 
experimental item (Baayen, Davidson & Bates, 2008; Barr, et al., 2013). These random effects, 
which extend traditional regression by adding alternative sources of variance, can also answer 
interesting sociolinguistic questions by accounting for subject mean differences (e.g. Drager & 
Hay, 2012) or by allowing social group variance to be modeled separately from residual variance 
(e.g. Eager, 2017a).   

                                                            
1 The R code and simulation data are available for this paper: 
https://github.com/jroy042/MixedEffectsAreSometimesTerrible The R package that can be used to implement the 
fully specified Bayesian model is available in Eager (2017b).  

https://github.com/jroy042/MixedEffectsAreSometimesTerrible


This study is part of a larger project by the 2nd author that aims to outline where mixed 
effects models can be problematic in practice (Roy, 2006, 2009, 2012, 2014; Roy & Levey, 
2014; Kimball, et al. 2016). The terribleness alluded to in the title refers not to what these 
models are intended to do in linguistics (i.e. account for multiple observations on the same 
participant or item), but instead how these models behave with some kinds of actual data as well 
as practices linguistic researchers have developed in response to that behavior.  The project has 
shown, with both real data (Kimball, et al. 2016) as well as the simulations discussed in this 
paper, that this terribleness can be alleviated with more constraints than standard mixed effects 
models implemented in lme4 provide: namely, by using a more fully specified Bayesian model.  

To be very clear, we do not advocate using a simpler model (i.e. ordinary linear or 
logistic regression) in response to the problems we discuss when a researcher has repeated 
observations within subject or within item, nor are we suggesting that lme4 be abandoned as a 
default implementation for these models. Instead we are advocating that fully specified Bayesian 
models that constrain assumptions on the fixed effects, the random effects and the covariance 
matrix might be better suited for categorical and imbalanced data.  Specifically, in this paper, we 
demonstrate with a binary response that when there is moderate to severe imbalance in the data, 
a fully specified Bayesian model arrives at more stable results.  As this paper is aimed at 
researchers who are familiar with the on-going discussions in linguistics on these models, but 
may not have formal training in statistics, we explain some of the terminology anticipated to be 
unfamiliar or notational variance anticipated to be confusing.  

1.1 Mixed Effects Models in Linguistics 

Over the last few years the authors have advised researchers on over 150 different projects across 
many sub-fields of linguistics as well as the adjacent language sciences that use mixed effects 
models, mostly with R and in lme4. The use of mixed effects models in linguistics typically 
follow recent advice on using these models (Bates, Davidson & Baayen, 2008; Barr, et al. 2013)  
in psycholinguistic experiments as an optimal control on type I error rates.  This has expanded 
into other fields such as sociolinguistics and corpus linguistics (Johnson, 2009; Drager & Hay, 
2012; Gries, 2015) as a means of accounting for individual differences at the subject or lexical 
item level in observational studies. In many of our conversations about mixed effects models, 
model convergence, as tested by lme4, is often a central issue of concern to the researcher.   
Convergence itself is not well understood by those who apply these models and even some who 
write software that is widely used in linguistics to implement these models2. The purpose of this 
specific study is to pry open the black-box (Hodges, 2014) of mixed-effect models with 
simulations based on real-world data sets as well as investigate simulations of imbalanced data to 
assess how well these models estimate parameters of interest.  

The general form of a linear mixed model is formally (Demidenko, 2013: 45; Hodges, 2014: 5) 
defined as:  

(1)  𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝜺𝜺 
                                                            
2 E.g. Rbrul (Johnson, 2009), a program that uses lme4 but provides a menu-driven interface to help sociolinguists 
use mixed effects models, suppressed all convergence errors from lme4 from 2012-2013.  



 

The 𝑛𝑛×1 vector, 𝑦𝑦, are the observed response variable. The design matrix of the fixed effects, 𝑋𝑋, 
represents a 𝑛𝑛×𝑝𝑝 matrix of all the predictors coded for each observation.  The 𝑝𝑝×1 vector 𝛽𝛽 are 
the fixed effect coefficients. The random effect features form a 𝑛𝑛×𝑞𝑞 matrix, 𝑍𝑍, and the 𝑞𝑞×1 
vector 𝑢𝑢 are the random effect coefficients.  The random effect structure is normally distributed 
with mean 0 and variance-covariance, Σ. The random coefficients 𝑢𝑢 are ancillary in the sense that 
they are not estimated directly in standard mixed effects model software: the covariance matrix Σ 
is estimated and not 𝑢𝑢, the random intercepts and slopes, which can be estimated afterwards in 
several ways.  The error,𝜖𝜖, is normally distributed with a separate variance, 𝜎𝜎2. 

This model can be extended to other kinds of response variables, where 𝑔𝑔(𝑦𝑦) replaces 𝑦𝑦 and 𝑔𝑔 is 
a one-to-one monotonic, differentiable function. For logistic regression, 𝑔𝑔 is the log-odds 
transformation of the probability of success, 𝑝𝑝, and we model: 

(𝟐𝟐) 𝒍𝒍𝒍𝒍
𝒑𝒑

𝟏𝟏 − 𝒑𝒑
 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 

The probability that 𝑦𝑦 = 1 (rather than 0) is represented by 𝑝𝑝. In language studies this can 
represent accuracy (𝑦𝑦 = 1 for accurate answers and 𝑦𝑦 = 0 for inaccurate answers) or in eye-
tracking when the participant’s gaze is fixated on a particular region (𝑦𝑦 = 1 when fixated on the 
region of interest and 𝑦𝑦 = 0 when they are not).  

1.3 What is convergence? 

Most researchers simply know convergence as the decorative warning messages angrily spit out 
by lmer or glmer when it does not seem the model is cooperating.  Understanding what 
convergence tests do, however, is crucial for researchers applying mixed models. Convergence is 
a consequence of the iterative algorithm used to solve for Σ and β in (1) or (2).  It consists of 
several tests that the results produced are statistically and computationally reliable. Usually this 
involves checking that Σ is positive-semidefinite (i.e. that no linear transformation of the random 
effects has a negative variance estimate, which is an invalid estimate statistically, but possible 
computational result of the optimization algorithm), and that the difference between the second-
to-last iteration and the last iteration in the optimization algorithm is smaller than a pre-
determined tolerance (in lme4, this is done through checking the maximum gradient, with a 
tolerance of .002 in the current version, and in previous versions with a tolerance of .001).  There 
are also checks on the fixed effects for statistical reasonableness, and checks which ensure there 
is enough data to estimate the proposed random effects structure (i.e. that the model doesn’t have 
more parameters than observations). 

