#
# Crash Course in Programming R 
# 
# 1  Preliminaries 
#
# (a) About the Context of this material  
#
# This assumes that you are sitting at your computer 
# with R (version 2.5 or later) open and that your tutor has explained 
# some very elementary ideas on the main R console window
# and command file and libraries (ie packages)
# 
# The R Console window acts as an output (results) window
# and as command interface window -ie you can type R commands
# at the prompt
#
# This crash course will expose you to many key concepts
# but it will take some time to learn R  
#
# NB: be careful about typing, R is case sensitive so R and r and t and T etc 
# are different objects
#
# (b) About this file 
# 
# This is script file produced in R:  the  # symbol is a comment symbol 
# lines beginning with # are ignored in processing.
# 
# Script files are used to store sets of R commands and programmes called functions.
# Lines of a script file can be sent to the main r console window for execution. 
# Consider the following commands, highlight these with the mouse and use the menu 
# edit command in the RGui to despatch them to R console (Run line or selection}
#
#
library (foreign)   # make available data import/export commands to other packages  
library (graphics)  # makes graphics available   
x<-rnorm(100)       # generates  100 x's ~ N(0,1) and stores in object x
x                   # display x's in R console 
hist(x)             # make a histogram of x - appears in a graphic device window
mx<-mean(x)         # compute mean and store in scaler mx
mx                  # display mx in R console
vx<-var(x)          # compute variance and store in vx
x                   # display variance 
sx<-sqrt(vx)        # compute std and store in sx
sx                  # display sx
#
# Notice that the symbol <- stands for assignment and replaces the = sign    
# prevalent in other languages. 
#
# Notice that you are free to name the object on the LHS of  <- .
# 
# (c) About R and how we use it  
#
# R is a statistical package based on the object orientated functional langauge 
# S. There are many commands to learn if you wish to use the software merely 
# as a statistical package. R has about 2000 statistical functions inbuilt and so 
# and because it based on the S langauge we tend to use R has a development 
# language ie a tool-kit for developing new statistical techniques or for programming 
# complicated statistical calculations. One nice a feature of the language is that 
# one can usually some details of the in-built functions.
var
# So we can generally see what is going on and can pick up programming tips by 
# following the functions through - there are inevitably basic internal functions whose
# structure we cannot see.
#
# Another nice feature is that the language is vectorized - the basic mathematical object 
# is a vector and many of the procedures are designed to exploit this fact. People coming 
# from procedural languages like Fortran & C+ find this one of the most difficult aspects 
# of R. It takes a while to get used to but take care and persevere.
#
# Nested Looping gives rise to most problems where the efficient procedures in R can  
# look strange (at first). Recall that R is interpreted, it is not a complied language, 
# so heavily nested loops programmed in conventional ways will be slow compared with 
# compiled code, especially recursion. So one needs to learn new programming skills to 
# write efficient R code - particularly important are good function construction
# and mastering  the programme flow control features. 
# However, we are jumping too far ahead.
#
# Yet another nice feature of the language is that one can generally get things working 
# qickly and so R is often referred to a templating tool-kit and procedures once working 
# in R may be translated into Fortran relatively easily to improve speed - especially 
# in large statistical simulation problems. Computations which may take
# weeks in R may take minutes or hours in Fortran.
#
# This crash course concentrates on the programming aspects of R ie on how to 
# use the S language language to implement new statistical procedures - it 
# therefore deals with programming  rather than statistics. 
# Naturally these two aspects blend together to solve problems.
#
# The key to writing good R programmes lies in good function contruction and 
# ultilisation. A function is  a subroutine ie a re-useable piece of code. 
# Typically the subroutine takes arguments as input and produces results as output. 
