#
Crash Course in Programming R

1 Preliminaries
#
(a) About the Context of this material
#
This assumes that you are sitting at your computer
with R (version 2.5 or later) open and that your tutor has explained
some very elementary ideas on the main R console window
and command file and libraries (ie packages)

The R Console window acts as an output (results) window
and as command interface window -ie you can type R commands
at the prompt
#
This crash course will expose you to many key concepts
but it will take some time to learn R
#
NB: be careful about typing, R is case sensitive so R and r and t and T etc
are different objects
#
(b) About this file

This is script file produced in R: the # symbol is a comment symbol
lines beginning with # are ignored in processing.

Script files are used to store sets of R commands and programmes called functions.
Lines of a script file can be sent to the main r console window for execution.
Consider the following commands, highlight these with the mouse and use the menu
edit command in the RGui to despatch them to R console (Run line or selection}
#
#
library (foreign) # make available data import/export commands to other packages
library (graphics) # makes graphics available
x<-rnorm(100) # generates 100 x's ~ N(0,1) and stores in object x
x # display x's in R console
hist(x) # make a histogram of x - appears in a graphic device window
mx<-mean(x) # compute mean and store in scaler mx
mx # display mx in R console
vx<-var(x) # compute variance and store in vx
x # display variance
sx<-sqrt(vx) # compute std and store in sx
sx # display sx
#
Notice that the symbol <- stands for assignment and replaces the = sign
prevalent in other languages.
#
Notice that you are free to name the object on the LHS of <- .

(c) About R and how we use it
#
R is a statistical package based on the object orientated functional langauge
S. There are many commands to learn if you wish to use the software merely
as a statistical package. R has about 2000 statistical functions inbuilt and so
and because it based on the S langauge we tend to use R has a development
language ie a tool-kit for developing new statistical techniques or for programming
complicated statistical calculations. One nice a feature of the language is that
one can usually some details of the in-built functions.
var
So we can generally see what is going on and can pick up programming tips by
following the functions through - there are inevitably basic internal functions whose
structure we cannot see.
#
Another nice feature is that the language is vectorized - the basic mathematical object
is a vector and many of the procedures are designed to exploit this fact. People coming
from procedural languages like Fortran & C+ find this one of the most difficult aspects
of R. It takes a while to get used to but take care and persevere.
#
Nested Looping gives rise to most problems where the efficient procedures in R can
look strange (at first). Recall that R is interpreted, it is not a complied language,
so heavily nested loops programmed in conventional ways will be slow compared with
compiled code, especially recursion. So one needs to learn new programming skills to
write efficient R code - particularly important are good function construction
and mastering the programme flow control features.
However, we are jumping too far ahead.
#
Yet another nice feature of the language is that one can generally get things working
qickly and so R is often referred to a templating tool-kit and procedures once working
in R may be translated into Fortran relatively easily to improve speed - especially
in large statistical simulation problems. Computations which may take
weeks in R may take minutes or hours in Fortran.
#
This crash course concentrates on the programming aspects of R ie on how to
use the S language language to implement new statistical procedures - it
therefore deals with programming rather than statistics.
Naturally these two aspects blend together to solve problems.
#
The key to writing good R programmes lies in good function contruction and
ultilisation. A function is a subroutine ie a re-useable piece of code.
Typically the subroutine takes arguments as input and produces results as output.
If given new arguments it will produce new results and so on.
The nice thing about R is that the results at each stage can be stored in an
object and may act as input to a second function.
Thus the covariance matrix of the betas in a regression analysis may be input
into another function which will compute variances of linear cominations of the
betas. It is this flexibility which makes R so appealing compared to other packages
which are typically very restricted in this area.

