
A Comparison of Logistic Regression to

Decision Tree Induction in the

Diagnosis of

Carpal Tunnel Syndrome

Stephan M. Rudolfer

Mathematics Department

University of Manchester, England

Georgios Paliouras

Informatics and Telecommunications Institute

National Center for Scienti�c Research, Greece

Ian S. Peers

Human Communications Science Department

University of She�eld, England

ABSTRACT

This paper aims to compare and contrast two types of model (logistic regression

and decision tree induction) for the diagnosis of carpal tunnel syndrome using

four ordered classi�cation categories. Initially, we present the classi�cation per-

formance results based on more than two covariates (multivariate case). Our

results suggest that there is no signi�cant di�erence between the two methods.

Further to this investigation, we present a detailed comparison of the structure

of bivariate versions of the models. The �rst surprising result of this analysis

is that the classi�cation accuracy of the bivariate models is slightly higher than

that of the multivariate ones. In addition, the bivariate models lend themselves

to graphical analysis, where the corresponding decision regions can easily be rep-

resented in the two-dimensional covariate space. This analysis reveals important

structural di�erences between the two models.
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1 INTRODUCTION

In recent years, the family of methods suitable for classi�cation problems has

been extended to include a range of new techniques, such as neural networks

and decision tree induction. This observation has led to an increase in the num-

ber of empirical comparisons of classi�cation methods on a variety of problems.

The European StatLog project [19] can be considered the epitome of this work,

comparing 24 techniques on 23 datasets. Unfortunately, the main conclusion of

this project was that the performance of the techniques, both in absolute and

relative terms, varied considerably for di�erent datasets. As a result, the choice

of technique seems to be strongly dependent on the application. An interesting

attempt was made in the StatLog project to characterise the classi�cation prob-

lem in terms of some generic features of the datasets, e.g., number and types of

covariates (independent variables), number of classi�cation categories. The aim

was to justify the performance of the classi�cation techniques on the basis of the

problem types. This attempt had only limited success, due to the inadequacy of

the describing features and wide variability between datasets.

The work presented in this paper is much more restricted in its scope. It

compares the performances of two classi�cation techniques on a medical problem

arising in electromyography (EMG), with the aims of investigating which vari-

ables are important for classi�cation and examining any interesting features of

the dataset. The comparison uses the diagnosis of an experienced electromyo-

grapher as \gold standard". The techniques which are compared are: decision

tree induction (DT) and logistic regression (LR). The medical problem on which

they are compared is Carpal Tunnel Syndrome (CTS), a cluster of hand symp-

toms caused by entrapment of the median nerve at the wrist; see, for example,

[23]. CTS is the most commonly seen nerve entrapment syndrome in hospital

EMG clinics. This lends itself naturally to statistical modelling of CTS. The �rst

author collaborated with the late Dr. John L. James, Consultant Physician, St.

Luke's Hospital, Hudders�eld, England, on statistical approaches to CTS diag-

nosis using nerve conduction studies, and systematically obtained data relevant

to this problem. Initially, the diagnostic classes considered were NAD (No Ab-

normality Detected) and CTS. A computer program (CTSS) based upon binary

logistic regression was used for some years in Dr. James' EMG clinics to screen

referred hands into NAD or CTS [24, 25].

However, it became apparent that the binary diagnosis was too blunt a clas-

si�cation, since the treatment subsequently applied (typically, splinting, steroid

injection into the wrist, or operation to free the median nerve in the carpal tun-

nel) depends, to a large extent, on the assessed severity of the CTS. It should be

pointed out, however, that Dr. James was not responsible for the treatment given

to the patient. Patients were referred to him for investigation, and his usual re-

ply letter contained a phrase of the form \These �ndings are consistent with ...",

leaving the choice of treatment to the referring doctor. Accordingly, a multigroup
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classi�cation was adopted, and a large, new and much more detailed dataset was

obtained. This dataset not only contained �ve diagnostic classes as determined

by Dr. James (NAD, mild CTS, moderate CTS, severe CTS and non-CTS ab-

normality - possibly also involving some degree of CTS), but also recorded the

patients' histories and clinical examinations in addition to their nerve conduction

studies. This new dataset provided the springboard for our comparison of the

LR and DT methodologies. Initial results of this work were presented at the 6th

Biennial Conference of the European Society for Medical Decision Making, 16-18

June, 1996.

