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Multilevel models have come to play an increasingly important role in many areas of social
science research. However, in contrast to other modeling strategies, there is currently no
widely used approach for graphically diagramming multilevel models. Ideally, such diagrams
would serve two functions: to provide a formal structure for deriving the underlying equations
and to provide a mechanism for clearly and efficiently communicating the model structure,
assumptions, and empirical results. Here the authors propose a path diagramming approach
for multilevel models that seeks to meet these goals. The authors begin with a description of
the core components of their proposed diagramming system and establish tracing rules for the
direct derivation of model equations. They then demonstrate their approach using several
published empirical multilevel applications and conclude with potential limitations and
directions for future developments.
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Multilevel models are being used at an increasing rate by
many social scientists for the advantages they afford in the
analysis of clustered or nested data. These models augment
the more familiar general linear model through the incor-
poration of random effects at each of multiple levels of
sampling. For instance, for hierarchically clustered data,
one random effect might capture variability within groups,
whereas a second might capture variability between groups.
More complex multilevel models allow variability between
groups in the effects of one or more predictors. These
models can be applied to cross-sectional or longitudinal data
structures and now represent a significant analytic tool
available to the social science researcher.

In a typical empirical report, the specific structure of the
multilevel model is conveyed descriptively within the text
or (less frequently) through the presentation of formal
model equations. The sample results are commonly pre-
sented in tabular form and often only for a subset of em-
pirical findings. Indeed, we have relied on this strategy

ourselves to provide a compact summary of model results
(e.g., Bauer & Curran, 2005; Curran, Bauer, & Willoughby,
2006; Curran, Edwards, Wirth, Hussong, & Chassin, 2007).
However, on the basis of our own experience as contribu-
tors, reviewers, and consumers of substantive multilevel
applications, we believe that authors too often forgo com-
plex equations in favor of tables that neither fully convey
the specific structure of the estimated model nor provide a
complete reporting of all relevant empirical results. This in
turn occludes an understanding of both the model that was
estimated and the substantive implications of the corre-
sponding results.

As an alternative rhetorical device for conveying model
results, graphs and diagrams are often preferable to tables
and textual descriptions (e.g., Wainer & Thissen, 1981). We
believe that this is also true for communicating the structure
and underlying assumptions of the statistical model itself.
Ideally, given a set of diagramming rules, the model equa-
tions should imply a single diagram, and conversely, the
diagram should represent a unique set of corresponding
mathematical equations (e.g., Boker, McArdle, & Neale,
2002). The equations and diagram are then alternative yet
equivalent representations of the model.

An early sophisticated diagramming approach meeting
these criteria was developed by Wright (1934) for path
analysis. This was a truly remarkable approach in that the
model-implied moment structure of the observed variables
could be unambiguously derived directly from a graphical
representation of the model. Over time, these path diagrams
were expanded for use with a broad class of factor analysis
and structural equation models (SEMs) with latent vari-
ables. Although occasionally criticized (e.g., Freedman,
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1987; Rogosa, 1987), the development and refinement of
these path diagrams has clearly fostered the development,
application, and dissemination of these models in social
science research.

In our view, there are three primary reasons why re-
searchers have adopted path diagrams for SEM applica-
tions. First, a path diagram enhances the communication of
both the structure and sample results for complex models to
a broad audience of readers. Second, a path diagram helps
map a statistical model onto a theoretical substantive model;
in this way a path diagram can aid in the specification of a
statistical model that optimally corresponds to the theoret-
ical model of interest (e.g., Bauer, 2003; Curran & Wil-
loughby, 2003; Wohlwill, 1991). Finally, a path diagram
helps to make model assumptions more explicit; for exam-
ple, whereas correlated residuals are clearly presented in a
path diagram, these are often less obvious (if not entirely
absent) in a set of equations. Despite these advantages, no
single diagramming strategy has achieved wide use for
depicting multilevel models.

Presentations of path diagrams for multilevel models have
appeared previously in several publications, and most in-
volve adaptations of SEM path diagrams. One approach,
used similarly by Bauer (2003), Curran (2003), and Mehta
and Neale (2005), is to recast the multilevel model as an
SEM so that an SEM path diagram can be used to represent
the model. This approach has the distinct advantage that
SEM diagramming rules continue to apply, but it is our
opinion that the resulting diagrams are less intuitive than
they might otherwise be. For instance, random effects are
represented as latent variables for which the factor loadings
are defined by observed “definition” variables, yet other
observed variables are represented by boxes, and other
latent variables are not actually considered to be random
effects. Earlier, McArdle and Hamagami (1996) proposed
using multiple groups SEM path diagrams to represent
multilevel models. Although this approach also allows for
the application of standard SEM diagramming rules, it re-
quires the use of phantom latent variables that may be
intimidating and nonintuitive for some users.

Also relevant are diagramming systems developed for
multilevel SEMs by McDonald (1994), L. K. Muthe´n and
Muthén (2003), B. O. Muthe´n and Satorra (1989), and
Skrondal and Rabe-Hesketh (2005). Although clearly useful
for their intended purposes, none of these diagramming
approaches has been widely adopted for the most typical
type of multilevel model: a model with fixed predictors,
random coefficients, and no latent variables. There are two
possible reasons for the lack of broad adoption of these
diagrams. First, it is not always obvious how to simplify the
diagrams to provide intuitive depictions for more standard
multilevel models that do not contain latent variables. Sec-
ond, these diagrams are designed primarily to communicate
model structure and are not intended to provide a direct

visual translation of the model equations or a modality for
the presentation of results. In juxtaposition to these SEM-
based approaches, we are aware of only one path diagram
uniquely designed to represent a multilevel model (Kreft &
de Leeuw, 1998, p. 72), but this was applied to a single
specific case and has not been used elsewhere.