# If given new arguments it will produce new results and so on.
# The nice thing about R is that the results at each stage can be stored in an 
# object and  may act as input to a second function.
# Thus the covariance matrix of the betas in a regression analysis may be input
# into another function which will compute variances of linear cominations of the 
# betas. It is this flexibility which makes R so appealing compared to other packages 
# which are typically very restricted in this area.  
# 
# Well enough about background ideas in R: to understand how R works you have to 
# first learn how it does vectorised arithmetic and learn the default conventions 
# about creating vectors and how to avoid ambiguous (vectorized) calculations.  
#
#  2. Vectors & Matrices 
#
#  (a)  Arithmetic with Scalars, Vectors & Matrices
# 
# In this section we shall be concerned about the class, 
#   mode and type and the attributes of the objects created.
# We concentrate on numeric objects but give some examples 
# of vectors in other modes such as logical or character.
# We are often need the class of the object such
# as  vector, matrix, array, etc . Scalars do not have a class   
# even though they are vectors of length 1
# First consider the following scalar assigments 
a<-1              # vector of length 1
b<-2              #  ditto
c<-3              #  ditto
a;b;c             # display in R Console 
y<-rbind(a,b,c)   # create a columm vector 
y                 # display in R console
z<-cbind(a,b,c)   # create a row vector
z                 # display in R console
zc<-c(a,b,c)      # concatenate into a numeric vector 
zc                # display
d<-seq(1:4)       # create a vector - ?type  
d                 # display 
#
# commands for discovering the properties of an object
#
class(a)
ributes(a)
length(a)
dim(a)
mode(a)
is.vector(a)
is.matrix(a)
#
# So we discover that a is a numeric vector of length 1
# What about the "vectors"
#
class(y)
attributes(y)
dim(y)
mode(y)
is.vector(y)
is.matrix(y)
length(y)
is.numeric(y)
#
# So we discover y is a matrix not a vector!: y was made by rbind 
# which bound the 3 scalars into the first row of a 3 x 1 matrix.
# Its attributes are $dim [1] 3,1 and 
#  $dimnames - note it has two dimensions  & that the row names 'a', 'b', 'c'
# are stored but there are no column names - none were specified. 
# These properties can be retrieved from the matrix object y and stored 
# in another object - method comes later. 
# To summarise y is a typical numeric column vector of class matrix
# with row names assigned
#
#So what about z
#
class(z)
attributes(z)
dim(z)
is.vector(z)
is.matrix(z)
is.numeric(z)
length(z)
#
# So again z is a matrix of order 1 x 3 is not of class vector. 
# It is a numeric row vector with columm names assigned - notice
# it is the second component of dimnames which contain the 
# column names.
#
# So what about  zc?
#
class(zc)
attributes(zc)
dim(zc)
is.vector(zc)
is.numeric(zc)
length(zc)
#
# So zc is a numeric vector 
#
# So what about d
#
class(d)
attributes(d)
dim(d)
is.vector(d)
is.numeric(d)
length(d)
#
# Notice (a) that we have a new class called integer which is not 
# helpful (b) attributes are null -  again not helpful (c) the dimension 
# is null - not helpful. The other information is useful - and we learn 
# that it is a  numeric vector of length 4. But is it a row vector or 
# a column vector - no use if we do not know.
# consider
#
d               # careful - it prints like a row 
t(d)            # take the transpose - the transpose is a row! - so d is a column
t(d)%*%d        # computes the inner product
e<-d%*%t(d)     # computes the outer product - store in e
e               # display outer product 
f<-solve(e)     # store inverse in f
f               # display inverse - this is singular - why?
g<-diag(rnorm(4))   # make a random diagonal matrix 4 x 4
g                   # display
h<-solve(e+g)       # jitter principal diagonal of e and invert
h                   # display inverse
# 
# Shows use of some matrix techniques for you to follow-up.
# Notice the matrix multiplication sign %*%
# ?solve  #gets details of usage and examples of the function 
# ?diag   #ditto
# ?class  #ditto
# ?seq    #ditto
# But the key thing here is that the function seq produces a column
# vector by default unlike cbind which produces a row vector and 
# rbind which produces a column vector (both of class matrix).   
#
# We are not finished yet there are many other ways to produce vectors 
# and you need to know the defaults
#
#What about x = rnorm(100 ) = 100 N(0,1) random variables?