Well enough about background ideas in R: to understand how R works you have to
first learn how it does vectorised arithmetic and learn the default conventions
about creating vectors and how to avoid ambiguous (vectorized) calculations.
#
2. Vectors & Matrices
#
(a) Arithmetic with Scalars, Vectors & Matrices

In this section we shall be concerned about the class,
mode and type and the attributes of the objects created.
We concentrate on numeric objects but give some examples
of vectors in other modes such as logical or character.
We are often need the class of the object such
as vector, matrix, array, etc . Scalars do not have a class
even though they are vectors of length 1
First consider the following scalar assigments
a<-1 # vector of length 1
b<-2 # ditto
c<-3 # ditto
a;b;c # display in R Console
y<-rbind(a,b,c) # create a columm vector
y # display in R console
z<-cbind(a,b,c) # create a row vector
z # display in R console
zc<-c(a,b,c) # concatenate into a numeric vector
zc # display
d<-seq(1:4) # create a vector - ?type
d # display
#
commands for discovering the properties of an object
#
class(a)
ributes(a)
length(a)
dim(a)
mode(a)
is.vector(a)
is.matrix(a)
#
So we discover that a is a numeric vector of length 1
What about the "vectors"
#
class(y)
attributes(y)
dim(y)
mode(y)
is.vector(y)
is.matrix(y)
length(y)
is.numeric(y)
#
So we discover y is a matrix not a vector!: y was made by rbind
which bound the 3 scalars into the first row of a 3 x 1 matrix.
Its attributes are $dim [1] 3,1 and
$dimnames - note it has two dimensions & that the row names 'a', 'b', 'c'
are stored but there are no column names - none were specified.
These properties can be retrieved from the matrix object y and stored
in another object - method comes later.
To summarise y is a typical numeric column vector of class matrix
with row names assigned
#
#So what about z
#
class(z)
attributes(z)
dim(z)
is.vector(z)
is.matrix(z)
is.numeric(z)
length(z)
#
So again z is a matrix of order 1 x 3 is not of class vector.
It is a numeric row vector with columm names assigned - notice
it is the second component of dimnames which contain the
column names.
#
So what about zc?
#
class(zc)
attributes(zc)
dim(zc)
is.vector(zc)
is.numeric(zc)
length(zc)
#
So zc is a numeric vector
#
So what about d
#
class(d)
attributes(d)
dim(d)
is.vector(d)
is.numeric(d)
length(d)
#
Notice (a) that we have a new class called integer which is not
helpful (b) attributes are null - again not helpful (c) the dimension
is null - not helpful. The other information is useful - and we learn
that it is a numeric vector of length 4. But is it a row vector or
a column vector - no use if we do not know.
consider
#
d # careful - it prints like a row
t(d) # take the transpose - the transpose is a row! - so d is a column
t(d)%*%d # computes the inner product
e<-d%*%t(d) # computes the outer product - store in e
e # display outer product
f<-solve(e) # store inverse in f
f # display inverse - this is singular - why?
g<-diag(rnorm(4)) # make a random diagonal matrix 4 x 4
g # display
h<-solve(e+g) # jitter principal diagonal of e and invert
h # display inverse

Shows use of some matrix techniques for you to follow-up.
Notice the matrix multiplication sign %*%
?solve #gets details of usage and examples of the function
?diag #ditto
?class #ditto
?seq #ditto
But the key thing here is that the function seq produces a column
vector by default unlike cbind which produces a row vector and
rbind which produces a column vector (both of class matrix).
#
We are not finished yet there are many other ways to produce vectors
and you need to know the defaults
#
#What about x = rnorm(100) = 100 N(0,1) random variables?
#
x
class(x)
attributes(x)
dim(x)
is.vector(x)
is.numeric(x)
length(x)
t(x) # is a row vector so x is column vector
#
Now consider some other ways of making vectors
#
i<- rep(1:4, 2) # use rep function to generate 2 sets of 1:4
i #display
is.vector(i)
j<- rep(1:4, each = 2) # use rep again but not the same => 1 1 2 2 3 3 etc.
j #display
is.vector(j)
k<-runif(10) # generates 10 uniform random numbers
k #display
is.vector(k)
l<-t(i)%*%i # inner product
l # display
m<-length(l) # compute length = 1 so i is column vector
m # display