Our goal is thus to propose a comprehensive rule-based
approach to path diagramming multilevel models that meets
three primary aims. First, the diagram should be designed in
a way that makes the graphical specification of the multi-
level model as intuitive as possible. Second, a unique set of
model equations should be directly derivable from the dia-
gram. Finally, the diagram should provide a mechanism
with which to clearly and unambiguously communicate
even complex empirical results to a broad audience of
researchers. To meet these aims, we first present a general
framework for constructing a multilevel path diagram. We
then build diagrams for various multilevel models of in-
creasing complexity. Next we describe an algorithm for
deriving both the multilevel and reduced-form equations for
a given model. Finally, we apply our diagrams to three
published multilevel applications and conclude with poten-
tial limitations and future directions.

To be clear at the outset, we are solely focused on what is
often considered the “standard” multilevel linear model or
the random coefficients/fixed regressors model. Impor-
tantly, we do not address recent developments in multilevel
factor analysis or structural equation modeling (e.g., Bentler
& Liang, 2003; Du Toit & Du Toit, 2005; Goldstein &
McDonald, 1988; McDonald, 1994; Mehta & Neale, 2005;
Rabe-Hesketh, Skrondal, & Pickles, 2004). Our restricted
focus is quite intentional, as we desire to develop a system
that is uniquely suited for the types of models most widely
used in practice. Although we offer brief introductions to
various multilevel models, we presume throughout that the
reader already has a basic knowledge of the core compo-
nents of the multilevel linear model (see, e.g., Bock, 1989;
Goldstein, 2003; Hox, 2002; Kreft & de Leeuw, 1998;
Longford, 1993; Raudenbush & Bryk, 2002; Snijders &
Bosker, 1999).

Constructing a General Framework for a Multilevel
Path Diagram

The diagramming method we propose here borrows from
several existing systems but does not require knowledge of
these other systems to be applied by the user. The current
method also incorporates a number of unique components
designed to capture effects not present in other types of
modeling strategies.

Boxes

As is standard in path analysis and SEM diagrams, a box
represents a measured variable that can serve as either a
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predictor or a criterion. Within this box, either an alphanu-
meric symbol or text label is used to name the observed
variable. The variable name is presented in plain font if the
variable is uncentered, it is presented in bold font if the
variable is group-mean centered, and it is presented in bold
italic font if the variable is grand-mean centered. Because
the issue of centering rarely, if ever, applies to the depen-
dent variable, this is always presented in plain font to denote
that the dependent variable is uncentered.

Triangles

Borrowing from McArdle and Boker’s (1991) RAM no-
tation, a triangle labeled with the number “1” is used to
define the intercept term in the equation; the label of “1” is
used to reflect the column of 1’s in the design matrix of the
model that produces the intercept estimate (e.g., Rauden-
bush & Bryk, 2002, Equation 3.22). Because the multilevel
model incorporates intercept terms at multiple levels of
analysis, typically more than one triangle is used within a
diagram. As such, the number “1” is subscripted to denote
specific level (e.g., 11 and 12 indicating intercepts at Level
1 and Level 2, respectively).

Circles

A circle is used to represent a random coefficient and is
labeled within the diagram accordingly. Our use of circles in
the proposed diagramming strategy takes on a different
meaning from those used in SEM diagramming schemes:
Whereas a circle is used in SEM diagrams to represent an
unobserved latent factor, here the circle represents an un-
observed random effect. As in many SEM path diagrams,
we do not use a circle to denote a residual term associated
with an observed variable.

Straight Single-Headed Arrows

As in path analysis and SEM diagrams, a straight single-
headed arrow represents a regression parameter. This effect
is assumed to be fixed unless superimposed with a circle, in
which case it is random. Single-headed arrows can represent
four general types of relations: (a) the arrow can begin with
a triangle and end with a circle or a square denoting an
intercept, (b) the arrow can begin with a square and end with
a square denoting the regression of one measured variable
on another, (c) the arrow can begin with a square and end
with a circle denoting the regression of a lower level ran-
dom coefficient on a higher level measured variable, or (d)
the arrow can begin with nothing and end with either a
square or a circle denoting a residual or disturbance (as in
SEMs, the implicit value of this path is 1).

Multiheaded Arrows

Borrowing from general SEM path diagrams, a multi-
headed arrow indicates a covariance. These typically appear

as curved double-headed arrows connecting two random
effects. Importantly, only covariances which are estimated
as model parameters are shown; as such, no covariances
among exogenous predictors are displayed as these values
are not estimated in fitting the model.

Applying the Diagramming Scheme to Various
Multilevel Models

With the components described above, any given multi-
level model can be translated directly into a diagram that
uniquely represents the model structure. We now demon-
strate this by diagramming a variety of multilevel models of
varying complexity. In each case, we annotate the diagrams
with the notation from the equations. Once greater famil-
iarity has been established with the diagramming system,
such annotation becomes unnecessary.

Two-Predictor Regression With Fixed Intercepts and
Fixed Slopes

As a starting point, we apply the basic elements of the
diagramming strategy to a standard two-predictor fixed ef-
fects regression. The single-level equation is given as

yi � �0 � �1x1i � �2x2i � r i, (1)

wherey is the outcome measured on individuali; �0, �1, and
�2 are fixed regression parameters relating the two predictor
variablesx1i and x2i to the response variable; andri is a
random residual term with a mean of zero and variance�2

(i.e., ri � N[0, �2]). The diagram for this model is presented
in Figure 1. Several of the key components of the diagram-
ming strategy are immediately apparent. First, the two pre-
dictors and one criterion are expressed in boxes indicating
that these are measured variables. Second, the labels for the
two predictors are in plain font indicating that these are in
the original metric of the measure (i.e., are uncentered).
Third, the single-headed arrow from each predictor to the
criterion reflects the regression of the criterion on each
predictor. Finally, the single-headed arrow from the triangle

ri

11

x2i

x1i yi
β1

β2

β0

Figure 1. Two-predictor fixed-effects regression with one inter-
cept and two slopes.
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to the criterion indicates that there is the usual regression
intercept estimated for the dependent measure.