One major aspect of the study is variable selection. The data contain 38

covariates in total, making a reduction in their number essential.

Another comparison of LR and DT for the binary case has been performed

in a di�erent medical domain: the diagnosis of acute cardiac ischemia. The

results of this work are presented in [17], and the general conclusion was that

LR performed better than DT. This argument was based on a comparison of the

ROC curves for the two methods [2, 9]. In order to acquire the ROC curve for

the DT, a method of obtaining rough estimates of diagnostic probabilities was

employed. Probabilistic classi�cation is unnatural for DT, and this method of

constructing pseudoprobabilities has been criticised in [22].

This paper adopts an alternative, multigroup approach, considering a subset

of Dr. James' dataset mentioned above. Eliminating the non-CTS abnormalities,

which were relatively rare in this dataset, we are left with four ordered diagnostic

categories: NAD, mild CTS, moderate CTS and severe CTS. The LR model �tted

to multicategory data di�ers signi�cantly from the binary classi�cation case, in

that various approaches to the logistic modelling may be adopted [26]. Since the

four categories are ordered, the most appropriate model type is the Proportional

Odds (PO) model, provided its assumptions are valid for the dataset considered.

The PO model was �tted using the LOGISTIC procedure of the SAS statistical

package [28]. For the DT, the popular C4:5 program [22] was used.

The main measure of comparison for the two methods is classi�cation perfor-

mance on test data independent of the design dataset, as carried out in [17] and

[19]. Percentage correct classi�cation (agreement with Dr. James' diagnosis) is

the overall measure of performance used; crosstabulations of the computed di-

agnoses with Dr. James' diagnoses give a more detailed picture of the methods'

strengths and weaknesses. However, in addition to this evaluation, an interpreta-

tion of the classi�cation models is sought. This is done by graphical illustration

of the models in the covariate space. For both DT and LR, the classi�cation

regions are bounded by hyperplanes. For bivariate models, these can easily be

represented, and the areas of agreement between DT and LR mapped out. Such

an analysis was made in [16], where it helped signi�cantly in understanding the

behaviour of the models. In the work presented here it has led to equally inter-

esting results.

Section 2 of the paper presents the data that have been used in the work.
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Section 3 describes the LR and DT methods for multicategory classi�cation.

Section 4 presents and discusses the results of comparing the two methods on

the CTS diagnosis problem, while section 5 summarises the presented work and

suggests promising extensions to it. The Appendix contains full details of the

covariates used, as well as summaries of their main properties.

2 DATA FOR THE COMPARISON

The data for this comparison were collected at the Electromyography clinics of

the late Dr. John L. James, Consultant Physician, St. Luke's Hospital, Hudder-

s�eld, using a pro-forma prepared by the �rst author in conjunction with Dr.

James. The patients in the database were taken from those referred to Dr. James

with queried carpal tunnel syndrome (CTS). There were 937 patients seen from

March 1991 to March 1994, and the �nal diagnoses were divided by Dr. James

into �ve categories: NAD, mild CTS, moderate CTS, severe CTS and non-CTS

abnormality (which could include some degree of CTS). The last class was a very

di�use one, so was omitted from this study. A further reason for doing so is that

the four remaining diagnostic categories are now ordered. The remaining patients

were converted into 1710 hands, which were randomly divided into a design set

of 850 hands and a test set of 860 hands. Both the decision tree and logistic

regression were designed on the former and tested on the latter. The diagnos-

tic distributions in the two subsets were kept as close as possible to that in the

original set.