Similar for j produced by rep so we are on the brink of
deducing that the R default is to produce column vectors as in mathematics
#Lets check k
#
n<-t(k)%*%k # inner product
n # display
o<-length(n) # compute length = 1 so i is column vector
o # display
#
Consider the logical vector
p<-rep(cbind(T,T,F), 2) # a logical vector - but it is not a row vector!!!
p
t(p) # check: t(p) is a row so p is a column
class(p)
is.vector(p)
attributes(p)
dim(p)
length(p)
attributes(p)
#
it usually does not matter whether this is a row or column viz
#
q<-rep(rbind(T,T,F), 2) # a logical vector
q
class(p)
is.vector(q)
attributes(q)
dim(q)
length(q)
#
You can investigate the properties of logical matrices
#at length
#
Character vector
#
r<-rep(c("yes","no"), c(4,2)) # note the c(...)construct is a concatenation function
r
class(r)
is.vector(r)
attributes(r)
dim(r)
length(r)
#
Check these out
#
So far we have looked at vectors of the same mode: sometimes vectors
and other structures can be of mixed modes (numeric
logical and character) depending on the data. These are usally handled
as dataframes - more later.
Consider our previous p<- rep(cbind(T,T,F), 2)
#
p
t(p)
s <- as.numeric(p) # coerces p to be numeric
s
#
Must be careful - coercion is often implicit with some functions
- to the most "informative" mode- and so one cannot always
coerce coercion to produce what you want
#
r
tr<-as.numeric(r)
tr
t(tr)
#
The take home message here is that one must
be careful when making vectors and one must
know how to find out what kind of vector one has
created.
#
(b) Making Matrices
#
create a matrix - see ?matrix
usage
#matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
Example

A<-matrix(1, 3, 3) # define matrix - see ?matrix
A
B<-diag(A) # store the diagonal as a vector - see ?diag
B
C<-diag(B) # Make a diagonal matrix with vector B
C
D<-A+C # Add togetehr
D
E<-solve(D) # Invert - see ?solve
E
I<-D%*%E
I
#
We have created a number of objects as we went along
Here they are
#
objects() # Lists the working directory of objects
remove (c(p,q,r,s)) #removes p q r s - see ?rm
ls () # Lists the working directory of objects -?ls
#
#
3. Basics about functions
#
A function is a piece of re-usable code.
It has a specific structure.
It has an argument list of input objects.
It has an results list of output objects.
The function may be assigned to another object.
This object may in turn be interrogated to recover
the results objects for input into another function.
The function must be initiated ie made known to R
before it can be used.
The function is used by calling it - the format of
the call must be understood.

Here is the general format of the structure of a function
myfun1<- function (a1,a2,a3) # arg list goes in (...)
{ # open the function body
body of function contains R commands
x<-sqrt(a1*a1+a2*a2+a3*a3) # last assignment is the value of the function
} # close the function body
#
The name of this function is myfun1, the input arguments are 3
scalars, the last assignment is the value of the function ie
myfun1 has value x
The function is introduced to R by highlighting the code
and running the function viz

 myfun1<- function (a1,a2,a3) # arg list goes in (...)
 { # open the function body
body of function ie R commands
 x<-sqrt(a1*a1+a2*a2+a3*a3) # last assignment is the value of the function
 } # close the function body
#
The function is called using
myfun1(a1,a2,a3) viz
Let
#
a1<-1
a2<-2
a3<-3
myres1<-myfun1(a1,a2,a3)
myres1
#
Notice that x <- sqrt(...) is local to the function and
it did not overwrite our original x = rnorm(100) in
the master working directory

x # checking x in master working directory
#
This function format no use of course if we need more
than one item out of the funtion.
#
Here is a more general version of the function
which uses a return list to return the values
length of the input vector and the Euclidean Distance
#
dvec<-cbind(a1,a2,a3) # creates a row vector 1 x 3
dvec # display
myfun2<- function (dvec)
 {
 n<-length(dvec) # length of dvec
 x<-sqrt(dvec%*%t(dvec)) # euclidean distance
 return(list(Len=n, Edist=x)) # return 2 quantities
 }

Introduce the function before running
ie highlight it and send to r console

myres2<-myfun2(dvec)
myres2
#
Now notice that the two returned values are preceded
by $ signs ie in object myres2 we have $Len and $Edist
The $signs mean that this information is retrievable
from this object using the extraction method - look
#
mylen<-myres2$Len
mylen
myedist<-myres2$Edist
myedist
#
This is the method of returning values from a function
whence the returned values are now back in the master
working directory or the master segment of the R programme
Functions execute in their own "frames" - not in this course.