Also notable is what is absent from the diagram. In the
standard SEM path diagram there would be a curved arrow
between the two predictors to reflect that these measures are
correlated. However, for the reasons described above, we
omit these from the diagram. Further, there are no circles
used in this diagram. This explicitly indicates that the re-
sidual termr is the only source of random variability in this
model, and the intercept and slopes do not vary randomly
over any higher grouping. Finally, there is no curved arrow
between the residual and either predictor, which clearly
indicates that the residual errors are assumed to be uncor-
related with the predictors.

Two-Predictor Regression With Random Intercepts
and Fixed Slopes

The most basic expansion of a fixed-effects regression
model to a multilevel model is to allow the intercept term to
vary randomly over groups. This parameterization implies
that the regression slopes remain fixed (i.e., are invariant
over groups), but the intercept term does not. The Level-1
model is given as

yij � �0j � �1x1ij � �2x2ij � r ij, (2)

wherei represents individual andj represents group, and the
Level-2 model is

�0j � �00 � u0j. (3)

The random intercept (denoted�0j) is thus expressed as an
additive function of a grand mean (�00) and a group-level
deviation from this mean (u0j). The within-group residual
variance is denoted�2 (i.e., rij � N[0, �2]), and the be-
tween-group variance is denoted�00 (i.e., u0j � N[0, �00]).
The Level-1 and Level-2 distinction is primarily pedagog-
ical, and from a statistical standpoint we are interested in the
reduced-form expression. The reduced form is derived by
the simple substitution of Equation 3 into Equation 2, which
results in

yij � ��00 � �1x1ij � �2x2ij� � �u0j � r ij�. (4)

The path diagram for this model is presented in Figure 2.
There are three key differences between Figure 1 and Figure
2. First, the two Level-1 predictors are now presented in
italicized font indicating these are group-mean centered (in
contrast to being uncentered in Figure 1). Second, a circle
labeled�0j has been superimposed on the path linking the
triangle to the dependent variableyij . This addition indicates
that the intercept term varies randomly over groups,
whereas the other two regression parameters remain fixed
(as indicated by the lack of an imposed circle on either
path). Third, an arrow points to the circle from a second

triangle implying an intercept (�00) for the random intercept
term (�0j). The group-level deviations from this intercept
are represented by the arrow from the disturbanceu0j. The
subscripting of 11 and 12 within each triangle clearly dif-
ferentiates the Level-1 and Level-2 intercept terms, respec-
tively. Finally, the absence of a curved arrow between the
Level-1 and Level-2 disturbances explicates the assumption
that these are uncorrelated.

Two-Predictor Regression With Random Intercept
and Random Slopes

We next extend the random intercept model to include
random slopes for the two predictors. The Level-1 model is
now

yij � �0j � �1jx1ij � �2jx2ij � r ij; (5)

the Level-2 model is

�0j � �00 � u0j

�1j � �10 � u1j

�2j � �20 � u2j; (6)

and the reduced-form expression is

yij � ��00 � �10x1ij � �20x2ij�

� �u0j � u1jx1ij � u2jx2ij � r ij�. (7)

The random intercept (�0j) and the two random slopes (�1j

and�2j) are expressed as additive functions of their grand
means (the�’s) and group-level deviations from these
means (theu’s). The multivariate distribution of the vector
of group-level deviations is assumed multivariate normal
(e.g.,uj � N[0, T]), whereT is the covariance matrix of the
Level-2 deviations.

The corresponding path diagram presented in Figure 3

β0j

rij

u0j

γ00

11

x2ij

x1ij yij

12

β1

β2

Figure 2. Two-predictor regression with a random intercept and
two fixed slopes.
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now includes a circle superimposed not only on the inter-
cept term but also on each of the regression parameters. As
with the prior figure, the two Level-1 predictors are pre-
sented in italicized font to denote group-mean centering. All
three random effects are regressed upon the triangle to
denote the estimation of the intercepts for each random
effect (i.e.,�00, �10, and�20 from Equation 6). Further, the
group-level deviations of the random effects from the
grand-mean effects are represented by the arrows marked
with the correspondingu’s. A new feature of this diagram is
that the disturbances for all three random effects are con-
nected by curved two-headed arrows indicating that the
covariance matrix of the random effects is unrestricted in
this model (i.e., all elements ofT are estimated). Fewer
curved arrows would reflect a more restricted structure forT
(e.g., no curved arrows at all would reflect thatT is diago-
nal).

Multilevel Model With Both Level-1 and Level-2
Predictors

Multilevel models often include predictors measured at
the group level. For example, consider an extension of the
previous model in which two Level-2 predictors are in-
cluded as predictors of each random effect. The Level-1
equation is again

yij � �0j � �1jx1ij � �2jx2ij � r ij, (8)

but the Level-2 equations are now expanded to include the
two group-level predictorsw1j andw2j:

�0j � �00 � �01w1j � �02w2j � u0j

�1j � �10 � �11w1j � �12w2j � u1j

�2j � �20 � �21w1j � �22w2j � u2j. (9)

Substituting Equation 9 into Equation 8 and collecting terms
results in the reduced-form expression given as

yij � ��00 � �10x1ij � �20x2ij � �01w1j � �02w2j�

� ��11w1jx1ij � �12w2jx2ij � �21w1jx2ij � �22w2jx2ij�

� �u0j � u1jx1ij � u2jx2ij � r ij�. (10)