Why is convergence not an issue in traditional linear regression or logistic regression? For linear 
regression, the calculation of the unknowns involves simple matrix operations that will not fail 
unless the predictors suffer from severe collinearity (and thus inverting the design matrix 𝑋𝑋 fails 
to produce a unique solution for the unknown predictors’ effects).  For logistic regression, there 
is an iterative algorithm, but it will not fail unless there is separation in the data (i.e. where too 



many cells have an observed 𝑝𝑝 of 1.0 or 0.0) or collinearity in the design matrix — in 
sociolinguistics this would be similar to knockout effects.  

1.4 Parsimonious Convergence Hypothesis 

In practice, the failure to converge is taken to be a mis-specification of the random effects 
structure. The desire to fit maximal models has resulted in ad-hoc practices, some reasonable3 
(but unattested in the formal statistical literature on these models) and some clearly 
unreasonable.  

1. Use a PCA on covariance matrix to determine most meaningful slopes (Bates, et al., 
2015b). 

2. Reduce item random effect structure then reduce subject random effect structure until 
convergence (Jaeger, 2009). 

3. Start with intercept only, use anova() to determine if a slope should be added or not. Stop 
when all slopes are not significant (Gries, 2015).  

4. Keep removing slopes randomly from item and subject random effect structure 
until convergence. 

5. Suppress or ignore convergence errors.  

The Parsimonious Convergence Hypothesis (PCH) motivating these approaches is that the 
failure of mixed effects model to converge is (most likely) due to the incorrect specification of the 
random effect structure.  In it is not clear from the statistical or applied statistical literature that 
convergence and parsimony are linked. The nature of mixed effects models and uncertainty 
around the appropriate random effects structure (as well as an inability to assess both random 
and fixed effects simultaneously in these models) leads to these ad-hoc practices which have 
been noted in other fields (Ryoo, 2011:599). 

1.5 Experimental Approaches to Understanding Statistical Models 

From Hodges (2014:xxxiii-xxxiv): A lot of academics think mixed linear models are completely 
understood, when in fact they are still largely not understood...the new methods [i.e. mixed 
effects models] of the last three decades are so complex that it may never be possible to prove 
theorems about them. We can, however, make progress by approaching our black box methods 
in the same way our scientific colleagues approach nature's black-box methods, by prying them 
open gradually and indirectly if necessary. Moreover, we would add that logistic mixed effects 
models are even less well understood4.  

                                                            
3 Some reasonable approaches do not produce the desired outcome, as we show.  
4 The interpretation of fixed effects are conditional on the random effects. This does not affect the interpretation 
of fixed effects with a linear mixed model, but does change the interpretation for logistic mixed models and can 
produce results that are even “capable of confusing statisticians less familiar with these models” (Molensberghs & 
Verbeke, 2005: 297).  



Hodges (2016) continues to argue in favor of an experimental approach to assessing 
computational and statistical issues with mixed effects models which influences the approach to 
them in this paper. There are many examples of simulation studies in the theoretical and applied 
literature on mixed effects models. Agresti, Caffo, & Ohman-Strickland (2004) simulate two 
designs for a logistic mixed effects model in order to assess the effect of distribution 
specification on random effects: one within cluster random intercept and no other predictors and 
then one within-cluster random intercept with a binary fixed effect. Moineddin, Matheson and 
Glazier (2007), in order to do a power analysis for logistic mixed effects models, simulate a 
design of balanced data with one between cluster covariate. McCulloch & Nehaus (2011) use a 
design with two covariates and one level of random effect to assess how much misspecification 
of the variances affects both linear and logistic mixed effects models. Ryoo (2011), while using 
the a longitudinal study of student achievement scores as a basis for assessing model building 
techniques in linear mixed effects models with an actual complex design, still is using a mostly 
balanced design. None of these simulated designs, even Barr et al. (2013), come close to 
reflecting the complexity in designs we have seen in linguistic research. Near-balanced data is 
very much only possible when we have a well-designed and well-controlled experimental design 
that for many research programs is either not possible or is not practical to produce. Following 
the advice of Hodges (2014) to pry open the black box of mixed effects models, this study 
experimentally tests the PCH with near-balanced (simple) data and moderately to severely 
imbalanced (complex) data 

2. Method and Data 

This section describes the model setup and convergence criteria we use to assess our simulations. 
There is a lot of technical detail in this section necessary to reproduce and understand exactly 
what was simulated.  We have attempted to make this accessible to non-mathematically inclined 
researchers who are reading as well as documenting why we made certain decisions.  These 
simulations are meant to be more realistic than those mentioned in Section 1.4 

2.1 Simple Mixed Effects Models  

Following, Barr et al (2013) we simulate regressions with the following constraints: A total of 24 
subjects and 12 or 24 items with at most 5% of the data removed on each simulation. Further, the 
simulation of one within subject effect that can be between item or not.  As Bates et al. (2015b) 
discussed, this is not a typical design.  Specifically, there is usually several within-subject effects 
that are modeled.   Further, assuming the response is centered, one binary effect that shifts the 
response by .8 standard deviation is not typical of most linguistic experiments.  This simulation, 
however, provides a control group for ours – it allows us to set a floor for non-convergence in 
balanced data sets. We use the terms “Gaussian” interchangeably with “Linear Mixed Effects 
Models” to represent a mixed effects model where the response is continuous and the error terms 
are (multivariate) normally distributed.  

2.1.1 Linear Mixed Effects Models 

The simulated model parameters for the fixed effects and random effects for Barr (et al., 2013) 
are provided below:   



𝛽𝛽0 ~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(−3,3);  𝛽𝛽1 = 0 𝑖𝑖𝑖𝑖 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;𝛽𝛽1 = 0.8 𝑖𝑖𝑖𝑖 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓; 

 

Subject RE Item RE 
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒~ �𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0,3);  

𝜎𝜎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~ �𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0,3) 
𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(−0.8,0.8) 

 

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~ �𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0,3);  
𝜎𝜎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~ �𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0,3) 
𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(−0.8,0.8) 

 
 

The intercept,𝛽𝛽0, and the within subject fixed effect,  𝛽𝛽1, are both described above, with only the 
intercept varying between -3 and 3. Only half the simulated data sets have a within-item effect 
(which would include the parameters highlighted in blue).  