Now Recall the object e and observe how to use the
extraction method to interrogate and store its
attributes ie the dimension of the matrix.
#
e
myeatt<-attributes (e)
myeatt
edim<-myeatt$dim
edim
#
#
4 Basics about programme flow and control
#
#
You need to know how to do loops and conditional
branching and generally how to organise the
flow of computation in a prgramme.

(a) The if statement is of the form:

if (condition) {expression}
#
note the different usees of parentheses
#
Example

hist(x)
myifx <-function (x)
 {
 if (!is.numeric(x)) {stop("Gil says ~ Data must be numeric")}
 n=length(x)
 x<-x^2 #notice this squaring technique using vectorized arith
 c<-sum(x) # could have used t(x)%*%x which is faster
 return(list(df=n,chi=c))
 }
myifxres<-myifx(x)
myifxres
#
create a character vector
#
testc<-c(T, "char", pi)
testc
class (testc)
attributes(testc)
is.vector(testc)
length(testc)
#
Give character vector to function myifx
#
myifxres2<-myifx(testc)
myifxres2
#
myifxres2 does not exist since we did not do
an assignment within the function.
#
#
(b) For loops
#
Basic specification

for (i in 1:n)
{
body of loop
}

Specification of double ie nested loop
#
for (i in 1:n) # begin first loop
{ # open body of first loop
r commands
for(j in 1: m) { body of second loop} # specify second loop - open and close
} # close first loop
#
Example 1: of Loop recoding col_2 into a binary variable based on col_1
#
m1<-matrix(nrow=20,ncol=4) # create matrix 20 x 2 matrix
m1 # display
m1[,1]<-runif(20) # put 20 uniform random number in col 1
notice use of comma in indexing 1st column
for (i in 1:20)
{
if (m1[i,1] <= 0.5) m1[i,2]<-0
else if (m1[i,1] > 0.5) m1[i,2]<-1
}
m1
#
Example 2: Doing it again for 3 categories in col_3
(Note that this is also an example of multiple if function - see later)
#
for (i in 1:20)
{
mi1<-m1[i,1] # reusable code - 4 times
if (mi1 <= 0.33) m1[i,3]<-1 # assignment to col_3
else if (mi1 > 0.33 && mi1 <=0.66) m1[i,3]<-2 # && means "and" for scalers
else if (mi1 > 0.66) m1[i,3]<-3 # nothing new
}
m1
#
Notice here that we are indexing the rows one at a time via the
subscript i. But R is a vectorised language not meant for this.
In general "for" loops are slow in R - especially nested loops
and recursion. Special procedures for speeding things up
1. resusable code
2. making every loop a function - must read about
3. using the apply function - must read about
#
#
Example 3: Doing Example 1 without a loop - the ifelse function
#
Basic structure
ifelse(test condition, true expr, false expr)

here is the code for Example 1 - very much faster and no loop
#
m1[,4]<-ifelse (m1[,1]<= 0.5 , 0, 1)
m1
#
but this is basically only available for a binary split.
Note that one can have expressions or function in the true and false
slots in the ifelse functionm
#
#
(c) The While loop