We present this same model in Figure 4, which highlights
the capability of the diagram to convey the identical model
structure independently of the increasingly complex model
equations. Note that the diagram explicates the covariance
structure among the random effects that is not reflected in
Equations 8, 9, and 10. The path diagram also reflects that
there is a total of nine fixed effects: three associated with the
intercept, three withw1j, and three withw2j. Whereas the
Level-1 predictors are in italicized font to reflect that these
are group-mean centered, the Level-2 predictors are in bold
and italicized font to reflect that these are grand-mean
centered. Further, whereas the random effects regression
model shown in Figure 3 included unconditional random
effects at Level 2 (i.e., there were no Level-2 predictors),
these are now conditional (or residual) random effects given
the presence of the two Level-2 predictors. Figure 4 also
highlights the cross-level interactions between the Level-1
and Level-2 predictors, which are not explicated in Equa-
tions 8 and 9 (but are evident in the reduced-form expres-
sion in Equation 10). Specifically, the two Level-2 measures
predict the slopes of the Level-1 measures and thus exert a
“cross-level” influence on the outcome.1

Three-Level Model With Multiple Predictors at all
Levels

One particularly elegant aspect of the multilevel model is
the ease with which these models can be expanded to
incorporate higher orders of nesting. Although in principle
there can be as many potential levels of nesting as an
empirical data set can support, here we only consider three
(see Raudenbush & Bryk, 2002; Snijders & Bosker, 1999,
for further details on three-level models). We consider a
specific three-level model in which there are two predictors
at each of the three levels. Consistent with Raudenbush and
Bryk (2002), we use new notation to define the Level-1
model and expand the prior notation for the Level-2 and
Level-3 models.

The criterion is now denotedyijk to denote the measured

1 In some circumstances, it is possible to estimate a cross-level
interaction in the absence of a lower order random effect (e.g.,
Raudenbush & Bryk, 2002, p. 28, Equation 2.20). Such an effect
can be clearly represented in the diagram by simply drawing a
single-headed arrow from the Level-2 predictor to midspan of the
single-headed arrow from the Level-1 predictor to the outcome.
All tracing rules would apply as usual.

β0j

β2j

β1j rij

u0j

u1j

u2j

γ00 γ10 γ20

11

x2ij

x1ij yij

12

Figure 3. Two-level random-effects regression model with three
correlated random effects at Level 2.
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value of y for observationi nested within groupj which
itself is nested in groupk. The Level-1 equation for our
example is given as

yijk � �0jk � �1jka1ijk � �2jka2ijk � eijk, (11)

wherea1ijk and a2ijk are the two Level-1 predictors;�0jk,
�1jk, and�2jk are the Level-1 intercept and slopes, respec-
tively; and eijk is the residual. For example, this might
represent a growth model in which time is nested within
child who is in turn nested within family, anda1ijk anda2ijk

represent the linear and quadratic components of the growth
trajectory, respectively (e.g., time and time squared).

The Level-2 equation is then expressed in the notation
familiar from the two-level model presented earlier such
that

�0jk � �00k � �01kx1jk � �02kx2jk � r 0jk

�1jk � �10k � �11kx1jk � �12kx2jk � r 1jk

�2jk � �20k, (12)

wherex1jk andx2jk denote the Level-2 predictors unique to
unit j within groupk. Continuing our example, this might
reflect that the intercept and linear components of the
growth model vary randomly across multiple children
nested within family, and these are each regressed on the

two child-level predictors (e.g., child gender and child psy-
chopathology). Finally, the Level-3 equations are defined as

�00k � �000 � �001w1k � �002w2k � u00k

�01k � �010

�02k � �020

�10k � �100 � �101w1k � �102w2k � u10k

�11k � �110

�12k � �120

�20k � �200, (13)

wherew1k andw2k denote the Level-3 predictors unique to
groupk. Completing our example, this might reflect that the
intercept and linear components of the growth trajectory are
also predicted by the two family-level predictors (e.g., par-
ent income and parent psychopathology). There may also be
some similarity between the trajectories of children residing
within the same family that is unexplained by the set of
predictors, necessitating the inclusion of the family-level
disturbance terms.

We can again derive the reduced-form expression by

β0j

β2j

β1j rij

u0j

u1j

u2j

γ01 γ11 γ21 γ02 γ12 γ22

w2j

γ00 γ10 γ20

11

x2ij

x1ij yij

w1j 12

Figure 4. Two-level model with two Level-1 predictors, two Level-2 predictors, and three
correlated random effects at Level 2.
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substituting Equation 13 into Equation 12, and Equation 12
into Equation 11 to result in the rather unwieldy expression

yijk � ��000 � �100a1ijk � �200a2ijk � �010x1jk � �020x2jk

� �001w1k � �002w2k� � ��110a1ijkx1jk � �120a1ijkx2jk

� �101a1ijkw1jk � �102a1ijkw2k� � �u00k � u10ka1ijk � r 0jk

� r 1jka1ijk � eijk�. (14)

It is little wonder why many authors forgo including either
the multilevel or reduced-form equations in their manu-
scripts when fitting such complex models.