#
x
class(x)
attributes(x)
dim(x)
is.vector(x)
is.numeric(x)
length(x)
t(x)   # is a row vector so x is column vector
#
# Now consider some other ways of making vectors
#
i<- rep(1:4, 2)              # use rep function to generate 2 sets of 1:4
i                            #display
is.vector(i)
j<- rep(1:4, each = 2)       # use rep again but not the same => 1 1 2 2 3 3 etc.
j                            #display
is.vector(j)
k<-runif(10)                 # generates 10 uniform random numbers
k                            #display
is.vector(k)
l<-t(i)%*%i    # inner product
l              # display 
m<-length(l)   # compute length = 1 so i is column vector
m              # display
# 
# Similar for j produced by rep so we are on the brink of 
# deducing that the R default is to produce column vectors as in mathematics
#Lets check k
#
n<-t(k)%*%k    # inner product
n              # display 
o<-length(n)   # compute length = 1 so i is column vector
o              # display 
#
# Consider the logical vector 
p<-rep(cbind(T,T,F), 2)  # a logical vector - but it is not a row vector!!!
p
t(p)                     # check:  t(p) is a row so p is a column
class(p)
is.vector(p)
attributes(p)
dim(p)
length(p)
attributes(p)
#
# it usually does not matter whether this is a row or column viz
#
q<-rep(rbind(T,T,F), 2)  # a logical vector
q
class(p)
is.vector(q)
attributes(q)
dim(q)
length(q)
#
# You can investigate the properties of logical matrices 
#at length 
#
# Character vector
#
r<-rep(c("yes","no"), c(4,2)) # note the c(...)construct is a concatenation function  
r
class(r)
is.vector(r)
attributes(r)
dim(r)
length(r)
#
# Check these out
#
# So far we have looked at vectors of the same mode: sometimes vectors
# and other structures  can be of mixed modes (numeric
# logical and character) depending on the data. These are usally handled 
# as dataframes - more later.
# Consider our previous p<- rep(cbind(T,T,F), 2)
#
p
t(p)
s <- as.numeric(p)    # coerces p to be numeric
s
#
# Must be careful -  coercion is often implicit with some functions 
# - to the most "informative" mode- and so one cannot always 
# coerce coercion to produce what you want
#
r
tr<-as.numeric(r)
tr
t(tr)
#
# The take home message here is that one must 
# be careful when making vectors and one must
# know how to find out what kind of vector one has
# created. 
#
#  (b) Making Matrices
#
# create a matrix - see ?matrix
# usage  
#matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
# Example
# 
A<-matrix(1, 3, 3) # define matrix - see ?matrix
A
B<-diag(A)     # store the diagonal as a vector - see ?diag 
B
C<-diag(B)     # Make a diagonal matrix with vector B
C
D<-A+C         # Add togetehr
D
E<-solve(D)    # Invert   - see ?solve 
E
I<-D%*%E  
I
#
# We have created a number of objects as we went along 
# Here they are 
#
objects()            # Lists the working directory of objects 
remove (c(p,q,r,s))  #removes p q r s   - see ?rm
ls ()                # Lists the working directory of objects  -?ls      
#
#
#  3. Basics about functions   
#
# A function is a piece of re-usable code.  
# It has a specific structure. 
# It has an argument list of input objects. 
# It has an results list of output objects.
# The function may be assigned to another object. 
# This object may in turn be interrogated to recover
# the results objects for input into another function. 
# The function must be initiated ie made known to R 
# before it can be used.
# The function is used by calling it - the format of 
# the call must be understood.
# 
# Here is the general format of the structure of a function
#  myfun1<- function (a1,a2,a3)     # arg list goes in (...)      
#   {                               # open the function body                     
#                                   # body of function contains R commands 
#   x<-sqrt(a1*a1+a2*a2+a3*a3)      # last assignment is the value of the function   
#   }                               # close the function body
#
# The name of this function is myfun1, the input arguments are 3 
# scalars, the last assignment is the value of the function ie
# myfun1 has value x 
# The function is introduced to R by highlighting the code 
# and running the function viz
#  
 myfun1<- function (a1,a2,a3)     # arg list goes in (...)      