For use when you do not know the number of iterations in the loop
in advance
#
Example 4 Find a x ~ N(0,1) >= 2 using a function norm2
#
myr<-rnorm(1) # generate a single rnorm(1)
norm2<-function (myr) # name function
{ # open function body
while (myr < 2) # open define & end while loop
{myr<-rnorm(1)} # replace myr until myr >= 2
myr # define myr as the return value of norm2
}
norm2(myr) # display
norm2(rnorm(1)) # display illustrating function substiution
#
Example 5: calculate a vector of norm2 s using a loop
#
xran<-rnorm(100)
xran
for (i in 1:length(xran))
{
xran[i]<-norm2(xran[i])
}
xran
#
(d) Break & Next Commands
#
Example 6: drawing four aces from a pack of 52 cards
#
draw.aces<-function()
 {
 n<-0
 aces<-rep(F,4)
 repeat{
 draw<-sample(1:52, 1, replace=T)
 n<-n+1
 if (draw %% 13 != 1)
 next
 aces[draw %/% 13 +1]<-T
 if (all(aces))
 break
 }
 cat("It took", n, "draws to pick all 4 aces!\n")
 }
#
draw.aces()
#
Notice several things here:
#(i) how to call a function with no arguments
#(ii) use of sample function - see ?sample
#(iii) use of %% modulus, %/% for integer divide & != for ne
(iv) use of all function - see ?all
(v) use & positioning of repeat next and break
(vi) use of the cat (alogue) to output message - see ?cat
#
Thats enough to get you started on a crash course
You will find more in the manuals
As mentioned earlier For loops and recursion can be
slow - so we try to avoid these where possible -
but gnerally they have to be used somewhere
#
#
5 Maximum likelihood in R using functions &
numerical optimisation & the finding hessian
numerically etc

Recall the hessian is the negative of the observed
information

we use the non-linear minimisatiom function in R - nlm
which lives in the library(stats)
#
library (stats) # load library
?nlm # look at help for nlm
#
Example 1: random sample of 100 Xs ~ N(100, 9)
?rnorm
#
myx <- rnorm(100, 100, 3)
hist(myx)
#
need to find mles by numerical methods using nlm
#
Step 1 write a function to compute the
value of the log likelihood function at
the pair of (mux, sigx)
#
Since nlm is a minimisation routine we minimise -loglike
which is the same as maximising loglike
#
loglikenorm<-function(x, myx) # always use x to hold parameter values
{
mu<-x[1]
sig<-x[2]
n<-length(myx)
loglike<- -n*log(sig*sqrt(2*pi))- sum((1/(2*sig^2))*(myx-mu)^2) # note use of sum
loglike<- -loglike
}
#
check second term has length(x) terms because x is a vector
#
but here is a faster way
loglikenorm2<-function(x, myx)
{
mu<-x[1]
sig<-x[2]
loglike<- sum(-log(sig*sqrt(2*pi))- (1/(2*sig^2))*(myx-mu)^2) # note use of sum
loglike<- -loglike
}
#
sum applied to the whole expression gives correct answer
the constant part (first term) is repeated n times since x
is vector of length n. This is the way to write log likelihoods
the sum acts as a big sigma and the expression inside is the
kernal for the ith component - must that the arithmetic is correct.
#
check the arithmetic out for say mu=100 & sig=3
#
mu<-100
sig<-3
x=c(mu,sig)
hist(myx)
ans<-loglikenorm(x, myx)
ans
ans2<-loglikenorm2(x, myx)
ans2
#
define starting values - this supposes
we do not know the truth (the usual case) and we
guess initial values and maximise
#
mu<-98
sig<-2
theta=c(mu,sig) # store starting values
hist(myx) # check x ~ N(100,9) on way into nlm
theta # check theta on way in to nlm
#
Now call nlm
Pay attention to the order of the arguments
function, starting values, second parameter myx =>
things needed in the function to calculate the likelihood,
hessian =TRUE , print.level 1 => some output.
Other arguments possible - see ?nlm and examples therein
#
result<-nlm(loglikenorm2, theta , myx=myx, hessian=TRUE, print.level=1)
result # display contents of object result
#
Extract goodies : note hess from nlm = observed information
ie already # multiplied by minus one (Americans again!!)