Despite the complexity of this model, however, the very
same relations can be fully represented in path diagram
form, as seen in Figure 5. The diagram explicates the
predictors at each level of the model. Further, the Level-1
measuresa1ijk anda2ijk are labeled in plain font to reflect
that these are scaled in the raw metric of time; the Level-2
measuresx1jk andx2jk are labeled in italicized font to reflect
these are group-mean centered within the Level-2 groups;
and the Level-3 measuresw1k andw2k are labeled in bold
and italic font to reflect that these are grand-mean centered.
The diagram also shows that, at Level 1, the intercept and
the slope fora1ijk vary across both Level-2 and Level-3
units. The effects of the Level-2 predictors are, however,

clearly defined as fixed effects given the omission of circles
superimposed on these pathways. The assumption that the
random effects covary within but not across levels is also
explicit given the placement of the curved double-headed
arrows. Additionally, following the downward flow of the
arrows, we can see that there will be main effects for all six
predictors, as well as two-way cross-level interactions be-
tween the two Level-1 and two Level-2 predictors and
between the two Level-1 and two Level-3 predictors, yield-
ing a total of 11 fixed effects (this is explicated further in the
tracing rules presented below). In total, Figure 5 equiva-
lently represents the model given in Equation 14, yet we
believe the path diagram offers a unique way to foster the
understanding of the model at hand.

Summary

We have focused on five general structures of the multi-
level model that are commonly encountered in practice. The
proposed diagramming strategy can be applied to any com-
bination of fixed or random effects models. Extensions to
the standard two- and three-level models are equally ame-
nable to the diagramming system. For instance, multiple
outcome variables can be included to build diagrams for a
variety of types of multivariate models. Similarly, a cross-

π0jk

eijk

r0jk

r1jk

γ020 γ120

x2jk

γ000

11

a2ijk

a1ijk yijk

12

13

w1k

γ200

π1jk

u00k

u10k γ001

γ100

γ101

x1jk

w2k

γ010 γ110

γ102

γ002

β00k

β10k

Figure 5. Three-level model with two predictors at each of three levels and two correlated random
effects at Level 2 and Level 3.
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classified model can be diagrammed by including different
Level-2 disturbances for each dimension of the cross-clas-
sification over which a coefficient varies. Rather than cata-
log all of the possible model structures that can be dia-
grammed, we next explore in greater detail the two key
purposes for which these diagrams can be used: to derive
the equations that define the model and to unambiguously
communicate empirical results to aid in substantive inter-
pretation and broader dissemination of findings.

Using Path Diagrams for Deriving Model Equations

As we have demonstrated earlier, multilevel models can
be equivalently expressed with either a set of multilevel
equations (e.g., the Level-1 and Level-2 distinction) or a
single reduced-form equation (e.g., in which the Level-2
equations are substituted into the Level-1 equation). There
are distinct advantages to each form of expression, and the
optimal selection depends upon the specific application at
hand. In our experience, many researchers in the social
sciences prefer to work with the multilevel expressions.
This preference is likely due to a variety of reasons, not the
least of which is the often intuitive expression of regression
equations existing within each level of analysis. Despite this
advantage, we believe that there are several important rea-
sons why it is useful to more fully understand the reduced-
form expression as well.

First, from a strictly pedagogical standpoint, it is impor-
tant to appreciate that the dependent measureyij is simulta-
neously expressed as a function of all model parameters
(e.g., Equation 10). This point is sometimes lost in the
multilevel expressions (e.g., the influence of a Level-2 pre-
dictor does not explicitly appear in a Level-1 equation; e.g.,
Equations 8 and 9). Second, the reduced-form expression
explicates the critical presence of cross-level interactions
that are often not fully appreciated in the Level-1 and
Level-2 equations (Bauer & Curran, 2005; Tate, 2004).
Finally, from a strictly practical standpoint, there are a
number of important software packages that require the
multilevel model be expressed in terms of the reduced-form
equation (e.g., SAS PROC MIXED, Version 9.1.3, or SPSS
MIXED, Version 15.0). For these reasons, we believe it is
important to develop a way to encourage the comfortable
transition between the multilevel equations and the reduced-
form equation and back again.

However, writing out the reduced-form equations from a
multilevel expression can be a sometimes tedious and error
prone task, especially for more complex models (e.g., con-
sider the three-level model expressed in Equations 11, 12,
13, and 14 from above). This is particularly salient for
individuals who may be less comfortable with manipulating
mathematical equations yet desire to use the analytic tech-
niques to evaluate important research hypotheses. As we
demonstrate below, the reduced-form expression for even a

complex multilevel model can be directly obtained from a
path diagram by following a small number of basic rules.
We first present tracing rules that allow for the derivation of
the reduced-form expression from a given path diagram
followed by slightly modified rules needed for deriving the
multilevel equations from the same diagram. Although we
focus on the two-level model, all of these rules directly
generalize to the three-level model as well.

Tracing Rules for Deriving Reduced-Form
Equations

There are four steps needed to derive the reduced-form
equation from a given path diagram.

1. First, identify the intercept and all of the predictors
from which only a single-headed arrow emanates and no
circle is superimposed on the pathway. For example, in
Figure 1 this would simply be the Level-1 triangle and two
Level-1 boxes; in Figure 2, this would be the Level-2
triangle and the two Level-1 boxes; in Figure 3 this would
only be the Level-2 triangle; and in Figure 4, this would be
the Level-2 triangle and the two Level-2 predictors.

2. Next, trace from the intercept and each predictor iden-
tified in Step 1 through the diagram to end at the criterion
measurey following two rules. First, multiply whatever is
denoted by the triangle (e.g., 1) or the square (e.g.,x1ij or
w1j) by the corresponding path coefficient (e.g.,�00 or �22);
then, if a circle is encountered in the trace, multiply the first
product by whatever is denoted by the triangle or square at
theheadof the path with the circle. Steps 1 and 2 identify
all of the fixed effects.

3. Then repeat the process described in Step 2, but starting
from all residual terms (i.e., theu’s and rij). This step
identifies all of the random effects.

4. Finally, the reduced-form expression for the given
model is simply the sum of all the traces derived from Steps
2 and 3.