     {                            # open the function body                     
#                                 # body of function ie R commands 
     x<-sqrt(a1*a1+a2*a2+a3*a3)   # last assignment is the value of the function   
     }                            # close the function body
#
# The function is called using 
# myfun1(a1,a2,a3) viz
# Let 
#
a1<-1
a2<-2
a3<-3
myres1<-myfun1(a1,a2,a3)
myres1
#
# Notice that x <- sqrt(...) is local to the function and 
# it did not overwrite our original x = rnorm(100) in 
# the master working  directory 
# 
x     # checking x in master working directory 
#
# This function format no use of course if we need more 
# than one item out of the funtion.
#
# Here is a more general version of the function
# which uses a return list to return the values
# length of the input vector and the Euclidean Distance
#
dvec<-cbind(a1,a2,a3)       # creates a row vector 1 x 3
dvec                        # display
myfun2<- function (dvec)          
     {                                            
     n<-length(dvec)                # length of dvec 
     x<-sqrt(dvec%*%t(dvec))        # euclidean distance 
     return( list(Len=n, Edist=x) ) # return 2 quantities 
     }  
# 
# Introduce the function before running 
# ie highlight it and send to r console
#                         
myres2<-myfun2(dvec)
myres2
#
# Now notice that the two returned values are preceded
# by $ signs ie in object myres2 we have $Len and $Edist 
# The $signs mean that this information is retrievable
# from this object using the extraction method - look 
#
mylen<-myres2$Len
mylen
myedist<-myres2$Edist
myedist
#
# This is the method of returning values from a function 
# whence the returned values are now back in the master 
# working directory or the master segment of the R programme 
# Functions execute in their own "frames" - not in this course. 
# 
# Now Recall the object e and observe how to use the
# extraction method  to interrogate and store its 
# attributes ie the dimension of the matrix. 
#
e
myeatt<-attributes (e)
myeatt
edim<-myeatt$dim
edim
#
#
# 4 Basics about programme flow and control  
#
#
# You need to know how to do loops and conditional
# branching and generally how to organise the
# flow of computation in  a prgramme.
# 
# (a) The if statement  is of the form:
#  
# if (condition) {expression}
#
# note the different usees of parentheses 
#
# Example 
# 
hist(x)
myifx <-function (x)
 {
  if (!is.numeric(x)) {stop("Gil says ~ Data must be numeric")}
  n=length(x)
  x<-x^2        #notice this squaring technique using vectorized arith
  c<-sum(x)     # could have used t(x)%*%x which is faster
  return(list(df=n,chi=c))
 }
myifxres<-myifx(x)
myifxres
#
# create a character vector  
#
testc<-c(T, "char", pi) 
testc
class (testc)
attributes(testc)
is.vector(testc)
length(testc)
#
# Give character vector to function myifx
#
myifxres2<-myifx(testc)