2.1.2 Logistic Mixed Effects Models 

The logistic model parameters cannot just be copied from the linear one above; we need to add a 
few more constraints.    The initial design is the same, but we must decrease the amount of 
variability, especially since we are concerned with the likelihood of convergence.   The 
distributions these model parameters were drawn from were designed to make true log-odds 
values for logistic responses which were outside of [-5, 5] rare (henceforth, “extreme values”).  
The reason for this is that there is not enough information in the generated datasets (or in many 
real datasets; see Kimball et al. 2016) to make meaningful distinctions between, say, a log-odds 
of 5 and a log-odds of 6.  This difference corresponds to the difference between Bernoulli 
probabilities of 0.9933 and 0.9975, which would not be recoverable from the dataset given that 
each speaker has on average 12 or 24 observations.  We restricted the variance components in 
order to reduce the average percentage of extreme values to less than 1% of the data (for the 
simulated models reported, the mean percent of extreme values is 0.2%). The new random effect 
structure is defined below:  

Subject RE Item RE 
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0,1) 
𝜎𝜎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0, .75) 
𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(−0.9,0.9) 

 

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0,1) 
𝜎𝜎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0,0.5) 
𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖~ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟(−0.9,0.9) 

 
 

2.1.4 Number of simulations  

To replicate the procedure used by Barr and his colleagues, we began with 80,000 total 
simulations for the simple linear situation (10,000 across each condition), but decreased this for 
the simple logistic regression situation (with 2500 per condition). The reason for doing this was 
practical: the 20,000 simple logistic simulations required the same amount of time as the 80,000 
simulations – about a week. Moreover, it is not clear that the large number of simulations are 
necessary for what we want to assess. Barr and colleagues chose 800,000 total simulations for 



their results, but there is not a statistical reason, that we know of, for such a high number of 
simulations. We choose a smaller number for similar practical reasons for the complex models 
described in Section 2.2.  

2.2 Complex Linear and Logistic Regression 

One of the drawbacks to simulation studies is that they can often fail to represent realistic 
datasets.  For example, Barr et al. (2013) simulate only linear models with a binary factor as the 
sole fixed effect, balanced across subjects and items, with between 0% and 5% (determined from 
a random uniform variable) of data simulated as “missing.”  Even in controlled experiments, this 
type of simple fixed effects structure is highly unlikely, and in observational studies in 
linguistics, such a high degree of balance among the subjects is hardly ever achievable due to the 
nature of the data.  It is important to establish how this imbalance affects linear and logistic data 
differently.  

In this study, both logistic and Gaussian mixed effects models are simulated for a fictional 
subjects-only observational design. The fixed effects are one binary factor 𝑥𝑥1 and one three-
leveled factor 𝑥𝑥2 (whose levels will be referred to alphabetically: 𝑥𝑥1 ∈ {𝑎𝑎, 𝑏𝑏}, 𝑥𝑥2 ∈ {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}), and 
varying degrees of imbalance were simulated for the number of subjects, the number of 
observations per subject, and the relative frequency with which the levels of the factors occur.  
Letting 𝒮𝒮 be the number of subjects for a model, 𝜆𝜆 be the mean number of observations per 
subject, 𝑛𝑛𝑠𝑠 be the number of observations for subject 𝑠𝑠, 𝑛𝑛 be the total number of observations, 
and 𝑝𝑝(𝑥𝑥1) and 𝑝𝑝(𝑥𝑥2) be the relative frequencies of the levels of the factors, each dataset was 
generated per the following procedure: 

𝒮𝒮 ~ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈({30, … ,60}), 𝜆𝜆 ~ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(20,30), 

𝑛𝑛𝑠𝑠 ~ max{𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆), 1} , 𝑛𝑛 = �𝑛𝑛𝑠𝑠

𝒮𝒮

𝑠𝑠=1

, 

𝑝𝑝(𝑥𝑥1) ~ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑙𝑙(1,1), 𝑝𝑝(𝑥𝑥2) ~ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑙𝑙𝑙𝑙𝑡𝑡(1,1,1). 

That is, for each model, the number of subjects was chosen uniformly between 30 and 60, the 
mean number of observations per subject was uniformly distributed on [20, 30], and the number 
of observations per subject was drawn from a Poisson distribution with that mean but ensuring 
that the minimum was 1 observation per subject (which should nearly never be necessary).  The 
relative frequency of the levels of 𝑥𝑥1 and 𝑥𝑥2 were drawn from standard Dirichlet distributions, 
and then, regardless of the number of observations a subject had, each observation’s values for 
𝑥𝑥1 and 𝑥𝑥2 were determined given the probabilities generated by the Dirichlet distributions for the 
dataset (the Dirichlet distribution is a probability distribution on a vector of random variables 
each on (0,1), and whose sum is always 1; this makes it the ideal choice for generating random 
distributional frequencies; when the parameters of the distribution are all set to 1, then all 
possible distributional vectors are equally likely). 

 



2.2.1 Balance  

To measure balance in the dataset, our goal was to create a measure on (0,1] where 1 is a 
perfectly balanced dataset, and the measure moves toward zero as the dataset becomes more 
imbalanced.  Balance in this case means the same number of observations produced for every 
level of a predictor in every subject’s data. Researchers not familiar with corpus or 
sociolinguistic data may not see the reason for such a measure (or even discussion of imbalanced 
data), but most data sets that arise from language production (via any modality) have some 
imbalance. Many have severe imbalance.  The only way to really assess these models statistically 
and account for imbalance is to have a measure that allows us to capture imbalance in a data set 
for a given set of predictors in reproducible and principled way.  

First, a contingency table was created for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑥𝑥1 ∗ 𝑥𝑥2 ; that is, a table with a count of the 
number of observations for each combination of 𝑥𝑥1 and 𝑥𝑥2 for each subject, containing 𝒞𝒞 = 𝒮𝒮 ∗ 6 
cells.  The number of non-empty cells (count greater than zero) was then determined, denoted as 
𝒞𝒞∗.  The mean count for the non-empty cells was then calculated as 𝑛𝑛∗ = 𝑛𝑛/𝒞𝒞∗.  For each non-
empty cell 𝑐𝑐𝑖𝑖∗, 𝑖𝑖 ∈ {1, … ,𝒞𝒞∗}, an imbalance ratio was calculated as 𝑟𝑟𝑐𝑐𝑖𝑖∗ = max�𝑛𝑛𝑐𝑐𝑖𝑖∗ 𝑛𝑛∗⁄ ,𝑛𝑛∗ 𝑛𝑛𝑐𝑐𝑖𝑖∗⁄ �.  
The mean of these ratios was then multiplied by the proportion of empty cells to obtain an 
overall ratio; that is, 

𝑟𝑟 =
𝒞𝒞

(𝒞𝒞∗)2  
�𝑟𝑟𝑐𝑐𝑖𝑖∗
𝒞𝒞∗

𝑖𝑖=1

  . 

The overall imbalance ratio 𝑟𝑟 is bounded by [1,∞), with higher values indicating more 
imbalance.  To create a measure on (0,1] where higher numbers indicate more balance in the 
dataset, the ratio was transformed to create a balance measure ℬ: 

ℬ = 2 �1 −
𝑟𝑟

1 + 𝑟𝑟
� . 