As a demonstration, we apply these tracing rules to derive
the reduced-form expression of the two-level model pre-
sented in Figure 4 and defined in Equation 10; each step is
also presented in Figure 6. From the diagram we can im-
mediately see that there will be a total of nine traces nec-
essary to derive the fixed effects for the reduced-form
equation (three traces associated with the Level-2 intercept,
and three for each of the two predictors); further, there will
be a total of four traces necessary to derive the random
effects (three traces associated with the three random effects
at Level 2, and one for the residual term).

First, we identify the intercept term and set of predictors
from which a single-headed arrow emanates and upon
which the path does not have a circle superimposed. In
Figure 4, the Level-2 intercept and the two Level-2 predic-
torsw1j andw2j fulfill these requirements. Next, we follow
each possible trace through the diagram by multiplying the
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head of the trace with the corresponding coefficient and
multiplying this product by the head of any lower level
effect. So, starting with the Level-2 intercept, we compute
three components of the reduced-form equation: (1)(�00)(1),
(1)(�10)(x1ij), and (1)(�20)(x2ij). Importantly, note that when
deriving the reduced-form equation, we are not interested in
what is labeled within the circles (e.g.,�0j) but instead what
lies at theheadof the path on which the circle is superim-
posed. Because the value of 1 is implicit, the first contribu-
tion associated with the Level-2 intercept is simply

��00 � �10x1ij � �20x2ij�. (15)

We repeat this process for the next predictorw1j. The three
associated components are (w1j)(�01)(1), (w1j)(�11)(x1ij),
and (w1j)(�21)(x2ij). These three contributions highlight the
main effect contribution ofw1j along with the two cross-
level interactions withx1ij and x2ij . Thus, the next three
contributions are

��01w1j � �11w1jx1ij � �21w1jx2ij�. (16)

Finally, the three fixed effects associated withw2j are traced
just as they were forw1j with the resulting contribution

��02w2j � �12w2jx1ij � �22w2jx2ij�. (17)

Equations 15, 16 and 17 reflect the fixed-effects part of
the reduced-form expression of the model in Figure 4. We
next add each residual term to compute the random-effects
part of the model. In Figure 4 we start with each Level-2
deviation term (theu’s associated with each circle) and
multiply eachu by the value at the head of the correspond-
ing pathway. Recall that the implicit value of these one-
headed pathways is 1. The first term is thus (u0j)(1) for the
random intercept; the second term is (u1j)(1)(x1ij) for the
random slope associated with the first Level-1 predictor;
and the third term is (u2j)(1)(x2ij) for the random slope
associated with the second Level-1 predictor. Finally, we
add the Level-1 residual (rij)(1) to complete the random
effects (the value of the path associated withrij is also
implicitly 1). Taken together, the random-effects part of the
reduced-form model is

�u0j � u1jxij � u2jx2ij � r ij�. (18)

Collecting all of the above terms together, the reduced-form
expression for the multilevel model expressed in Figure 4 is

yij � ��00 � �10x1ij � �20x2ij� � ��01w1j � �11w1jx1ij

� �21w1jx2ij� � ��02w2j � �12w2jx1ij � �22w2jx2ij�

� �u0j � u1jxij � u2jx2ij � r ij�, (19)

which exactly corresponds to the reduced-form equation
presented in Equation 10. Each step is also summarized in
Figure 6.

Tracing Rules for Deriving Multilevel Equations

The above steps allow for the derivation of the reduced-
form equation. Modest modifications to the tracing rules
described above are needed to allow for the derivation of the
set of multilevel equations from a given path diagram. The
key to deriving the multilevel equations is to view a mul-
tilevel model as having multiple dependent variables, the
outcome variabley at Level 1 and the random coefficients at
Level 2. Of course in actuality there is only a single out-
come variabley, but a multilevel perspective allows for the
clear disaggregation of Level-1 and Level-2 effects. Given
this, the necessary modifications to the existing tracing rules
are to (a) identify all squares and circles for which at least
one single-headed arrow terminates and (b) identify all
predictors that directly influence the specific square or cir-
cle.

We again consider the model presented in Figure 4. To
derive the Level-1 equation, we need to identify the set of
direct determinants ofyij ; that is, we must incorporate all
traces that exist only within the Level 1 part of the model
that lead directly toyij . Here we see there are four: one from
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Figure 6. Step-by-step derivation of the reduced-form expression
of a two-level model.
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the Level-1 intercept and one each fromx1ij , x2ij , andrij . We
start at the head of each of these paths, and we multiply
what is denoted at the head with what is superimposed on
the path as we proceed downstream toyij . These contribu-
tions are (1)(�0j), (x1ij)(�1j), (x2ij)(�2j), and (rij)(1). These
four components are then summed to represent the Level-1
equation

yij � �0j � �1jx1ij � �2jx2ij � r ij. (20)

We then repeat this process for each component that can
be considered another “dependent variable” in the model. In
Figure 4, these are�0j, �1j, and�2j and are identified as such
given that they are influenced by at least one single-headed
arrow. Each of these outcomes is defined to be influenced by
four single-headed arrows: one from the Level-2 intercept,
two from the two Level-2 predictors, and one from the
Level-2 disturbance. A separate equation must be derived
for each of these three outcomes. For example, the deter-
minants of �1j are (1)(�10), (w1j)(�11), (w2j)(�12), and
(u1j)(1). These are summed to result in

�1j � �10 � �11w1j � �12w2j � u1j, (21)

which is the Level-2 expression for the random slope asso-
ciated with x1ij . The same process would result in the
relevant equations for�0j and�2j, respectively.

Using Path Diagrams to Aid in the Presentation of
Model Results

We have demonstrated our first goal of developing a path
diagram that can be used to easily derive either the multi-
level or reduced-form equations for a given multilevel
model. Our second goal is to use this same diagramming
system to enhance the communication of complex empirical
results to a broad audience of researchers. This may be
particularly salient when considering consumers of research
who are less familiar with the intricacies of multilevel
modeling but nonetheless strive to gain a clear understand-
ing of the model results from a substantive perspective.

