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Over the last 30 years statistical algorithms have been developed to analyse datasets
that have a hierarchical/multilevel structure. Particularly within developmental and
educational psychology these techniques have become common where the sample has
an obvious hierarchical structure, like pupils nested within a classroom. We describe
two areas beyond the basic applications of multilevel modelling that are important to
psychology: modelling the covariance structure in longitudinal designs and using
generalized linear multilevel modelling as an alternative to methods from signal
detection theory (SDT). Detailed code for all analyses is described using packages for
the freeware R.

I. Introduction

There has been a large increase in the use of multilevel models, in some form and
by different names, within the social and medical sciences over the past decade.
The number of computer programs that have specialized multilevel modules
has also increased from a few specialist programs in the early 1990s, like ML2
(a precursor to MLwiN) and HLM, to being included in general packages like SAS,
SYSTAT, and SPSS.

Different authors use different notations. We will use two notations in this paper.
First, we follow Goldstein’s (2003) notation, which we feel is the simplest for presenting
multilevel models when describing the statistics. The second notation is that used in R,
which we use to describe the computations for the examples. Using the first notation,
the standard linear multilevel model with a single predictor variable is:

Vi = B0+ Blx; +u; + ey

where j is the subscript for the different groups and 7 is the subscript for the different
individuals. For this model, the intercept for group j is estimated by PO + u; an
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estimate of the population intercept (0) and variation around it for the individual
groups (u)). The e; are the individual level residuals. In this equation all the groups
are assumed to have the same slope B1. It is usually assumed that the #; and the e,
are normally distributed around O with unknown standard deviations, o, and o,.
The equal slope assumption can be relaxed by letting the 1 vary such that
B1; = B1 + ul;, where ul; is a random variable usually also assumed to be normally
distributed. Similarly heteroscedasticity as a function of x,; in the level-1 residuals can
be modelled by including additional level 1 random variation that is function of x;;
(for example, x,;-el;). Different assumptions can be made and tested for correlations
among the variables. More predictor variables can be added for multiple multilevel
regressions, and if x; is replaced with a series of dummy variables, then multilevel
ANOVAs can be analysed. These, in a sense, are the standard multilevel models and
there are several introductions to these for psychologists (e.g. Hoffman & Rovine,
2007; Wright, 1998).

The purpose of this paper is to go beyond the basic multi-level model and to describe
some of the techniques that can be particularly beneficial for psychologists. This paper
is written for psychologists with good quantitative skills and not for statisticians. Where
there is some statistical debate about, for example, different algorithms, we direct
readers to where they can read more about the debate. More detailed reviews, in
ascending order of the statistical knowledge they assume, are: Kreft and de Leeuw
(1998); Hox (2002); Singer and Willett (2009); Bryk and Raudenbush (2002); Pinhiero
and Bates (2000); and Goldstein (2003). We take the view that most quantitative
psychologists are more interested in how to run a particular model, than specifics about
the algorithms. Because of this we focus more on computer implementation than
mathematics.

Each multilevel package has a different interface and different capabilities;
therefore the choice of which to use is important. To make this paper useable
by the largest audience we chose to present these models using the freeware
R (R Development Core Team, 2008), which can be downloaded from the web
(see Appendix). While general packages like SAS, SPSS, S-Plus, and SYSTAT are
widely available to most academics, they are expensive without a site licence. Other
packages like aML, MIXOR (which is now superseded by the commercial SuperMix),
and WinBUGS are free, but are more specialized than R so are less useful for other
analyses. MLwiN (Rasbash, Steele, Browne, & Prosser, 2005) was another contender
both because it is in our opinion the state-of-the-art multi-level package and also that
it is currently free for UK users (http://www.cmm.bristol.ac.uk/MLwiN/ordering/
ac-uk.shtml). However, given the international readership of this journal we opted
for R. Crawley (2005, 2007) has written an introduction to R that is suitable for the
same audience as this paper and a detailed manual. For more advanced coverage see
Chambers (2008) and for an introductory book see Venables, Smith, and the R
Development Core Team (2008). In ascending order of statistical knowledge
assumed, Wright and London (2009), Faraway (2004, 2006), and Fox (2002) provide
tutorials on running regressions using R. There are different packages for R that
estimate multi-level models. We will use nlme (Pinheiro & Bates, 2000; Pinheiro,
Bates, DebRoy, & Sarkar, 2008) and 1lme4 (Bates, 2007). These two packages have
similar syntax and can do similar things. nlme has in-built correlation
structures which makes it better suited for our first example and lme4 allows
generalized linear models (GLM) which makes it better suited for our second
example.
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We use courier for R functions, objects, and output in the text. We assume that readers have R
(2.6 or higher). To download R go to http://cran.r-project.org/ and following the instructions. nlme
and 1me4 can be installed and loaded from within R by:

install.packages (c(“1lmed4”, “nlme”)), library(lme4), and library (nlme).
Some knowledge of R is assumed (Venables ez al., 2008). All of the code for running the analyses
is on this paper’s website (http://www.sussex.ac.uk/Users/danw/MLM.htm). The example
data are part of the sdtalt package (Wright, Horry, & Skagerberg, in press) which can be
installed and loaded in the same way.

This is a pedagogical piece. This is why R code and output are included in the text.
No new statistical procedures are described. We look at two situations, common in
psychology, and show how extensions of the standard multi-level model presented
above can be used to analyse the data. These are longitudinal designs and using multi-
level logistic regression as an alternative to methods from SDT.

I. Example #l — Longitudinal designs: Child birth

To download data:

ayers <- read.table("http://www.sussex.ac.uk//Users//danw//MLM//
ayers.dat")

or

install .packages ("sdtalt")
library (sdtalt)

then

attach (ayers)

Ayers’ (1999) longitudinal study of women’s mental health during and after
pregnancy is used to illustrate examining possible variance-covariance structures.
There were four time points (during pregnancy, 1 week, 6 weeks, and 6 months after
birth) and 287 women in total. We will look at their anxiety scores, which range from 0
to 21, at these four time points: anx1; anx2; anx3; and anx4. Here are the values for
the first few cases (the dep (depression) variables are not considered here):

ayers[1l:3,]

partno depl dep?2 dep3 dep4 anx1 anx2 anx3 anx4
1 67 0 0 0 0 3 2 1 2
2 22 0 0 NA NA 2 0 NA NA
3 40 0 0 0 0 6 5 6 2

Some of the values are missing and are labelled NA in the data file (e.g. participant
#22 for the 3rd and 4th sessions). There are a variety of different methods for dealing
with missing values (Little & Rubin, 2002), often estimating some value for each missing
value. These can be computationally cumbersome with traditional within-subject
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approaches to data analysis. Because of this, in the past researchers would go to great
lengths to include all participants at each testing phase, make sure that the testing
phases were all at the same time, and often would throw out participants with
incomplete data. The multi-level approach solves some of these computational
difficulties because the individual measurements are treated as randomly sampled
elements nested within the individual and a variable for time can be used in the models.
Conceptual difficulties still remain with the multi-level approach if the missing values
are not missing at random, but the computational means for including incomplete cases
are addressed.

The data were positively skewed for each anxiety variable (0.66, 0.90, 1.10, and 0.91,
for anx1 to anx4). The models in this example assume that the residuals are normally
distributed. While having normally distributed response variables does not imply that
the residuals will be normally distributed (nor vice versa), it was the case here and
therefore we transformed the variables. Several transformations were tried and the
square root of the variable plus .5 was used. Let anx1 = y/anx1 + .5 or in R:

anxl < - sgrt (anxl + .5); anx2 < - sgrt (anx2 + .5)
anx3 < - sgrt (anx3 4+ .5); anx4d < - sgrt(anx4d + .5)

The new skewness values are: —0.12, 0.17, 0.23, and 0.10.

The numbers of women completing each wave were 251, 244, 219, and 201, and
the means at these times were: 2.59; 2.19; 2.09; and 2.14, respectively. Complete data
are available for only 177 of the 287 women. As mentioned above, with the
traditional approach missing values must be dealt with. The two simplest approaches
for dealing with missing data are: exclude incomplete cases and calculate measures
for all pairs with data. The next step in analysing these data should be to look at the
relationships between pairs of these variables, both graphically and numerically.
Figure 1 shows the scatterplots, the histograms, and in the upper triangle the
correlations and their 95% confidence intervals. The code for Figure 1 follows the
example for pairs on the R help facility. From Figure 1, it is clear that the anxiety
scores are all positively related.