If the data are perfectly balanced (i.e. if all cells in the contingency table have the same count), 
then we have: 

𝒞𝒞∗ = 𝒞𝒞, 

𝑛𝑛∗ =
𝑛𝑛
𝒞𝒞∗

=
𝑛𝑛
𝒞𝒞

= 𝑛𝑛𝑐𝑐𝑖𝑖∗  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ∈ {1, … ,𝒞𝒞}, 

𝑟𝑟𝑐𝑐𝑖𝑖∗ = max�𝑛𝑛𝑐𝑐𝑖𝑖∗ 𝑛𝑛∗⁄ ,𝑛𝑛∗ 𝑛𝑛𝑐𝑐𝑖𝑖∗⁄ � = max{1,1} = 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ∈ {1, … ,𝒞𝒞}, 

𝑟𝑟 =
𝒞𝒞

(𝒞𝒞∗)2  
�𝑟𝑟𝑐𝑐𝑖𝑖∗
𝒞𝒞∗

𝑖𝑖=1

=
1
𝒞𝒞
�1
𝒞𝒞

𝑖𝑖=1

= 1 , 

ℬ = 2 �1 −
𝑟𝑟

1 + 𝑟𝑟
� = 2 �1 −

1
2
� = 1 . 



As the data become more imbalanced, ℬ → 0, but cannot have an actual value of 0.  This balance 
measure helps us to establish how imbalance affects the accuracy of the parameter estimates and 
likelihood of non-convergence for the simulations.  As we move forward with this research, we 
anticipate refining this imbalance measure for other designs as well as extending a similar 
measure for coverage with a continuous predictor. Finally, it is also important to state that 
“imbalanced” data is not equivalent to a “badly designed study”, especially with observational 
data where you cannot be certain what linguistic contexts will produce themselves in an hour of 
interview data, interaction data, letters or whatever unstructured data you have.  

2.2.2 Generation of the true model 

For the generation of the true model (and for the regressions), sum contrasts were used for the 
factors.  The fixed effects model matrix 𝑋𝑋 thus contains four columns coded as follows: 

𝑋𝑋0 (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 1, 𝑋𝑋1 = � +1 𝑥𝑥1 = 𝑎𝑎
 −1 𝑥𝑥1 = 𝑏𝑏 , 

𝑋𝑋2 = �
 +1 𝑥𝑥2 = 𝑎𝑎
 0 𝑥𝑥2 = 𝑏𝑏

 −1 𝑥𝑥2 = 𝑐𝑐
 , 𝑋𝑋3 = �

 0 𝑥𝑥2 = 𝑎𝑎
 +1 𝑥𝑥2 = 𝑏𝑏
 −1 𝑥𝑥2 = 𝑐𝑐

  . 

A mixed effects model with a full-rank random effects variance-covariance matrix thus requires 
the specification of four fixed effects coefficients, a four by four covariance matrix for the 
subject random effects, intercepts and slopes for each subject, and, for Gaussian models, the 
error variance and random errors.  The distributions these model parameters were drawn from 
were designed to make extreme (outside of [-5,5]) true log-odds values for logistic responses 
rare.  The following true model distributions were found to produce very few extreme values, 
with 98% of the models generated having fewer than 1% extreme values (the same distributions 
were also used for linear models, as in this case the response will be mean-centered and scaled 
prior to analysis, and the range is not as important; 𝑀𝑀𝑀𝑀 is the multivariate normal distribution): 

𝛽𝛽0 ~ 𝑈𝑈(−2,2), 𝛽𝛽𝑗𝑗  ~ 𝑈𝑈(−1,1) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ∈ {1,2,3}, 

𝜎𝜎𝒮𝒮0 ~ 𝑈𝑈(0,1), 𝜎𝜎𝒮𝒮𝒮𝒮  ~ 𝑈𝑈(0, 0.5) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ∈ {1,2,3}, Ω𝒮𝒮  ~ 𝐿𝐿𝐿𝐿𝐿𝐿(1), 

Σ𝒮𝒮 = diag(𝜎𝜎𝒮𝒮)Ω𝒮𝒮diag(𝜎𝜎𝒮𝒮)𝑇𝑇, 𝛾𝛾𝒮𝒮  ~ 𝑀𝑀𝑀𝑀(𝟎𝟎, Σ𝒮𝒮), 

[𝐹𝐹𝐹𝐹𝐹𝐹 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺]   𝜎𝜎𝜖𝜖  ~ 𝑈𝑈(0,1), 𝜖𝜖 ~ 𝑁𝑁(0,𝜎𝜎𝜖𝜖2), 𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝜖𝜖, 

[𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿]  ln �
𝑝𝑝

1 − 𝑝𝑝�
= 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 , 𝑦𝑦 ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝). 

As can be seen above, rather than define the random effects covariance matrix Σ𝒮𝒮 directly, the 
random effects correlation matrix Ω𝒮𝒮 and the standard deviations for each effect 𝜎𝜎𝒮𝒮𝒮𝒮 were 
sampled independently, with the covariance matrix being a by-product of the two.  The LKJ 
distribution with parameter 𝜂𝜂 = 1 is uniform over the space of all possible correlation matrices 
(Stan Development Team 2016).  The fixed effect for the intercept and the random effects 



variance for the subject intercepts were given wider distributions than the slopes, as this is often 
the case in real datasets. 

2.2.3 Fitting procedure for lme4 

For linear mixed models models, the response 𝑦𝑦 was mean-centered and scaled prior to analysis, 
as this increases the likelihood of convergence (Bates et al. 2015a).  For both Gaussian and 
logistic models, the following lme4 formula was used, representing the maximal random effects 
structure as defined by Barr et al. (2013): 

𝑦𝑦 ~ 𝑥𝑥1 + 𝑥𝑥2 + (1 + 𝑥𝑥1 + 𝑥𝑥2 | 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . 

For the linear mixed models, the function lmer was used (REML) and for logistic models, the 
function glmer was used with family = binomial (ML). 

2.2.4 Fitting procedure for Stan 

For the Bayesian models fit in Stan, weakly informative priors were used, extending those used 
in Gelman et al. (2008).  The term prior can be confusing for researchers unfamiliar with 
Bayesian approach modeling data. From an intuitive perspective, the model we describe below 
as a “fully specified Bayesian mixed effects model” is different from a linear mixed effects 
model in how the parameters are constrained.  Interested readers can refer to McElreath (2016) 
or Kruschke (2014) for book-length introductions to Bayesian statistical methods or to 
Nicenboim & Vasishth (2016) for an article-length introduction with a linguistic focus.  
Essentially, the Bayesian approach allows us to make reasonable constraints on the fixed and 
random effects that allow us to estimate parameters more readily.  These constraints, however, 
are not binding on the posterior estimates – if there is evidence in the data that the starting 
constraints are incorrect, the posterior estimates will be driven by the data. Sometimes these 
constraints map onto real world considerations of the research and other times these constraints 
are computationally required.  There are broader benefits to this class of models (including being 
able to move beyond a Null-Hypothesis Significance Testing (NHST) approach to statistical 
modeling in data analysis) but these are beyond the scope of this paper.  