The variables recorded for each hand fall into three groups: history, clinical

examination, and nerve conduction studies (NCS). We shall give examples of each

type, and leave the full list for the Appendix.

History. This covers the patient's age, handedness and sex, as well as four symp-

toms playing an important role in alerting the doctor to the possibility of

CTS. For example, numbness and tingling in the area of the hand inner-

vated by the median nerve. The full list of history symptom variables and

their coding is given in Table 5 of the Appendix.

Clinical Examination. This covers signs and symptoms observed or elicited

by the examining doctor or technician. For example, wasting and weakness

of the muscles in the median nerve-innervated part of the hand. The full

list and coding of clinical examination variables is given in Table 6 of the

Appendix.

Nerve Conduction Studies. These involved the use of a specialised EMG ma-

chine (Medelec M6) providing electrical stimulus to, and recording the re-

sponses from, the nerves tested. The motor and sensory �bres of the median

and ulnar nerves were tested at the wrist and at the elbow. The two most
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important nerve conduction variables in the diagnosis of CTS are the me-

dian motor latency at the wrist and the median sensory latency. The full

list of nerve conduction variables is given in Table 7 of the Appendix.

Precise de�nition of the severity of CTS varies from clinician to clinician. It

will involve a mixture of history, clinical examination and nerve conduction stud-

ies. At one extreme, [34] de�ned CTS severity purely in terms of the last two

(mild CTS hands were symptom-free one or more days per week; moderate CTS

hands had symptoms daily, awoke the patient from sleep or required modi�ca-

tion of daytime activity to reduce the symptoms; severe CTS hands had constant

numbness and/or tingling or there was thenar muscle weakness). At the other

extreme, [30] de�nes the severity purely in terms of nerve conduction measure-

ments: mild CTS includes prolonged median sensory latency (MSL); moderate

CTS in addition involves prolongation of the median motor latency at the wrist

(MMLW); severe CTS occurs when the MMLW and MSL are prolonged, with

either no median sensory response or low median sensory amplitude (MSA). In

between these two extremes, we have [23], who de�ne mild CTS as CTS in which

the symptoms are transient and may resolve completely, and the nerve conduc-

tion abnormalities may resolve completely or partially. They de�ne moderate

CTS as having recurrence of hand symptoms many times per week and evidence

of local slowing of nerve conduction across the carpal tunnel. Severe CTS oc-

curs according to [23] when there is clinical evidence of median nerve damage

(weakness and wasting of the thenar muscles). Dr. James determined the sever-

ity of CTS in terms of clinical examination and nerve conduction studies, mainly

MMLW and MSA (personal communication), although the precise way in which

he combined them is probably best described as \clinical judgement". It is pos-

sible that Dr. James' lack of reliance on a patient's history may well have been

due to its unreliability. For example, patients often �nd it hard to remember ex-

actly how long they have su�ered from pain in the index �nger. An approximate

algorithm DTJJ, using MMLW and MSA only and given by Dr. James to one of

his technicians, is given in section 4.2.

One important aspect of the nerve conduction variables is the occurrence of a

non-response in the measured nerve. This can happen if there is damage to the

relevant nerve, thereby preventing conduction of nerve impulses down the nerve

pathway. In general, sensory �bres are the �rst to be a�ected by nerve damage;

motor �bres are thicker than sensory �bres, so are more robust to damage. Non-

response does not represent a missing value in the usual sense of the term, since

an attempt has been made at acquiring it. One possible approach is to regard

non-response as a sub-threshold response, which cannot be detected by the EMG

machine. However, modern EMG machines use such low thresholds that it can

be safely assumed that there is no response for the machine to detect in the �rst

place.

Non-responses were coded as follows: latencies and durations were coded as
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99.9, being higher than any possible recorded value; this is the practical equivalent

of the mathematical concept of \in�nity"; amplitudes and rates were coded as 0.