myifxres2
#
# myifxres2 does not exist since we did not do 
# an assignment within the function.
#
#
# (b) For loops  
#
#  Basic specification 
# 
# for (i  in 1:n ) 
#  { 
#  body of loop 
#  }
# 
#   Specification of double ie nested loop
#
# for (i in 1:n)                           # begin first loop 
#  {                                       # open body of first loop 
#    r commands  
#    for( j in 1: m) { body of second loop} # specify second loop - open and close 
#  }                                        # close first loop 
#
# Example 1:  of Loop recoding  col_2 into a binary variable based on col_1
#
m1<-matrix(nrow=20,ncol=4) # create matrix 20 x 2 matrix 
m1                         # display 
m1[,1]<-runif(20)          # put 20 uniform random number in col 1
#                          # notice use of comma in indexing 1st column
for (i in 1:20)
{           
if (m1[i,1] <= 0.5)  m1[i,2]<-0
else if  (m1[i,1] > 0.5)  m1[i,2]<-1
} 
m1
#
#  Example 2: Doing it again for 3 categories in col_3 
#  (Note that this is also an example of multiple if function - see later)
#
for (i in 1:20)
{ 
mi1<-m1[i,1]                          # reusable code - 4 times     
if       (mi1 <= 0.33)   m1[i,3]<-1   # assignment to col_3
else if  (mi1 >  0.33 && mi1 <=0.66 )  m1[i,3]<-2 # && means "and" for scalers 
else if  (mi1 >  0.66)   m1[i,3]<-3   # nothing new 
} 
m1
#
# Notice here that we are indexing the rows one at a time via the
# subscript i. But R is a vectorised language not meant for this.
# In general "for" loops are slow in R - especially nested loops
# and recursion. Special procedures for speeding things up 
# 1. resusable code
# 2. making every loop a function - must read about  
# 3. using the apply function - must read about 
#
#
# Example 3: Doing Example 1 without a loop - the ifelse function
#
# Basic structure 
# ifelse( test condition, true expr, false expr)
# 
# here is the code for Example 1 - very much faster and no loop  
#
m1[,4]<-ifelse ( m1[,1]<= 0.5 , 0, 1)
m1
#
# but this is basically only available for a binary split.
# Note that one can have expressions or function in the true and false
# slots in the ifelse functionm
#
#
#  (c) The While loop 
#   
# For use when you do not know the number of iterations in the loop 
# in advance
#
# Example 4 Find a x ~ N(0,1) >= 2 using a function norm2
#
myr<-rnorm(1)             # generate a single rnorm(1)
norm2<-function (myr)    # name function  
{                        # open function body 
while (myr < 2)          # open define & end while loop 
{myr<-rnorm(1)}          # replace myr until myr >= 2
myr                      # define myr as the return value of norm2
}
norm2(myr)               # display 
norm2(rnorm(1))          # display illustrating function substiution 
#
# Example 5:  calculate a vector of norm2 s using a loop 
#
xran<-rnorm(100)        
xran
for (i in 1:length(xran))
{
xran[i]<-norm2(xran[i])
}
xran
#
#  (d) Break & Next Commands 
#
# Example 6: drawing four aces from a pack of 52 cards
#
draw.aces<-function()
    {
    n<-0
    aces<-rep(F,4)
        repeat{
                draw<-sample(1:52, 1, replace=T)
                n<-n+1
                if (draw %% 13 != 1)
                    next
                aces[draw %/% 13 +1]<-T
                if (all(aces))
                    break 
              }
         cat("It took", n, "draws to pick all 4 aces!\n") 
     }
#
draw.aces()
#
# Notice several things here: 
#(i)   how to call a function with no arguments 
#(ii)  use of sample function - see ?sample  
#(iii) use of  %% modulus, %/% for integer divide & != for ne 
# (iv) use of all function  - see ?all
# (v)  use & positioning of repeat next and break
# (vi) use of the cat (alogue) to output message - see ?cat  
#
#  Thats enough to get you started on a crash course 
#  You will find more in the manuals
#  As mentioned earlier For loops and recursion can be    
#  slow - so we try to avoid these where possible  -
#  but gnerally they have to be used somewhere
#
#
# 5 Maximum likelihood in R using functions &  
# numerical optimisation &  the finding hessian  
# numerically etc 
# 
# Recall the hessian is the negative of the observed 
# information 
# 
#  we use the non-linear minimisatiom function in R - nlm 
# which lives in the library(stats)
#
library (stats)         # load library 
?nlm                    # look at help for nlm
#
# Example 1: random sample of 100 Xs ~ N(100, 9) 
# ?rnorm
#
myx <- rnorm(100, 100, 3)
hist(myx) 
#
# need to find mles by numerical methods using nlm 
#
# Step 1 write a function to compute the 
# value of the log likelihood function  at 
# the pair of (mux, sigx)
#
# Since nlm is a minimisation routine we minimise  -loglike 
# which is the same as maximising  loglike
#
loglikenorm<-function(x, myx) # always use x to hold parameter values   
{
mu<-x[1]
sig<-x[2]
n<-length(myx)
loglike<- -n*log(sig*sqrt(2*pi))- sum((1/(2*sig^2))*(myx-mu)^2) # note use of sum
loglike<- -loglike
}
#
# check second term has length(x) terms because x is a vector
#
# but here is a faster way 
loglikenorm2<-function(x, myx)  
{
mu<-x[1]
sig<-x[2]