Table 1 shows the correlations between data at the four time points in the lower
triangle, the covariances in the upper triangle, and the variances along the diagonal. The
left side of the table shows the values only for participants with complete data and the
right side for all pairwise complete. The relationship between covariances, correlations,
and variances is simple and is important for understanding R output. The covariance
between variables x and y is: cov,, = sdysd,cor,,. In R the correlation and covariance
tables can be combined into a single table, like Table 1, with:

anxvars < - cbind (anxl, anx2, anx3,anx4)

coranx < - cor (anxvars,use = "complete.obs")

covanx < - cov (anxvars,use = "complete.obs")

cmatl < - upper.tri (covanx,diag = T)*covanx + lower.tri

(coranx) *coranx

coranx?2 < - cor (anxvars,use = "pairwise.complete.obs")

covanx?2 < - cov (anxvars,use = "pairwise.complete.obs")

cmat2 < - upper.tri (covanx2,diag = T)*covanx2 + lower.tri
(coranx?2)*coranx2

print (cbind (cmatl,cmat2),digits = 2)
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Figure |. Scatterplots (lower triangle), histograms (diagonal), and correlations (upper triangle) for
Ayers’ (1999) data. All pairwise complete data are included.

There are a few things to note from Table 1. First, the correlations are all substantial and
positive. Second, the correlations tend to be slightly higher when the variables are
nearer in time (for the pairwise complete data: .47; .54; .61, for one step away compared
with .45; .49, for two steps away; and .43 for three steps away). In many correlation
matrices these differences are more pronounced, but it is still worth examining if this
pattern should be taken into account here.

Table I. The correlations (lower triangle), variances (diagonal), and covariance (upper triangle) for the
four waves of data for anxiety from Ayers (1999)

Excludes incomplete All pairwise data included
anx| anx2 anx3 anx4 anx| anx2 anx3 anx4
anx| .87 4l 35 37 .87 42 .38 .36
anx2 46 9l 48 41 47 .94 49 43
anx3 43 .57 .76 47 45 .54 .87 .50

anx4 44 A8 .60 .83 43 49 .61 .86




444  Daniel B. Wright and Kamala London

Although this is not a multi-level dataset per se, researchers now often conceptualize
repeated measures data as multi-level, and use multi-level algorithms to circumvent some
of the problems of the standard repeated measures ANOVA (Singer & Willett, 2003). The
first step is restructuring the dataset so that there is a single response variable, anx, a
session variable called session, and a participant number (called partno?2).

anx <- c(anxl,anx2,anx3,anx4)
session <-rep(l:4,each = length(anxl))
partno2 < - rep (partno, 4)

The missing values were also removed. In R this is done by:
detach (ayers)
ayers <-na.omit (data.frame (partno2, session, anx))
rm(partno2); rm(session); rm(anx)

attach(ayers)

Here are the first few lines for these data:

ayers[1l:3,1]

partno2 session anx
1 67 1 1.870829
2 22 1 1.581139
3 40 1 2.549510

There are other ways to restructure the data. In some packages when creating a
new multi-level structure the original variables would no longer be active. Here they
are, so anx1 still exists. This is why partno2 was used rather than partno, and why
the remove function (rm) was used to clean-up the working environment (other
variables could also be removed). Most R statistics functions allow for the inclusion or
exclusion of missing values, but here all NAs were removed with the na . omi t function.
The new data file ayers has 915 lines for the 915 anxiety measurements
(G.e. 251 + 244 + 219 + 20D).

The main substantive question in Ayers (1999) was about differences in anxiety at
the different points in time and how these relate to other factors. Here we concentrate
on finding a good correlation structure. Sometimes researchers are specifically
interested in the correlations among variables, but an obvious question is whether
choosing a good correlation structure makes a difference for estimating the fixed effects.
The short answer is that it usually does not greatly affect the estimates of the fixed
effects, but it often affects the precision of these estimates. Therefore, it is important to
explore if confidence intervals or p values are to be reported.

gls — generalized least squares from nlme library (Pinheiro & Bates, 2000)

gls (respvar ~ covariates, weight = variance function,
correlation = correlation structure)

Example variance and correlation functions (also available for 1me):

varIdent (form=~ 1 | repeated measure)

corARl (form=~ 1| level)
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It is necessary to examine both the variances of the individual measures and the
correlations among the measures. We will use the gls function from nlme (Pinheiro &
Bates, 2000; Pinheiro et al., 2008), and when using this function these two facets
(variances and correlations) are considered separately using the weight and the
correlation options. The nlme package has several built-in variance and correlation
structures. For the variance terms, they can all be equal (assume homogeneity), all be
different with no particular relationships among them (unstructured heterogeneity), be
a function of the time series (e.g. variances closer in time more similar), or be a function
of other variables (e.g. variances a function of predicted values).