To facilitate the clear presentation of a set of empirical
results, we invoke two slight modifications to the diagrams
to further explicate the relevant parameter estimates of
interest. First, up to now we have denoted the Level-1 and
Level-2 residuals as individual and group-specific devia-
tions (e.g.,rij andu0j). However, the corresponding model
parameters are thevariances of these deviations (e.g.,
var[rij ] 	 �2 andvar[u0j] 	 �00). Thus, when reporting the
random components from a given model application, we
denote the numerical values of these variance estimates
within the corresponding circle in place of the Greek nota-
tion used to define the given term (e.g., we replace “�0j”
with the sample estimate for the variance of the intercept).
Second, if the researcher desires to indicate the statistical

significance of the obtained estimates, we suggest that all
sample estimates be presented but nonsignificant values be
enclosed in parentheses (but see Harlow, Mulaik, & Steiger,
1997, for limitations of this method of presentation). Con-
fidence intervals can also be presented in place of the
sample point estimates. With these two modifications, we
now turn to using these diagrams to summarize several
previously published empirical applications.

Example 1: Sliwinski, Hofer, Hall, Buschke, and
Lipton (2003)

Our first example focuses on a two-level growth model of
memory decline in older adults presented in Sliwinski et al.
(2003, Table 6, Model 3a, p. 665). The sample used for this
model consisted ofN 	 293 elderly adults drawn from the
longitudinal Bronx Aging Study. The subjects were free of
dementia and were assessed annually over a period of 1–16
years (with an average follow-up of 5 years). The primary
outcome of interest was a continuous measure of memory.
The four Level-1 predictors were the linear and quadratic
effects of chronological age and the linear and quadratic
effects of time to attrition from the study, respectively. All
Level-1 predictors are labeled in plain font to reflect that
these are scaled in the raw metric ofageandtime. Random
effects were estimated for the Level-1 intercept and all four
Level-1 predictors. Because there were no Level-2 predic-
tors, this can be considered a random effects regression
model. This model is presented in Figure 7.

Several model features are immediately apparent in the
diagram. First, there are five fixed effects, four of which are
significantly different from zero (p
 .05). Second, there is
a Level-1 residual and five Level-2 random effects; the
Level-1 residual is uncorrelated with the Level-2 random
effects, and the Level-2 random effects all covary with one
another.2 Third, because the original article did not report
the sample estimates for the variances or covariances of the
random effects, these are denoted in the figure by a question
mark. If available, these sample estimates would have been
reported within the confines of the circles. This first exam-
ple demonstrates the core components of the proposed dia-
gramming system. We now extend these to two more com-
plicated models.

Example 2: Jenkins, Rasbash, and O’Connor (2003)

We next consider a two-level model presented by Jenkins
et al. (2003, Table 1, Model 7, p. 104). The data set was
comprised of 8,096 children nested within 3,860 families;
family size ranged between two and four children. The

2 Although the specific covariance structure was not explicated
in Sliwinski et al. (2003), we are inferring this structure from other
models presented in the manuscript.
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theoretical question of interest focused on the extent to
which primary caregivers may differentially parent multiple
children within the same family. The outcome was a con-
tinuous measure of positive parenting of the child. This
model is presented in Figure 8.

Although this model is quite complex (eight Level-1
predictors, six Level-2 predictors, three random coeffi-
cients, one cross-level interaction), all of these details are
clearly present in the diagram. There were a mixture of
Level-1 and Level-2 variables that were scaled in the raw
metric or were grand-mean centered; these are thus labeled
in plain font and bold italic font, respectively. As before, all
parameter estimates are reported; those without parentheses
are statistically significant (p � .05), and those within
parentheses are not (p � .05). The diagram highlights that,
for the eight Level-1 predictors, three have random effects
(intercept, age, and negative affectivity); all three random
effects freely covary; all three variance estimates are sig-
nificant; and only one of the three covariances is significant.
Finally, only one cross-level interaction is estimated (indi-

cated by the arrow from family size to age), and this
interaction is significant.

Although this model consists of 15 measured variables,
16 fixed effects, and seven variance/covariance parameters,
we could directly derive the reduced-form equation using
tracing rules applied to the diagram. This example also
highlights one limitation of our proposed path diagramming
approach. Specifically, although the original analyses in-
cluded a complex structured Level-1 residual term, this
cannot be easily expressed in the diagram and would instead
need to be noted in the figure caption or text. Despite this
limitation, we believe the diagram helps increase the com-
munication of these complex results to a broader audience
of researchers.

Example 3: Molnar, Buka, Brennan, Holton, and
Earls (2003)

Our final example focuses on a three-level model pre-
sented by Molnar et al. (2003, Table 5, Model 4, p. 92). This
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Linear
ToDrop

Quadratic
ToDrop

Linear
Age

?

?
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Figure 7. Path diagram applied to the random-effects regression model presented in Sliwinski et al.
(2003, Table 6, Model 3a, p. 665). Parameter estimates without parentheses are significant (p� .05) and
within parentheses are nonsignificant (p� .05). Question marks denote sample estimates for Level-1 and
Level-2 random effects not reported in Sliwinski et al. ToDrop	 time to drop from the study.
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study examined the joint contribution of child, family, and
community characteristics in the prediction of parent-to-
child physical aggression. This is a three-level model con-
sisting of 4,252 children nested within 3,465 families who
were in turn nested within 343 neighborhood clusters. There
were five Level-1 predictors (including four dummy vari-
ables to code age groups), eight Level-2 predictors (includ-
ing three dummy variables to code ethnic groups), and three
Level-3 predictors. The Level-1 residual was estimated, as
were random intercepts at both Level 2 and Level 3. This
results in a model with 16 fixed effects and three random
effects. This model is presented in Figure 9.