loglike<- sum(-log(sig*sqrt(2*pi))- (1/(2*sig^2))*(myx-mu)^2) # note use of sum 
loglike<- -loglike
}
#
# sum applied to the whole expression gives correct answer 
# the constant part (first term) is repeated n times since x 
# is vector of  length n. This is the way to write log likelihoods
# the sum acts as a big sigma and the expression inside is the 
# kernal for the ith component   -  must that the arithmetic is correct.
#
# check the arithmetic out for say mu=100 & sig=3 
#
mu<-100
sig<-3
x=c(mu,sig)
hist(myx)
ans<-loglikenorm(x, myx)  
ans
ans2<-loglikenorm2(x, myx)
ans2
#
# define starting values - this supposes
#  we do not know the truth (the usual case) and we 
# guess initial values and maximise 
#
mu<-98
sig<-2 
theta=c(mu,sig) # store  starting values
hist(myx)       # check x ~ N(100,9) on way into nlm
theta           # check theta on way in to nlm
#
#  Now call nlm 
#  Pay attention to the order of the arguments 
# function, starting values, second parameter myx =>
# things needed in the function to calculate the likelihood,
# hessian =TRUE , print.level 1 => some output.
# Other arguments possible - see ?nlm and examples therein
#
result<-nlm(loglikenorm2, theta , myx=myx, hessian=TRUE, print.level=1) 
result  # display contents of object result 
#
# Extract goodies : note hess from nlm = observed information 
# ie already # multiplied by minus one (Americans again!!)
#  
mle<-result$estimate   #extract and store mles 
mle                    #display mles 
hess<-result$hessian   #extract and store observed information
hess                   #display mles             
cov<-solve(hess)       #invert hess to get cov(mles) 
cov                    #display cov.
stderr<-sqrt(diag(cov))# compute standard errors of mles
stderr
#
# Some functions are more sensitive to starting values 
# than others - usually we have to start from different
# values and detrmine whether we converge to the same estimates
# and that these define  a global maximum. 
#
#
# Example 2: Exponential Survival Model   
#
mytime<-rexp(100)
hist(mytime) 
delta<-rep(NA,100)      # censoring indicator crude 
delta[1:80]<-1          # define events
delta[81:100]<-0        # define 20% censored 
delta                   # display
surdat<-matrix(NA,100,4)#  
surdat
surdat[,1]<-mytime
surdat[,2]<-delta
surdat[,3]<-rep(1,100)
surdat[,4]<-sqrt(mytime)
surdat
loglikexp<-function(x,surdat)
{
fi<-x
lam<-exp(fi)        # keep scalar hazard lam >0
ti<-surdat[,1]      # vector of survival time 
deltai<-surdat[,2]  # vector of censoring indicators
loglike<- -sum(deltai*fi-lam*ti)
}
#
theta<-0
resexp<-nlm(loglikexp, theta , surdat=surdat, hessian=TRUE, print.level=1) 
resexp  # display contents of object result 
fihat<-resexp$estimate       #extract and store mle 
fihat                        #display mle 
hess<-resexp$hessian         #extract and store observed information
hess                         #display mle             
cov<-solve(hess)             #invert hess to get cov(ml) 
cov                          #display cov.