Similarly, the variables can be assumed to be uncorrelated as in a between-subjects
design, have equal correlations, all have different correlations without any particular
pattern, or a variety of correlation structures. Most of the structures in which
psychologists would be interested come with nlme, but the user can construct
their own (Pinheiro et al., 2008). The most common pattern for longitudinal studies is
first order autoregressive (AR1) where the correlations steadily decrease with distance
from the main diagonal. Table 2 shows the patterns of standard deviations and
correlations for some of these models (assumed covariances can be calculated using
COVyy = 8dy8d),COry).

The default contrasts for an ordered variable (session) are polynomials (linear,
quadratic, etc.) and these will be used for the fixed part of the model. The default
estimation procedure for these models is restricted maximum likelihood (REML) and
this will be used for this example. The main alternative is maximum likelihood (set
method = “ML"). Here is the code for these 10 models. The model, mij, corresponds
to the /th row and jth column of Table 2. The only difference between the first five and
the last five models is the standard deviations are allowed to differ in the later models.

mll < - gls(anx ~ as.ordered(session))
ml2 < - gls(anx ~ as.ordered(session),

correlation = corCompSymm(form= ~ 1 |[partno2))
ml3 < - gls(anx ~ as.ordered(session),
correlation = corARl (form=~ 1 |partn02) )
ml4 < - gls(anx ~ as.ordered(session),
correlation = corARMA (form=~ 1 |partno2,p =3,g=0))
ml5 < - gls (anx ~ as.ordered(session),
correlation = corSymm(form=~ 1 |partn02) )
m21 < - gls (anx ~ as.ordered(session),
weights = varIdent (form= ~ 1| session))
m22 < - gls (anx ~ as.ordered(session),
weights = varIdent (form= ~ 1| session),
correlation = corCompSymm (form=~ 1 \partnoZ) )
m23 < - gls (anx ~ as.ordered(session),
weights = varIdent (form= ~ 1| session),
correlation = corARl (form=~ 1 |partn02) )
m24 < - gls (anx ~ as.ordered(session),
weights = varIdent (form= ~ 1| session),
correlation = corARMA (form=~ 1 |partn02,p =3,g=0))
m25 < - gls (anx ~ as.ordered(session),
weights = varIdent (form= ~ 1| session),

correlation = corSymm(form= ~ 1 |partno2))
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These models can be compared with the anova function:

anova (mll,ml2,ml13,ml4,ml5, m21,m22,m23,m24,m25)
Model df AIC BIC logLik Test L.Ratio p-value

mll 1 5 2504.864 2528.937 —1247.432

ml2 2 6 2266.170 2295.057 —1127.085 1lwvs2 240.69381 < .0001
ml3 3 6 2294.733 2323.621 —1141.367

mld 4 8 2265.838 2304.354 —1124.919 3vs4 32.89553 < .0001
ml5 5 11 2265.855 2318.815 —1121.928 4vs5 5.98259 .1125
m2l 6 8 2510.231 2548.747 —1247.116 5vs 6 250.37579 < .0001
m22 7 9 2271.064 2314.395 —1126.532 6vs 7 241.16657 < .0001
m23 8 9 2298.414 2341.745 —1140.207

m24 9 11 2270.274 2323.234 —1124.137 8vs 9 32.14057 < .0001
m25 10 14 2271.213 2338.616 —1121.606 9vs 10 5.06100 .1674

This paper’s web page includes details of the other models and how to extract the
observed variance/covariance matrices from the output (see also http://www.ats.ucla.
edu/stat/r/examples/alda/ch7.htm). The Akaike’s information criterion (AIC) and
Bayesian information criterion (BIC) are often used to choose among models (smaller
numbers mean better fits); see Burnham and Anderson (2004) for details. All the models
that assume equal standard deviations are better than their heterogeneous counterparts
on these measures. Among the homogeneous models the one with all correlations equal
(m12) and AR3 (m14) appear the two best. BIC penalizes complex models more than
AIC, so it prefers the simpler model, and AIC prefers the more complex one. There is
little to choose between these. Statistically, the more complex model is not significantly
better, x*(2) = 4.33, p = .11, ! which suggests m12 is better, but any theory of anxiety
would predict correlations closer in time to be higher than those more distance. This
suggests m14 should be preferred. The choice between these will depend on the
individual user’s needs. Because a priori it would be expected that the different
diagonals should have different correlations, we would opt for the more complex
model.