For linear mixed models, the response was mean-centered and scaled prior to analysis.  The 
following priors were used, where 𝑀𝑀𝑀𝑀 is the multivariate normal distribution parameterized with 
𝝁𝝁 and Σ, 𝐻𝐻𝐻𝐻 is the half-normal distribution parameterized with a scale parameter, and 𝑁𝑁 is the 
normal distribution parameterized in terms of 𝜎𝜎 rather than 𝜎𝜎2: 

𝛽𝛽𝑗𝑗  ~ 𝑁𝑁(0, 2) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ∈ {0,1,2,3}, 

𝜎𝜎𝒮𝒮𝒮𝒮  ~ 𝐻𝐻𝐻𝐻(0, 1) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 ∈ {0,1,2,3}, Ω𝒮𝒮  ~ 𝐿𝐿𝐿𝐿𝐿𝐿(2), 

Σ𝒮𝒮 = diag(𝜎𝜎𝒮𝒮)Ω𝒮𝒮diag(𝜎𝜎𝒮𝒮)𝑇𝑇, 𝛾𝛾𝒮𝒮  ~ 𝑀𝑀𝑀𝑀(𝟎𝟎, Σ𝒮𝒮), 

[𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺]    𝜎𝜎𝜖𝜖  ~ 𝐻𝐻𝐻𝐻 �0,
1
2�

, 𝑦𝑦 ~ 𝑁𝑁(𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍,𝜎𝜎𝜖𝜖), 



[𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿]    ln �
𝑝𝑝

1 − 𝑝𝑝�
= 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 , 𝑦𝑦 ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝). 

The 𝐿𝐿𝐿𝐿𝐿𝐿(2) prior is conceptually similar to placing a 2 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(2,2) − 1 prior on a single 
correlation coefficient, but in the multivariate case the mode at zero represents the identity 
matrix (Stan Development Team 2016). In the Stan code in Appendix B, the parameters are 
sampled on unit scale or in terms of Cholesky factors (as applicable) and then reparameterized, 
following the guidelines in the Stan user manual (Stan Development Team 2016).  For each Stan 
model, three chains were run with 1000 warmup iterations and 1000 post-warmup iterations, 
with the target pseudo-acceptance rate 𝛿𝛿 set to 0.99, and with the initial values of the parameters 
in each chain being randomly chosen by the Stan algorithm.  A model was labeled as having 
converged if there were no divergent transitions post-warmup and if the Gelman-Rubin 𝑅𝑅� 
statistic was less than 1.1 for all parameters, and as unconverged otherwise.  

2.2.5 Simulation 

A total of 𝑀𝑀 = 5000 datasets were simulated, with a Gaussian model generated for 2500 and a 
logistic model generated for the other 2500.  For each model, two regressions were fit, one with 
lme4 and one with Stan, resulting in 10,000 regressions total.  For each regression, the following 
information was recorded. We focus on the most relevant results in this paper to convergence 
and researcher behavior (the other parameters can be very interesting from a statistically 
computational point of view, but tend not to be relevant to practitioners): 

• model family (Gaussian or logistic) 
• regression type (lme4 or Stan) 
• balance ℬ ∈ (0,1] 
• the true model parameters 𝛽𝛽,𝜎𝜎𝒮𝒮 ,Ω𝒮𝒮 and, for Gaussian models, 𝜎𝜎𝜖𝜖 (with Gaussian 

parameters expressed on mean-centered unit scale) 
• the regression estimates for the model parameters and the squared error for each 
• for lme4 fits, whether the random effects Cholesky factor estimate was rank-deficient 
• whether or not the model converged 
• the smallest random effects variance in the true model 
• the sum of the squares of the lower triangle of the correlation matrix (total correlation) 

 

2.3 Convergence 

Regression convergence in lme4 was assessed through the messages returned as part of the fitted 
object.  If a warning message indicated an unidentifiable model, a degenerate Hessian matrix, or 
a maximum change in the gradient between the final two iterations greater than or equal to 0.01, 
the model was labeled as unconverged; otherwise, it was labeled as converged. 

The tolerance we use is 5 times higher than the lme4 default (.002).  This lme4 default itself has 
been doubled recently from .001 to .002.  The reason for the tolerance used in this study is 
simply than most of the logistic models have difficulty meeting the .002 tolerance and our results 
for the complex logistic models would have had only a handful of converged models.  A 



practical consideration in increasing the number of iterations was time: the 2500 simulations 
took a week to run on a high-speed, high-RAM computer.   The appropriate tolerance level is not 
a mathematically straightforward task to evaluate (see Demidenko, 2013: 678-679 for a 
discussion). The authors intuition for mixed effects models is that issues with the max|grad| 
tolerance is the least problematic of convergence errors and, in practice, many researchers tend to 
ignore5 this error if there are no others.  

3. Results 

Table 1. Overall rates of non-convergence for simple and complex models 

MEM Type Non-Convergence 
lme4 

Non-Convergence 
RStan 

Number of 
Simulations 

Simple Linear 0 % .009 % 80,000 
Simple Logistic 7 % .002 % 20,000 
Complex Linear 14 % 3 % 2,500 
Complex Logistic 82 % <.001 % 2,500 

 

In Table 1, the overall rates of non-convergence are presented. Comparing the simple linear 
model in both lme4 and RStan implementation, there does not seem to be much of a practical 
difference: almost all simulated data sets converge for both (0% and .009% respectively). This is 
not true moving to the simple logistic simulations.  There is a slight, but noticeable, amount of 
non-convergence in lme4 simple logistic regressions (7% versus the .002% for RStan).  In the 
complex situation, both linear and logistic models have a substantial increase in the amount of 
non-convergence for lme4.  For the linear model, 14% of the simulations fail to converge in lme4 
while only 3% fail to converge in RStan. For the logistic model, 82% fail to converge for lme4 
while much less than 1% fail to converge in RStan.  

We return to these in Section 4, but to explore what might condition non-convergence, we dig 
deeper into our data. 

3.1 Imbalance, Minimum Variance, Sample Size and Convergence. 

We fit a generalized additive model (Wood, 2006) to the likelihood of convergence with family 
(linear or logistic), a smooth for minimum variance for the random effects and a separate smooth 
for the balance ratio. The full table of results are included in the Appendix B. The visualization 
of the model estimates, however, are the most important for this paper and provide an accessible 
way to discuss the impact of each covariate on the likelihood of convergence.  