stderr<-sqrt(diag(cov))      # compute standard error of mle
stderr
#
# Here the mle is of fi ie log(lambda)
#  so the mle of lambda is
#
lamhat<-exp(fihat)
lamhat
#
#recall that rexp(100) ~ Exponential(lam=1) 
# so lamhat should be near 1. It would have been 
# nearer had there been no censoring.
# Question H0: lam =1  v  H1: lam ne 1 ?
# Answer test by equivalent hypothesis on fi
#  H0: fi = 0  v  H1: fi ne 0 
# Test statistic is z = (fihat-0)/se(fihat)
# 
hist(mytime)
#
#  
# Work To do: 
# (a)
# modify the Exponential code above to fit 
# an exponential regression model with
# lamdai=exp(alpha.xo + beta.xi) etc where
# xo is surdat[,3] .
# x1 is surdat[,4]
#
# (b) 
# Write the code for a Poisson Regression model 
# and find the mles 
# 
myfish<-rpois(100, lam=2) #see ?rpois
myfish
hist(myfish)
xi<-sqrt(myfish+1) # use as covariate
xi
xo<-rep(1,100)     # constant for intercept
xo
#
#  Assume myfish is ~ Poisson (lambda) where 
#  lambda = exp( xo*alpha + x1.beta)
#
# There are many other ways constructing 
# functions and passing objects 
# needed for computing the likelihood 
# through to nlm .
#
# This is an area which is very badly 
# written up by the R developers - 
# seems almost deliberately so at times
#
# You will learn about these topics
# as you study programming in R   

#
# 6 Elementary Simulation 
#
# Example 1: Central Limit Theorm for X ~ N(0,1)
# 
# Suppose need to show asymptotic distribution
# of sample ave and variance for samples 
# of size n= 10, n=20, n=30 to persuade 
# students 
#
# Let the number of repeated samples be 
# nsim=1000 so we consider drawing 1000 
# SRSs from x~N(0,1) with n=10, n=20 and
# n=30
#
nsim<-1000 
#
# We agree to store sample ave & var and later std
# We decide to do each separately and store 
# Then reserve storage for n=10
#
sim.n10<-matrix(NA,nsim,3)
attributes(sim.n10)
for (i in 1:nsim)
{
x<-rnorm(10)
sim.n10[i,1]<-mean(x) # this is the mle 
sim.n10[i,2]<-var(x)  # this is the non-MOM(MY)est
}
sim.n10[,3]<-sqrt(sim.n10[,2])
#
#look at shape of stochastic distributions
#  
hist(sim.n10[,1])
hist(sim.n10[,2])
hist(sim.n10[,3])
#
# Find the stochastic means and variances 
# of sample ave, variance and std
#
smxbar<-mean(sim.n10[,1])
smvar<-mean(sim.n10[,2])
smstd<-mean(sim.n10[,3])
smean<-c(smxbar,smvar,smstd)
smean
#
# now Stochastic Variances 
svxbar<-var(sim.n10[,1])
svvar<-var(sim.n10[,2])
svstd<-var(sim.n10[,3])
svar<-c(svxbar,svvar,svstd)
svar
#
# You can repeat the whole thing 
# for n=20 and n=30 or write a 
# function to do any sample size 
#
#
#  7. Elementary Bootrapping 
#
# Say y ~  N(0,1) and we draw 1 sample with 
#  n =100 
#
n<-100
y<-rnorm(n)
hist(y)