2. Example #2 — Response times and accuracy in memory recognition

Since the 1970s (Banks, 1970; Lockhart & Murdock, 1970), the norm is to use statistics
from SDT (see Macmillan & Creelman, 2005; Stanislaw & Todorov, 1999), to analyse
memory recognition data. While there are exceptions, most of this research has used the
equal variance Gaussian/normal model where the two most used statistics are ¢’ as a
measure of memory accuracy and C as a measure of bias. Within R the following
function calculates d’ and C for any set of hits, false alarms, misses, and correct
rejections, or for vectors of these quantities if there are multiple participants, in which
case it returns @’ and C values for each participant.?

sdtl < - function (hits, fas,misses,cr)

" The x? value is two times the difference in their log-likelihoods: 2(1,127.085 — 1,124.919).

2TheR package sdtalt calculates these and |3 other common statistics (e.g. A’, odds ratio, eta, and weighted kappa) from
signal detection theory, along with the confidence intervals for the sample means of these statistics (Wright, Horry, &
Skagerberg, in press).
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{d< - gnorm(hits/ (hits + misses)) - gnorm(fas/ (fas + cr))
csdt <- — .5*(gnorm(hits/ (hits 4+ misses))

+ gnorm(fas/ (fas + cr)))
return (cbind(d, csdt) )}

DeCarlo (1998) described how this is equivalent to a GLM, the probit regression, for
each participant (see Faraway, 2006; Wright & London, 2009, for introduction to GLMs
in R). Thus, the following function produces the same result as sdt1 for a single set of
values using the glm function. The first two lines inside the function reorganized the
data into two variables.

sdt2 < - function(hits, fas,misses, cr)
{sayold <-c(rep(l,sum(hits, fas)),rep(0,sum(misses,cr)))
old<-c(rep(.5,hits),rep(—.5,fas),rep(.5,misses),rep(—.5,cr))
model <- glm(sayold ~ old, family = binomial (1ink = “probit”))
d < -modelscoef[2]; csdt <- -modelS$Scoef[1]
return(c(d,csdt))}

Both sdtl(65,6,34,75) and sdt2(65,6,34,75) produce d' =1.85 and
C = 0.52. Pictorially, Figure 2 shows these values.

These two methods are equivalent for calculating d’ and C, so if these statistics are all
that is needed then either can be used. Using sdt 2 allows access to other information, so
if summary (model) was embedded in sdt 2 then it would show that, for example, the
standard error of d’ for these data is 0.47. The flexibility of using the g1m function means
that other methods can also be used. In medicine, the logistic model is more common that
than the Gaussian/normal model (Zho, Obuchowski, & McClish, 2002). This can be
found by changing sdt 2 so that it uses the default family = binomial link function,
the logit. The coefficient of interest for the logistic model is the log of the odds
ratio, In(OR). Conceptually, In(OR) can be thought of in a very similar way to d’. While
d' = z(hit rate) — z(false alarm rate), In(OR) = In(odds of a hit) — In(odds of a false
alarm). An approximate relationship between them is In(OR) = 1.6d’, and this holds
except when d’ is either very large or very small (i.e. |d'| > 4). For the example above,
In(OR) = 3.17 which is about 1.6 times the observed d’. We will use the logistic model
because that is the natural link function for the binomial distribution (Hoffmann, 2004).

Another way in which the GLM approach is flexible is that predictor variables which
vary trial-by-trial, like confidence or response time, can be included within the model.

—

Distribution
with signal

Distribution
without signal

Memory strength (in SDs)

Figure 2. A pictorial representation of d = 1.85 and C = 0.52 for the equal variance normal signal
detection theory model.
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This is difficult to do with the standard approach to SDT. The norm within most memory
recognition research is to calculate d (or other measures) for each participant,
sometimes separately for different within-subject conditions, and compare these
aggregate measures. One of the main arguments for multi-level modelling is to move
away from analysing aggregate level data like these.

lmer — (generalized) linear mixed effects regression from 1me4 library (Bates, 2007)
lmer (respvar ~ covariates + (random variables | levels),
family = binomial (link = "logit"))
The default family is Gaussian with identity link function. Use family = binomial for
logistic regression.

In this example the function 1mer is used rather than 1lme or gls because lmer
allows generalized linear multi-level modelling. 1mer was not used in the last example
because it does not have built-in covariance structures. For 1mer the random effects are
placed within the model. Thus, m12 from the first example could be written as:

lmer (anx ~ as.ordered(session) + (l|partno2))

The output is slightly different because different estimations procedures are used, but
the basic models are equivalent.