As with the prior two examples, the path diagram allows
for the explicit identification of the levels of nesting, the
level at which each predictor resides, and the parameteriza-
tion of both fixed and random effects. There were a mixture
of Level-1, Level-2, and Level-3 variables that were scaled

in the raw metric or were grand-mean centered; these are
thus labeled in plain font and bold italic font, respectively.
It is also clear that, because all predictors only directly
influence lower order random intercept terms, this model
contains strictly main effects. Further, significant effects
were found for three of the five Level-1 predictors, six of the
eight Level-2 predictors, one of the three Level-3 predictors,
and the Level-3 intercept. Finally, because parameter esti-
mates were not reported for either the Level-1 residual or
the two random intercept effects, these are denoted in the
figure by a question mark.

Conclusion

We have described a framework for graphically repre-
senting a broad class of multilevel models. To accomplish
this, we have borrowed some aspects of the SEM path
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Figure 8. Path diagram applied to the two-level model presented in Jenkins et al. (2003, Table 1,
Model 7, p. 104). Parameter estimates without parentheses are significant (p � .05) and within
parentheses are nonsignificant (p� .05). The Level-1 residual has a more complex structure than can be
compactly presented here. Plain font reflects raw metric; bold italic font reflects grand-mean centering.
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diagram and have proposed new components necessary to
accommodate the unique characteristics of the multilevel
model. We see four specific advantages of the diagramming
framework: It can be used to represent a model in lieu of
model equations, the diagram of the model structure is
independent of any particular notation system for the model,
model equations can be derived directly from the diagram,
and the diagram can be used to simultaneously convey both
the specific structure of the tested model and the associated
empirical results. Despite what we hope are important ad-
vantages associated with the proposed diagramming strat-
egy, there are of course several accompanying limitations.

First, as with any diagramming framework, the multilevel
path diagrams naturally become increasingly cluttered when
applied to highly complex models. Drawing on our experi-
ences within a variety of research venues, we believe that
the majority of empirical applications in the social sciences
can be efficiently presented using the diagrams we describe
here. However, it is sometimes recommended that the same

set of predictor variables be used for all random effects to
help protect against model misspecification (e.g., Rauden-
bush & Bryk, 2002, p. 272), and this strategy can result in
an increasingly complex model. Under such situations a
single diagram may be of less use. Second, there are several
characteristics of some model parameterizations that cannot
be portrayed here. Examples include complex Level-1 co-
variance structures and the imposition of linear or nonlinear
constraints placed on two or more parameter estimates. A
reasonable strategy under these conditions might be to use a
path diagram and simply note such structures in the text or
figure caption. Finally, there of course may be specific
situations in which a tabular or equation-based presentation
is preferable to the use of a path diagram. We are certainly
not advocating the universal and mandatory use of dia-
grams; instead, we hope that a diagram might simply serve
to augment other modes of communication.

There are two areas of future research that might be of
much interest and utility. First, these path diagrams expand
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logically to incorporate cross-classified structures (e.g.,
Raudenbush, 1993), multivariate models for multiple out-
come variables (e.g., MacCallum, Kim, Malarkey, &
Kiecolt-Glaser, 1997), and multilevel models with mediat-
ing pathways (e.g., Bauer, Preacher, & Gil, 2006). Modest
modifications will also allow for the depiction of multilevel
generalized linear models with nonlinear link functions and
nonnormal conditional distributions for the outcomes. Fu-
ture work could explore how to best incorporate these
expansions into the proposed framework. Second, the path
diagramming framework could in principle be integrated
into statistical software packages. One of the core motivat-
ing goals of applied statistics is the dissemination of ad-
vanced methods into empirical research settings. Because
there are only so many hours in a given day, all people
cannot be experts in all aspects of the research process.
There are thus many individuals conducting important and
timely research who might greatly benefit from the use of
multilevel models, yet may not be familiar with using these
methods in practice. Although possibly both good and bad,
path diagrams have found their way into many SEM soft-
ware packages, increasing the accessibility of these methods
to a broader audience of researchers. The incorporation of
path diagrams into multilevel modeling software might sim-
ilarly increase the availability and utility of these techniques
in practice. Finally, diagrams and diagram-based software
can be invaluable teaching resources for students first learn-
ing about multilevel models.

We would like to conclude with a final word of warning.
An anonymous reviewer was not enthusiastic about our
proposed diagramming strategy given a significant concern
that such a framework could serve to encourage bad work,
foster mechanical thinking, and restrict creativity. Similar
arguments have been made about the ubiquity of path dia-
grams within the SEM (see, e.g., the lyrics of David Rogo-
sa’s, 1988,Ballad of a Casual Modeler). We greatly appre-
ciate the perspective offered by the reviewer, and we agree
that the use of path diagrams within SEMs has not been
without problems. Certainly, the availability of SEM soft-
ware that accepts path diagrams as inputs has at times
enabled inexperienced users to fit ill-formulated models. At
the same time, we firmly believe that the advantages of
model diagrams vastly outweigh their potential weaknesses.
In our own experience, diagramming a model often inspires
more thoughtful discussion of the model structure, its un-
derlying assumptions, and its potential shortcomings com-
pared to writing out the full set of equations; we have found
this to be the case even among those who are already quite
familiar with expressing the model in equation form. Thus,
despite the potential for misuse, we hope that the careful and
thoughtful application of our proposed path diagramming
framework can serve to increase the understanding of mul-
tilevel models, encourage the broader use of these models in

practice, and more efficiently disseminate important empir-
ical findings to the scientific community.
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