mle<-result$estimate #extract and store mles
mle #display mles
hess<-result$hessian #extract and store observed information
hess #display mles
cov<-solve(hess) #invert hess to get cov(mles)
cov #display cov.
stderr<-sqrt(diag(cov))# compute standard errors of mles
stderr
#
Some functions are more sensitive to starting values
than others - usually we have to start from different
values and detrmine whether we converge to the same estimates
and that these define a global maximum.
#
#
Example 2: Exponential Survival Model
#
mytime<-rexp(100)
hist(mytime)
delta<-rep(NA,100) # censoring indicator crude
delta[1:80]<-1 # define events
delta[81:100]<-0 # define 20% censored
delta # display
surdat<-matrix(NA,100,4)#
surdat
surdat[,1]<-mytime
surdat[,2]<-delta
surdat[,3]<-rep(1,100)
surdat[,4]<-sqrt(mytime)
surdat
loglikexp<-function(x,surdat)
{
fi<-x
lam<-exp(fi) # keep scalar hazard lam >0
ti<-surdat[,1] # vector of survival time
deltai<-surdat[,2] # vector of censoring indicators
loglike<- -sum(deltai*fi-lam*ti)
}
#
theta<-0
resexp<-nlm(loglikexp, theta , surdat=surdat, hessian=TRUE, print.level=1)
resexp # display contents of object result
fihat<-resexp$estimate #extract and store mle
fihat #display mle
hess<-resexp$hessian #extract and store observed information
hess #display mle
cov<-solve(hess) #invert hess to get cov(ml)
cov #display cov.
stderr<-sqrt(diag(cov)) # compute standard error of mle
stderr
#
Here the mle is of fi ie log(lambda)
so the mle of lambda is
#
lamhat<-exp(fihat)
lamhat
#
#recall that rexp(100) ~ Exponential(lam=1)
so lamhat should be near 1. It would have been
nearer had there been no censoring.
Question H0: lam =1 v H1: lam ne 1 ?
Answer test by equivalent hypothesis on fi
H0: fi = 0 v H1: fi ne 0
Test statistic is z = (fihat-0)/se(fihat)

hist(mytime)
#

Work To do:
(a)
modify the Exponential code above to fit
an exponential regression model with
lamdai=exp(alpha.xo + beta.xi) etc where
xo is surdat[,3] .
x1 is surdat[,4]
#
(b)
Write the code for a Poisson Regression model
and find the mles

myfish<-rpois(100, lam=2) #see ?rpois
myfish
hist(myfish)
xi<-sqrt(myfish+1) # use as covariate
xi
xo<-rep(1,100) # constant for intercept
xo
#
Assume myfish is ~ Poisson (lambda) where
lambda = exp(xo*alpha + x1.beta)
#
There are many other ways constructing
functions and passing objects
needed for computing the likelihood
through to nlm .
#
This is an area which is very badly
written up by the R developers -
seems almost deliberately so at times
#
You will learn about these topics
as you study programming in R

#
6 Elementary Simulation
#
Example 1: Central Limit Theorm for X ~ N(0,1)

Suppose need to show asymptotic distribution
of sample ave and variance for samples
of size n= 10, n=20, n=30 to persuade
students
#
Let the number of repeated samples be
nsim=1000 so we consider drawing 1000
SRSs from x~N(0,1) with n=10, n=20 and
n=30
#
nsim<-1000
#
We agree to store sample ave & var and later std
We decide to do each separately and store
Then reserve storage for n=10
#
sim.n10<-matrix(NA,nsim,3)
attributes(sim.n10)
for (i in 1:nsim)
{
x<-rnorm(10)
sim.n10[i,1]<-mean(x) # this is the mle
sim.n10[i,2]<-var(x) # this is the non-MOM(MY)est
}
sim.n10[,3]<-sqrt(sim.n10[,2])
#
#look at shape of stochastic distributions

hist(sim.n10[,1])
hist(sim.n10[,2])
hist(sim.n10[,3])
#
Find the stochastic means and variances
of sample ave, variance and std
#
smxbar<-mean(sim.n10[,1])
smvar<-mean(sim.n10[,2])
smstd<-mean(sim.n10[,3])
smean<-c(smxbar,smvar,smstd)
smean
#
now Stochastic Variances
svxbar<-var(sim.n10[,1])
svvar<-var(sim.n10[,2])
svstd<-var(sim.n10[,3])
svar<-c(svxbar,svvar,svstd)
svar
#
You can repeat the whole thing
for n=20 and n=30 or write a
function to do any sample size
#
#
7. Elementary Bootrapping
#
Say y ~ N(0,1) and we draw 1 sample with
n =100
#
n<-100
y<-rnorm(n)
hist(y)