With 1mer for GLMs, maximum-likelihood estimates of the parameters are found
with an iterative procedure. The 1me4 manual lists three approximation methods
(Bates, 2007). In order of their level of accuracy and their computation time, these are:
penalized quasi-likelihood (PQL); Laplacian approximation (Laplace); and adaptive
Gaussian quadrature approximation (AGQ). Bates recommends using Laplace, so it is
used here. Details of 1me4 are in Bates (2007, http://cran.r-project.org/web/packages/
Ime4/vignettes/Implementation.pdf).

We begin with a simple example where traditional SDT could also be used: showing
that white people have better recognition memory for white faces than for black faces.
We then add in a continuous predictor variable that varies by trial, the log of the
response time. The data are from the white English participants of Wright, Boyd, and
Tredoux (2003).

To download data:

memrec <- read.table(

"http://www.sussex.ac.uk//Users//danw//MLM/ /memrec.dat",header = T)
or

library (sdtalt)

then

attach (memrec)
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The data are in memrec. The variables are: face; saysold; faceold;
facewhite; 1lntime; and partno. Figure 3 shows the frequency of old responses in
the different conditions. The proportion of hits is about the same for white and black
faces, but the number of false alarms is much greater for black faces. This is consistent
with the memory literature (Horry & Wright, 2008).

The model to test for what is called the own race bias compares modell and
model2 below. modell includes the main effects for whether the face was previous
shown (faceold, which measures accuracy), how many of these were white faces
(facewhite), and it allows the intercept to vary for people. In SDT terminology
this corresponds to people having different response criteria. In statistical notation it is:

logit(p[saysold;]) = B0 + B1 facewhite;; + B2 faceold;; + u; + e

where the e; are assumed to be binomially distributed and the #; are assumed to be
normally distributed. In R this is:

modell < - lmer (saysold ~ facewhite + faceold + (l|partno),
family = binomial, method = "Laplace")

Writing summary (modell) produces statistics for the overall fit of this model
and the individual coefficient estimates: 30 = —0.99; 1 = —0.51; B2 = 2.02; and
var(u;) = 0.12. We can conclude that people say ‘old’ more to black faces and to items
that are old. Both of these effects are evident from Figure 3.

model2 adds the interaction between the two predictor variables so it tests whether
accuracy depends on whether the face was white or black. The update function is
convenient for incrementally building models.

model2 < - update (modell, . ~ . + facewhite:faceold)
anova (modell,model2)
Df AIC BIC logLik Chisg Chi df Pr(>Chisq)
modell 4 3455.4 3479.5 —1723.7
model2 5 3422.2 3452.3 —1706.1 35.225 1 2.937e — 09***

0.6 7

B Black faces
B White faces

0.5

0.4 - Hits—>

False alarms

0.3

0.2 1

0.1

Probability of an old response

0.0 -

New faces Old faces

Figure 3. The probability of an ‘old’ response for the data from white English participants in Wright
et al. (2003).
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The own race bias is observed, Xz(l) = 35.23, p < .001. Participants were more
accurate responding to white faces. The coefficient for whether something was
previously shown (here faceold) measures discriminability (a measure of memory)
and interactions between this and other variables show whether these other variables
moderate accuracy. The fixed effects for mode12 can be found either by typing mode12
(which produces the fixed effects and a lot of other output) or by fixef (model2).

fixef (model2)
(Intercept) facewhite faceold facewhite:faceold
— 0.7633022 —1.0868220 1.5656096 1.0168033

The estimated parameter for faceold is 1.57. This estimates In(OR)ppck- The
interaction was 1.02, so the estimate of In(OR)ypje is 1.57 4+ 1.02 = 2.59. The probit
model can also be used and the multi-level estimates for d},, , and d., .. by using the
probit link.

model2a < - update (model2, family = binomial (1ink = probit))

fixef (model2a)
(Intercept) facewhite faceold facewhite:faceold
—0.4719156 —0.6335219 0.9652778 0.5930885

The estimated value for dy, , is 0.97 and for d. ;.. is 0.97 + 0.59 = 1.56. Notice that
the In(OR) = 1.6 d’' approximation holds.

If we had calculated In(OR) and &' separately for each individual for each race, the
means of these would be In(OR)pex = 1.69, In(OR)yhite = 5.47, diy, = 1.02, and
di e = 2.32. Notice that these values are very different from those found with the
multi-level model for white faces and that the In(OR) = 1.6 ¢’ approximation does not
hold for the white faces (5.47/2.31 = 2.37). This is because some individuals had
extremely high values for these (many ¢’ > 4) and that the mean is not a robust statistic.
The 20% trim means are: In(OR)pyex = 1.74; In(OR)ghie = 3.02; df;, . = 1.06; and
dipie = 1.77. The approximation now holds and these values are closer to those found
with the multi-level approach.