                                                            
5 Ignoring this error is not appropriate: a large max|grad| value could indicate that the estimates need more 
iterations to converge or that the algorithm is having difficulty locating a solution (i.e. headed in the wrong 
direction).  



 

Figure 1: Likelihood of Convergence across Balance 

In Figure 1, the predicted probability of convergence in the simulations is displayed across the 
range of the balance ratio. The solid red and blue lines represent the estimated predicted 
convergence probability from the model.  The shaded area represents 95% predicted intervals 
from the model. There is a distinction between linear and logistic models that is seen in the 
remainder of the results (i.e. complex logistic models are much less likely to converge.) The 
likelihood of convergence, however, increases as the data sets become more balanced.   

 

Figure 2: Likelihood of Convergence across Minimum Variance 



 

In Figure 2, the predicted probability of convergence across the minimum variance in the random 
effects structure is displayed. For the complex linear models, when the minimum variance is 
close to 0.0, the predicted rate of convergence is still close to .80 while that rate rises to almost 
1.0 as the minimum variance increases.  The same direction of effect is seen in the complex 
logistic models with an increase from .16 to almost .30 at the maximum value for minimum 
variance in our data.  

3.3 Accuracy of Fixed Effects in Converged Models 

Again, we fit a generalized additive model (Wood, 2006) to the predicted error for type of 
parameter, type of mixed effects model and balance ratio. The predicted error for linear and 
logistic error are modeled within one gam. The full results are presented in Appendix B.  

In Figure 3, the estimated effects for predicted error in complex linear models in both lme4 and 
RStan estimation is shown, but only for those that converged. For what researchers are most 
interested in, the fixed effects and random effect variances, we find almost no difference in the 
converged estimation between lme4 and RStan. In Figure 4, the estimated effects for predicted 
error in complex logistic models in both lme4 and RStan estimation is shown. The first 
difference between this graph and Figure 3, is that the fixed effects are more prone to error with 
lme4 than RStan. This differentiation between the two models continues for the random effect 
variation and correlation structures. The correlation and variance difference, as stated above, are 
not usually relevant to a research question, but the fixed effects are absolutely central to most 
research that use mixed effects models.  The largest error is in the intercept (or, under sum 
contrasts, the corrected mean) which is not as problematic, but in both the binary effect and the 
three-level effect, parameter estimates have a higher error in lme4 than RStan.   

 

 

Figure 3: Predicted Error for Complex Linear Mixed Models that Converged 



 

 

 

Figure 4: Predicted Error for Complex Logistic Models that Converged 

 

Figure 5: Predicted Error for Complex Logistic Models that Converged across Balance 

From Figure 5, the difference between lme4 and RStan seen for non-convergence is maintained 
for predicted error in the complex logistic models. The predicted error, however, in both cases, 
decreases as balance increases with completely balanced data sets (at 1.0) having the least 
amount of predicted error in the parameter estimates for both lme4 and RStan.  

 



3.4 Rank of Correlation Matrix 

The correlation matrix may be of little practical use to researchers, but Bates and colleagues 
(2015b) propose using it to determine the optimal random effect structure. To determine whether 
or not an lme4 estimate of the random effects covariance matrix Σ𝒮𝒮  was rank-deficient, we 
performed principal component analysis on the Cholesky factor of the matrix.  The matrix was 
coded as rank-deficient if fewer than four principal components (the dimension of the matrix) 
were required to cumulatively account for 100% of the variance, and full-rank otherwise (Bates 
et al. 2015b).  This portion of the analysis was only performed on lme4 regressions which 
converged (n = 1041), as the technique is not reliable in unconverged regressions.  As shown in 
Table 2, in more than half of the Gaussian regressions and nearly all of the logistic regressions, 
the lme4 estimate of the covariance matrix was rank-deficient even though the true model is 
always full-rank. 

Table 2. Rank-deficiency in converged lme4 estimates of Σ𝒮𝒮 by model family 

Rank Gaussian Logistic 
Full 395 4 
Deficient 469 173 

 

Bates et al. (2015b) claim that this diagnostic indicates that there are zero-variance components 
or components which are perfectly correlated (i.e. model misspecification).  As shown in Figure 
6, small variance components and high correlations do increase the likelihood that lme4 will 
estimate the matrix as rank-deficient, but rank-deficient lme4 estimates also clearly arise when 
all variance components are non-zero, and when correlations are low. 

 

Figure 6. Boxplots of minimum variance (left panel) and total correlation (right panel) by 
converged lme4 estimation of the rank of 𝚺𝚺𝓢𝓢. Furthermore, as shown in Figure 7, more 
imbalanced datasets are also more likely to result in rank-deficient lme4 estimates of Σ𝒮𝒮. 



 

Figure 7. Boxplot of dataset balance by converged lme4 estimation of the rank of Σ𝒮𝒮 

A logistic regression with rank estimation as the response (full-rank = 0, rank-deficient = 1) 
shows that all three of these predictors (minimum variance, balance, and total correlation) have 
statistically significant effects in the data in addition to logistic models being more likely to be 
found rank-deficient (Table 3). 

Table 3. Logistic regression on the rank of converged lme4 estimates of Σ𝒮𝒮 (n = 1041) 

Fixed Effect Estimate SE z p 
Intercept 2.474 0.277 8.918 < .001 
Family, Gaussian -2.328 0.278 -8.360 < .001 
Minimum Variance (Scaled) -1.009 0.091 -11.110 < .001 
Balance (Scaled) -0.555 0.081 -6.847 < .001 
Total Squared Correlation (Scaled) 0.217 0.078 2.768 .006 

 

4. Discussion 

It is clear both in linear and logistic models with complex imbalance in the data, that lme4 may 
not be the most appropriate implementation of mixed effects models. Further, even when the 
models converge, lme4 seems to provide more error in each model than RStan, although for 
linear models this is only manifested in the correlation estimates. Below, we explore possible 
explanations for differences we have seen with respect to convergence and error in estimating the 
parameters for linear and logistic mixed effects models across both lme4 and RStan.  

4.1 Logistic versus Linear Mixed Models 

The most striking difference, regardless of using RStan or lme4 to estimate the model, is the 
difference between linear and logistic mixed effects models. The rate of convergence for lme4 is 
terrible with the complex logistic data.  The parameter estimates in the complex logistic data set 



are also similarly worse than RStan for lme4. Why is this not seen in linear mixed effects 
models? From an informational perspective, there simply is not a lot of information in each 
observation for a logistic model – the binary response (0 or 1) does not give as much information 
about the probability 𝑝𝑝 as an observation in a linear model gives about the true 𝑦𝑦.  It becomes 
harder to find solutions (iteratively) for the logistic model and the statistical properties of the 
fixed effects estimates themselves differ in very meaningful ways from those produced in a 
linear mixed effects model (Molensberghs & Verbeke, 2005:255-259).  