# 
# Now draw nb=1000 bootstrap samples (with replacement)
# from y and 
# look at the distribution of the estimators of 
# the mean and variance & std in the boot-strapped samples. 
# reserve storage
# 
nb<-1000 
boot<-matrix(NA,nb,3) 
attributes(boot)
for (i in 1:nb)
{
bs<-sample(y,n,replace =T)
boot[i,1]<-mean(bs)    
boot[i,2]<-var(bs)  
}
boot[,3]<-sqrt(boot[,2])
#
#look at shape of bootstrap distributions  
#
hist(boot[,1])
hist(boot[,2])
hist(boot[,3])
#
# get the Bootstrap Dist means and variances 
# Find the bootstrap means and variances 
# of sample ave, variance and std
#
bmxbar<-mean(boot[,1])
bmvar<-mean(boot[,2])
bmstd<-mean(boot[,3])
bmean<-c(bmxbar,bmvar,bmstd)
bmean
# now the Bootstrap  Variances 
bvxbar<-var(boot[,1])
bvvar<-var(boot[,2])
bvstd<-var(boot[,3])
bvar<-c(bvxbar,bvvar,bvstd)
bvar
#
# 8. Data and dataframes
#
# We have seen how to create random sample 
# data and sequences etc. But we need yo 
# know to get real data from other files 
# into R 
#   
# (a) Importing from SPSS
#
# The read.spss function is used. It is in the 
# foreign library. 
# Usage is: mydata<-read.spss("datafile") = see ?read.spss for more
# where data file is the file reference 
# 
# Example  1: Read Lung Cancer Data in from  spss.sav file  
# 
lung<-read.spss("c:\\data\\spssdata\\auckland\\lung_cancer.sav")
#
# Notice the special format of the file reference
# clearly a particular file is specific to your machine
# you should load lung_cancer.sav into a directory on 
# your machine and change the reference above accordingly.
#
class(lung)     # list - a list of objects - see ?list 
dim(lung)       # 855 rows 13 columns
lung<-data.frame(lung) # coerce lung to be data-frame
class(lung)     #check class
lung[1:10,]     # show 1st 10 rows 
attributes(lung)# check attributes
#
# A dataframe - is simply a matrix structure which 
# can hold data of mixed modes ie numeric, logical &  
# character variables - it is like the spread sheet 
# in SPSS or in Excel.
#
hist(SURTIM)    # cannot find SURTIM
attach (lung)   # make the column names available as globals
# check  
hist(SURTIM)    # SURTIM now available - see histogram
# 
# the attach function - see ?attach - makes the columns of   
# the data frame available directly by name - these names 
# become "globals" and are available in functions directly 
# 
myhist<-function()
{hist(SURTIM);hist(AGE)}
myhist()
#
# Even though the function executes in its own frame 
# and SURTIM & AGE are not passed as parameters 
#
# Attaching in this way can be tricky especially if 
# several data frames are present. Also spoils the programme
# logic which forces one to pass parameters into functions 
#  -this is generally safer - less chance of confusion.
#  However dataframes are extremely useful
#
#  Note that the dataframe is not physically attached
#  but pointers to the columns are set up using the 
#  names   
# 
# It is really convenient when there is only one data frame 
# present. Then there is no possibility of a clash of 
# names and it is arguably the preferred object of 
# choice in statistical modelling problems  - typically   
# because one can refer to the  names of the variables
# directly - as in SPSS  
#
#
#    (b) Importing Data from text (ASCII) file ie a .dat file
# 
# The scan function is very versatile for reading vectors and 
# matrices of numbers.
#
# Consider test_heart.dat  n rows  x 7 cols in directory auckland
# The numbers in each row are separated by spaces 
# This is a matrix so we can use scan inside matrix
# 
heart<-matrix(scan("c:\\data\\spssdata\\auckland\\test_heart.dat"), byrow=T,ncol=7)
heart
class(heart)
heart<-data.frame(heart)
class(heart)
attributes(heart)   # notice default column names added 
attach(heart)       # make column names available 
hist(X7)
boxplot(X7)
#
#  Can read vectors using scan directly without embedding 
#  in matrix - see ?scan for many details. 
# 
#
# Other Examples not done include SAS and Mintab - see
# R manual on importing and exporting - simple function 
# work the same way as read.spss. May export in many 
# similar ways.
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# In a crash course it is not possible to 
# cover everything  - but this should give you a 
# reasonable intro. 
#
# More advanced topics not covered are 
#  1. Advanced functions 
#  2. Computing on the language
#  3. Use of apply functions 
#
#
#
# Good Luck 
# Gilbert MacKenzie 
# April 3rd, 2006
#?cat