It is worth exploring if participants’ accuracy varies. This can be done by changing
the random part of the model to (faceold|partno). This adds both a term for the
variance of accuracy and the covariance between accuracy and responding old, and
therefore there is an increase of two degrees of freedom in the model. Including this
term increases the fit of the model, X2(2) = 12.59, p = .002. It can be written with the
following and compared with model2. The difference is statistically significant,

X2(2) = 12.59, p = .002, although the BIC value is increased.

model2b < - Imer (saysold ~ faceold*facewhite + (faceold|partno) ,
family = binomial,method = "Laplace")
anova (model2,model2b)

df AIC BIC logLik Chisqg Chi df Pr (>Chisq)
model2 5 3422.2 3452.3 —1706.1
model2b 7 413.6 3455.7 —1699.8 12.592 2 0.001844*x*

Up to this point traditional SDT could have been used to reach the same basic
conclusion, providing care was taken to use robust estimators. The next step involves
adding a continuous variable which varies by trials: the log of the response time
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(Intime). The theoretical question is about the relationship between response time
and accuracy for the different faces. Much research shows quicker responses tend to be
more accurate, but the exact relationship is unclear (Weber, Brewer, Wells, Semmler, &
Keast, 2004). Our question is whether the relationship is similar for old and new faces,
and white and black faces.

model3 < - update (model2b, . ~ . + Intime)
anova (model2b,model3)
df AIC BIC logLik Chisqg Chi df Pr(>Chisq)
model2b 7 3413.6 3455.7 —1699.8
model3 8 3415.4 3463.4 —1699.7 0.2781 1 0.5979

The main effect of time was non-significant, Xz(l) = 0.28, p = .60, but is retained as
interactions including this term are added to the model. The best model in terms of AIC,
BIC, and significance tests, includes only adding the interaction between 1ntime and
faceold: improvement x%(1) = 52.43, p < .001.

modeld < - update(model3,. ~ . 4+ Intime: faceold)
anova (model3,model4d)
df AIC BIC logLik Chisqg Chi df Pr(>Chisq)
model3 8 3415.4 3463.4 —1699.7
model4d 9 3364.9 3419.0 —1673.5 52.429 1 4.461le — 13***

The coefficients for this model are:

fixef (model4d)

(Intercept) faceold facewhite

— 7.5124112 13.3062753 — 1.0654064
Intime faceold: facewhite faceold:1lntime
0.8583524 0.9949194 —1.5010712

The coefficient associated with the faceold:1lntime interaction is negative and
therefore accuracy decreases with increased response time. The lack of other inter-
actions improving the model shows that the relationship between time and accuracy is
similar for white and black faces.

In Figure 4 the probability of a correct response by whether the face was new
(where it is a probability of a correct rejection) or old (where it is a probability of a hit) and
the race of the face is plotted with response time. We calculated the predicted probabilities
using the estimates above and transformed the predicted values with e*/(1 + e¥),
the inverse of the logit transformation. We then changed these predicted values to 1 minus
themselves for new faces, so that the probabilities were for correct responses.

mod4d < - —7.51 4+ faceold*13.31 + facewhite* — 1.07 4+ 1Intime
*0.86 + faceold*facewhite*.99 + faceold*lntime* — 1.50

predprob <- exp(mod4) /(1 4+ exp(modd))

rightprob < - predprob*faceold 4+ (1 — faceold)*(1 — predprob)

This shows that after controlling for response time the probability of correct response is
highest for new white faces.
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Figure 4. The probability of a correct response for previously seen and previously unseen white and
black faces, with the raw response times, for the white English participants from Wright et al. (2003).

There are several other extensions to the multi-level GLMs that can be explored,
including tests of the variance/covariance matrix at each level of the model, as discussed
with the first example. It is also often worth examining the size of var(e;) to see if there
is more or less variation than predicted from the binomial distribution (Browne,
Subramanian, Jones, & Goldstein, 2005; Wright, 1997). This is reported with the
summary information and for these data it is very similar to that predicted by the binomial
distribution. Another extension is to model more flexible relationships using multi-level
generalized additive models (see Wood, 20006, for details, and also Ng, Carpenter,
Goldstein, & Rasbash, 2006). Wood (2006) has written a specialist package within R to
run these, but it can also be done with the bs function from the splines library. bsisa
B-spline which is a set of polynomials linked together smoothly at knots (see Wood, 20006,
for more details). The following model allows the relationship between response time
and responding old to be modelled in a more flexible way which increases the chances
of detecting other effects. This is a multi-level gamcova (Wright & London, 2009).