4.2. A fully specified Bayesian Mixed Effects Model 

Assessing the underlying estimation algorithm in lme4 is beyond the backgrounds of both 
authors, but we have some ideas that do not point to a failure in lme4, but rather to the benefit of 
using a bigger model (i.e. with more constraints). The weakly informative priors put forward in 
Section 2 make reasonable assumptions about the data that help locate optimal parameter 
estimates when there is missing information (i.e. imbalance) or little noise in the random effects. 
Without these constraints, the lme4 algorithm tends to have difficulty locating estimates 
(especially in the imbalanced data, but still can be seen with the near-balanced data simulations).  
An imperfect analogy would be that if you misplaced your keys in your house, you probably 
should start looking around your house and not fly 12 hours away and start looking there. We 
suspect that in some circumstances the lme4 algorithm makes the 12-hour flight instead. This 
should not be taken to mean that lme4 is a “bad algorithm”— we do not know how other 
procedures would perform to estimate mixed effects models (such as nlme, SPSS or SAS 
implementations) and in many cases, as we have shown, it works well. We also fully recognize 
the difficulty in implementing these models and the computational skill required to do so. It is 
only through the development of lme4 and its widespread use that mixed effects models have 
become available in linguistics and the broader language sciences.  

4.2 Power and Mixed Effects Models 

We have ignored the issue of sample size in this study to control for the effect of balance and 
minimum variance.  Sample size and statistical power, obviously are important to researchers. 
Statistical power, intuitively, is the likelihood of detecting a true statistically significant result if 
there is one present in the data.  Underpowered studies (i.e. those without enough observations to 
reliably detect real effects) are very problematic because they increase the likelihood of Type M 
(magnitude) and Type S (sign) errors (Gelman & Carin, 2014).  This means that having a smaller 
than necessary sample size makes overestimating effects and estimating them in the wrong 
direction more likely.  The problem, of course, with doing power analysis outside of a small toy 
design is fixing reasonable windows on the parameters (e.g. what in 2.2.2 would be reasonable 
values for an analysis if there were more predictors, a covariate and items thrown in as well).  
Our results with the small window of sample size we manipulated, from 30 to 60 subjects, do not 
indicate that likelihood of convergence within this window is affected by sample size.  We do 
not anticipate that finding to hold with larger windows of sample sizes and more complex 
designs. More broadly, there is some evidence in the applied statistical literature that many 
linguistic studies with a mixed effects model design (linear or other otherwise) are woefully 
underpowered. Ryoo (2011) found that when both random and fixed structure is in doubt, for his 



simulated data, that only at about 200 subjects were the analyst able to correctly identify the 
appropriate model for a linear mixed effects model. Moineddin, Matheson and Glazier (2007) 
found that in a very simple design with one within cluster covariate, that at least 50 clusters with 
50 within cluster observations were needed in a logistic mixed effects model to generate reliable 
estimates.  We expect that number, for the logistic mixed effects model, to increase as 
complexity is added to the design.  

5. Conclusions 

With regard to the behavior of mixed effects models themselves, we have more questions at the 
end of this set of experiments than answers. While we have shown rather conclusively that mixed 
effects models as currently implemented by lme4 have problems with imbalanced data and 
binary responses, there are still several issues to be addressed.  We do not know what the 
likelihood of convergence would be for models with true zero random effects added into the 
model or if the RStan implementation we present here would perform better.  We also do not 
know what adding more subjects would do to this and while we sample on an interval of 30 to 
60. We anticipate some readers thinking that if we had “enough” subjects for a logistic mixed 
effects model, there would be a higher likelihood of convergence. Our experience is that larger 
data sets with moderate to severe levels of imbalance would have more problems converging 
than those presented in this paper.  There is a clear distinction between a binary response 
(conditioned on the binomial distribution) and a continuous response (conditioned on the 
Gaussian distribution), in probability of convergence and predicted error between lme4 and 
RStan, with the Bayesian model in RStan outperforming lme4 for logistic and imbalanced data.  
We strongly suspect that this distinction will be maintained with more diverse and differently 
imbalanced data sets.   The asymptotic approaches with unrealistic simulations to determine 
statistical model structure in much of the academic statistical literature fail to capture the 
diversity (and limits on N) present in many data sets that these models are used on.  The 
experimental approach to statistics advocated by Hodges (2014; 2016), specifically for mixed 
effects models, offers a way forward of identifying and hopefully addressing these issues in 
mixed effects models.  

Finally, we recognize the reaction of some linguists to advocating Bayesian models is something 
along the lines of “not another damn model.”  Over the last ten years, there has been much Sturm 
und Drang over which statistical model is most appropriate for data across the language sciences 
and many researchers feel overwhelmed with staying on top of new developments in their field, 
along with the seemingly ever-changing statistical requirements being asked from reviewers.  
Furthermore, there is the often unstated, but certainly present, feeling among researchers that 
those advocating newer statistical models are trying to attack established results via the back 
door of quibbling over mathematical nuances that only a statistician truly understands. Our 
response to this is simply to acknowledge that established results may be wrong and may even be 
wrong because of the statistical tools used at the time they were established. Much of the current 
replication crisis, however, is often not an artefact of insufficiently advanced statistical models, 
but what researchers do to the data before submitting it to a statistical model (Simmons, Nelson, 
& Simonsohn, 2011) or ignoring the multiverse of possible operationalizations for a given data 



set and research question (Gelman and Loken, 2013; Steegan, et al., 2016).  Further, as more 
computational power becomes widely available and more statistical advances occur, we expect 
there to be even more statistical models over the next decade to appear in the linguistic literature.  
The driving force behind any of these models past, present or future, should be how they help 
illuminate the way language at all its levels, in all its modalities and in all its social environments 
works. The fully specified Bayesian models we present here in this paper reflects a model that is 
motivated not by overturning established results, but by answering newer questions and opening 
other research programs: traditionally linguistics studies have focused on statistically 
establishing group mean differences, but in more and more complex situations, we can explore 
differences in group variance6 within a Bayesian framework (Eager, 2017a) and unaccounted for 
groups in individual differences (Drager & Hay, 2012).  
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Appendix A: Convergence by lme4 default 

MEM Type Non-Convergence 
lme4 

Non-Convergence 
RStan 

Number of 
Simulations 

Simple Linear .008 % .009 % 80,000 
Simple Logistic 22 % .002 % 20,000 
Complex Linear 14 % 3 % 2,500 
Complex Logistic 98 % <.001 % 2,500 

 

The table above has the non-convergence rates if we set the tolerance = .002 (the lme4 default).   