Now draw nb=1000 bootstrap samples (with replacement)
from y and
look at the distribution of the estimators of
the mean and variance & std in the boot-strapped samples.
reserve storage

nb<-1000
boot<-matrix(NA,nb,3)
attributes(boot)
for (i in 1:nb)
{
bs<-sample(y,n,replace =T)
boot[i,1]<-mean(bs)
boot[i,2]<-var(bs)
}
boot[,3]<-sqrt(boot[,2])
#
#look at shape of bootstrap distributions
#
hist(boot[,1])
hist(boot[,2])
hist(boot[,3])
#
get the Bootstrap Dist means and variances
Find the bootstrap means and variances
of sample ave, variance and std
#
bmxbar<-mean(boot[,1])
bmvar<-mean(boot[,2])
bmstd<-mean(boot[,3])
bmean<-c(bmxbar,bmvar,bmstd)
bmean
now the Bootstrap Variances
bvxbar<-var(boot[,1])
bvvar<-var(boot[,2])
bvstd<-var(boot[,3])
bvar<-c(bvxbar,bvvar,bvstd)
bvar
#
8. Data and dataframes
#
We have seen how to create random sample
data and sequences etc. But we need yo
know to get real data from other files
into R

(a) Importing from SPSS
#
The read.spss function is used. It is in the
foreign library.
Usage is: mydata<-read.spss("datafile") = see ?read.spss for more
where data file is the file reference

Example 1: Read Lung Cancer Data in from spss.sav file

lung<-read.spss("c:\\data\\spssdata\\auckland\\lung_cancer.sav")
#
Notice the special format of the file reference
clearly a particular file is specific to your machine
you should load lung_cancer.sav into a directory on
your machine and change the reference above accordingly.
#
class(lung) # list - a list of objects - see ?list
dim(lung) # 855 rows 13 columns
lung<-data.frame(lung) # coerce lung to be data-frame
class(lung) #check class
lung[1:10,] # show 1st 10 rows
attributes(lung)# check attributes
#
A dataframe - is simply a matrix structure which
can hold data of mixed modes ie numeric, logical &
character variables - it is like the spread sheet
in SPSS or in Excel.
#
hist(SURTIM) # cannot find SURTIM
attach (lung) # make the column names available as globals
check
hist(SURTIM) # SURTIM now available - see histogram

the attach function - see ?attach - makes the columns of
the data frame available directly by name - these names
become "globals" and are available in functions directly

myhist<-function()
{hist(SURTIM);hist(AGE)}
myhist()
#
Even though the function executes in its own frame
and SURTIM & AGE are not passed as parameters
#
Attaching in this way can be tricky especially if
several data frames are present. Also spoils the programme
logic which forces one to pass parameters into functions
-this is generally safer - less chance of confusion.
However dataframes are extremely useful
#
Note that the dataframe is not physically attached
but pointers to the columns are set up using the
names

It is really convenient when there is only one data frame
present. Then there is no possibility of a clash of
names and it is arguably the preferred object of
choice in statistical modelling problems - typically
because one can refer to the names of the variables
directly - as in SPSS
#
#
(b) Importing Data from text (ASCII) file ie a .dat file

The scan function is very versatile for reading vectors and
matrices of numbers.
#
Consider test_heart.dat n rows x 7 cols in directory auckland
The numbers in each row are separated by spaces
This is a matrix so we can use scan inside matrix

heart<-matrix(scan("c:\\data\\spssdata\\auckland\\test_heart.dat"), byrow=T,ncol=7)
heart
class(heart)
heart<-data.frame(heart)
class(heart)
attributes(heart) # notice default column names added
attach(heart) # make column names available
hist(X7)
boxplot(X7)
#
Can read vectors using scan directly without embedding
in matrix - see ?scan for many details.

#
Other Examples not done include SAS and Mintab - see
R manual on importing and exporting - simple function
work the same way as read.spss. May export in many
similar ways.
#
#~~
#
In a crash course it is not possible to
cover everything - but this should give you a
reasonable intro.
#
More advanced topics not covered are
1. Advanced functions
2. Computing on the language
3. Use of apply functions
#
#
#
Good Luck
Gilbert MacKenzie
April 3rd, 2006
#?cat