model8 < - Imer (saysold ~ faceold*facewhite + bs(lntime,df =4) +
faceold + Intime: faceold + (faceold|partno) , family = binomial,
method = "Laplace")

anova (model4d,model8)

df AIC BIC logLik Chisg Chi df Pr (>Chisq)
modeld 9 3364.9 3419.0 —1673.5
model8 12 3359.2 3431.2 —1667.6 11.751 3 0.008288**

Finally, the usual practice in memory recognition research is not to worry about
differences among the stimuli within any category. Within linguistics there is a long
tradition of taking into account the differences among stimuli (Clark, 1973). Baayen,
Davidson, and Bates (2008) show how to include a random variable in their models
using 1mer. This creates what is called a cross-classified model. In this data set there is a
variable, face, for the face number.
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model9 < - Imer (saysold ~ faceold*facewhite + Intime*faceold + (1|face)

+ (faceold|partno) , family = binomial, method = “Laplace”)
anova (modeld,model9)
df AIC BIC logLik Chisg Chidf Pr(>Chisq)
model4d 9 3364.9 3419.0 —1673.5
model9 10 2896.6 2956.7 —1438.3 470.27 1 <2.2e — 16*%**

As can be seen, this greatly improves the model. This shows that there were more
‘old’ responses for some faces than for others.

2.1. Summary — Memory recognition

‘While traditional methods from SDT are often used for memory recognition studies, they
present two difficulties. First, they are usually done by calculating measures (like d') for
each individual and then using these aggregate measures in analysis. Outliers,
particularly those based on few cases, can have a large impact. This is one of the main
reasons for multi-level modelling. Second, if interested in a covariate which can take
many possible values, like response time, the standard SDT methods are difficult to
implement since the covariate has to be split into bins and SDT measures created for
each person for each bin. This can create lots of problems particularly when there are
few or unequal numbers of observations per person per bin because the estimates for
the individual bins can be unstable.

The multi-level modelling approach is well suited to overcome these problems.
Because the standard SDT approach is equivalent to a GLM (DeCarlo, 1998), we use
GLMs (in particular logistic regression, although link = “probit” could be used
throughout this section) for analyses, treating trials as nested within participants.
Although multi-level GLMs have been used with memory recognition data for many
years (e.g. Wright & McDaid, 1996), they are still not very common. While SDT has a
long history within memory research, and has been very useful in theory construction, it
is likely that the flexibility of the approach used here will mean multi-level models
become the norm for recognition data in years to come. These have the methodological
advantage that researchers can use more variables that differ by trial within their
designs. In this example response time was included which given the number of studies
now conducted via computer is a variable that could be included in most studies.

3. Summary

Multilevel modelling is one of the hot statistical methods in several areas of science,
including psychology. While the traditional example has been with people nested
within larger clusters (e.g. pupils nested within classrooms), because of the great
amount of medical research with multiple measurements per person, multi-level models
with the person as the higher order level are now common (perhaps more common).
Harvey Goldstein, one of the pioneers of this approach, talks about how there are
hierarchies everywhere. Multilevel modelling is now one of the tools expected for social
and psychological scientists.

We end with a caveat. While multi-level models are now expected to be used in areas
where the hierarchical structure is obvious, more research is necessary to see how
useful they are when the levels are not such clean structures and where the components
at different levels cannot be viewed as some random sample of those at that level. This
was Cohen’s (1976) main criticism of Clark’s (1973) language as a fixed effect fallacy.
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Perhaps some of the resampling techniques (and local causal inference) will be applied
to these situations. As with all statistical procedures, it is critical to examine the data
carefully and consider the alternatives before running any statistical test. No amount of
statistical sophistication can fix a bad design.
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Appendix
R was used for these analyses. To download R go to http://cran.r-project.org/ and
following instructions for Linux, MacOS X, or Windows.

The data and detailed code for R 2.7 are available on http://www.sussex.ac.uk/
Users/danw/MLM.htm. The output is annotated. The code and pages will be updated as
needed. You may need to access libraries including nlme and 1me4. To install and to
load these use the install.packages and library functions. For example:

install.packages ("lmed")
library (1lmed)

The data are both on the paper’s website and part of the sdtalt package which can be
installed and loaded.