Appendix B: Full Generalized Additive Model Results for Section 3. 

Imbalance, Minimum Variance, Sample Size and Convergence. 

Formula: 
conv ~ fam + s(balance) + s(minvar) + s(S, k = 5) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  1.91432    0.06025   31.77   <2e-16 *** 
famLogistic -3.54700    0.08458  -41.94   <2e-16 *** 
--- 
 
Approximate significance of smooth terms: 
             edf Ref.df  Chi.sq  p-value     
s(balance) 6.071  7.253 117.994  < 2e-16 *** 
s(minvar)  2.230  2.819  40.301 1.84e-08 *** 
s(S)       1.303  1.541   1.219    0.546     
--- 
 
R-sq.(adj) =  0.481   Deviance explained = 39.2% 
UBRE = -0.15362  Scale est. = 1         n = 5000 
 
 



Accuracy of Fixed Effects in Converged Models 

Family: gaussian  
Link function: identity  
 
Formula: 
error ~ type * fam * reg + s(balance) 
 
Parametric coefficients: 
                                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)                        0.0648865  0.0048381  13.411  < 2e-16 *** 
typeb1_error                      -0.0288368  0.0068419  -4.215 2.50e-05 *** 
typeb2_error                      -0.0204869  0.0068419  -2.994 0.002751 **  
typeb3_error                      -0.0197422  0.0068419  -2.885 0.003909 **  
typer01_error                      0.1324452  0.0068419  19.358  < 2e-16 *** 
typer02_error                      0.1679870  0.0068419  24.553  < 2e-16 *** 
typer03_error                      0.1623082  0.0068419  23.723  < 2e-16 *** 
typer12_error                      0.1895573  0.0068419  27.705  < 2e-16 *** 
typer13_error                      0.1941156  0.0068419  28.371  < 2e-16 *** 
typer23_error                      0.2059077  0.0068419  30.095  < 2e-16 *** 
types0_error                      -0.0110786  0.0068419  -1.619 0.105405     
types1_error                      -0.0335315  0.0068419  -4.901 9.56e-07 *** 
types2_error                      -0.0214142  0.0068419  -3.130 0.001750 **  
types3_error                      -0.0232463  0.0068419  -3.398 0.000680 *** 
famLogistic                        0.2962872  0.0116820  25.363  < 2e-16 *** 
regStan                           -0.0015345  0.0066387  -0.231 0.817205     
typeb1_error:famLogistic          -0.1501126  0.0165158  -9.089  < 2e-16 *** 
typeb2_error:famLogistic          -0.0665941  0.0165158  -4.032 5.53e-05 *** 
typeb3_error:famLogistic          -0.0284402  0.0165158  -1.722 0.085074 .   
typer01_error:famLogistic          0.0409914  0.0165158   2.482 0.013068 *   
typer02_error:famLogistic          0.0186057  0.0165158   1.127 0.259942     
typer03_error:famLogistic          0.0479491  0.0165158   2.903 0.003694 **  
typer12_error:famLogistic          0.0104404  0.0165158   0.632 0.527294     
typer13_error:famLogistic          0.1019103  0.0165158   6.170 6.83e-10 *** 
typer23_error:famLogistic          0.0846158  0.0165158   5.123 3.01e-07 *** 
types0_error:famLogistic          -0.1641078  0.0165158  -9.936  < 2e-16 *** 
types1_error:famLogistic          -0.2052171  0.0165158 -12.425  < 2e-16 *** 



types2_error:famLogistic          -0.1022181  0.0165158  -6.189 6.07e-10 *** 
types3_error:famLogistic          -0.1225240  0.0165158  -7.419 1.19e-13 *** 
typeb1_error:regStan               0.0009412  0.0093883   0.100 0.920148     
typeb2_error:regStan               0.0008980  0.0093883   0.096 0.923802     
typeb3_error:regStan               0.0007132  0.0093883   0.076 0.939444     
typer01_error:regStan             -0.0210357  0.0093883  -2.241 0.025053 *   
typer02_error:regStan             -0.0315496  0.0093883  -3.361 0.000778 *** 
typer03_error:regStan             -0.0333225  0.0093883  -3.549 0.000386 *** 
typer12_error:regStan             -0.0355720  0.0093883  -3.789 0.000151 *** 
typer13_error:regStan             -0.0477078  0.0093883  -5.082 3.75e-07 *** 
typer23_error:regStan             -0.0382935  0.0093883  -4.079 4.53e-05 *** 
types0_error:regStan              -0.0039028  0.0093883  -0.416 0.677623     
types1_error:regStan               0.0001350  0.0093883   0.014 0.988529     
types2_error:regStan              -0.0031816  0.0093883  -0.339 0.734696     
types3_error:regStan              -0.0020526  0.0093883  -0.219 0.826936     
famLogistic:regStan               -0.1876487  0.0133129 -14.095  < 2e-16 *** 
typeb1_error:famLogistic:regStan   0.1159846  0.0188239   6.162 7.23e-10 *** 
typeb2_error:famLogistic:regStan   0.0775377  0.0188239   4.119 3.81e-05 *** 
typeb3_error:famLogistic:regStan   0.0415666  0.0188239   2.208 0.027234 *   
typer01_error:famLogistic:regStan  0.0038370  0.0188239   0.204 0.838481     
typer02_error:famLogistic:regStan  0.0112713  0.0188239   0.599 0.549324     
typer03_error:famLogistic:regStan -0.0069289  0.0188239  -0.368 0.712806     
typer12_error:famLogistic:regStan  0.0174507  0.0188239   0.927 0.353901     
typer13_error:famLogistic:regStan -0.0697000  0.0188239  -3.703 0.000213 *** 
typer23_error:famLogistic:regStan -0.0619876  0.0188239  -3.293 0.000991 *** 
types0_error:famLogistic:regStan   0.1342552  0.0188239   7.132 9.94e-13 *** 
types1_error:famLogistic:regStan   0.1868890  0.0188239   9.928  < 2e-16 *** 
types2_error:famLogistic:regStan   0.1047386  0.0188239   5.564 2.64e-08 *** 
types3_error:famLogistic:regStan   0.1276494  0.0188239   6.781 1.20e-11 *** 
--- 
Approximate significance of smooth terms: 
             edf Ref.df     F p-value     
s(balance) 8.257  8.852 214.7  <2e-16 *** 
--- 
R-sq.(adj) =  0.247   Deviance explained = 24.7% 
GCV = 0.050307  Scale est. = 0.050276  n = 105350 
 