Such coding of non-response is intuitively appealing, since if there is no response

in a nerve, then its \waveform" will be 
at (have amplitude zero), take in�nitely

long to occur (a latency of \in�nity"), and be of in�nite duration. Also, the rate

of transmission of electrical impulses down a nerve with non-response must be

zero. If there was a non-response in either the motor latency at the wrist or at the

elbow, then the corresponding rate was also coded as a non-response. It should

be stressed that these values represent purely a coding of the NCS variables

and do not have any inherent numerical meaning. This will a�ect the use and

interpretation of such values. Table 8 in the Appendix gives the distribution of

non-responses in the median nerve by diagnostic class, for both the design and

test sets. The three median sensory variables (latency, amplitude and duration)

all had non-responses together, since they are three ways of describing the same

sensory waveform. Thus, it was not necessary to indicate them separately in

Table 8. The general pattern is clear: non-responses occurred mainly in the

severe CTS group. For the median motor measurements, non-responses occurred

only in the severe CTS group in the design set, and in addition once in each of

MMLW and MMLE in the moderate CTS group in the test set. This means

that MMLW non-response is a very good predictor of severe CTS. The picture

for the median sensory non-responses is not as clear cut. In the design set, 65

non-responses occurred in the mild and moderate CTS groups, while in the test

set, there were 71 non-responses in all the other groups than the severe CTS

group. As mentioned before, a possible explanation for this is that sensory nerve

�bres are thinner than motor nerve �bres, hence are more vulnerable to injury.

Thus, they can be damaged even in less severe CTS.

3 METHODOLOGY

3.1 Decision Trees

Decision trees have been developed by both the machine learning and statistical

communities f[22, 4, 7] and [3], respectivelyg. In the latter context, they are

known as CARTs (Classi�cation And Regression Trees). Decision trees have

often been used in medical diagnosis [17, 22, 10, 6]. Structurally, they consist of

two types of node: non-terminal (intermediate) and terminal (leaf). The former

correspond to questions asked about the characteristic features (covariates) of the

diagnosed case. These may be factorial, e.g., \Does the patient have symptom

X?", or ordinal, e.g., \Is symptom X absent, mild, moderate or severe?", or

continuous, e.g., \What is the patient's median motor latency at the wrist?". For

ordinal or continuous covariates, we shall only consider binary splits of the form

\Is the covariate at most k?", where k is a cutpoint. The selection of intermediate
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nodes involves varying k over all possible values and selecting the \best" value

in the sense of the evaluation function (see below). Terminal nodes, on the other

hand generate a decision/diagnosis. Diagnosis is achieved by a stepwise decision-

making process, where a single question is asked each time and, depending on

the answer, a di�erent branch of the tree containing another set of questions is

followed. Figure 1 presents a simple decision tree, which is, in fact, the decision

tree DT1N selected by C4:5 on the data used in this study (see section 4.1). The

root of the tree contains the �rst diagnostic question asked by the classi�er: \Is

the median motor latency at the wrist greater than 6.5 msec?". Depending on

the answer for each particular case, a di�erent branch of the tree is traversed,

arriving at a decision node, which is denoted by a rectangle in Fig. 1.

One way of building decision trees is by analysing recorded diagnosed cases.

These constitute, in statistical parlance, the design set. A substantial amount of

work on this task has been carried out in the areas of machine learning [4, 21],

statistical pattern recognition [7] and statistics [3], resulting in an abundance of

methods. One of the methods, proposed by the machine learning community,

is called Top-Down Induction of Decision Trees (TDIDT ) and is based on the

recursive partitioning of the available design, i.e., diagnosed, cases. In brief, at

each recursive step, one question is selected, which discriminates \best" among

di�erent diagnoses. This question partitions the design set, and the process is

repeated for each of the subsets, until they all consist of cases with a common

diagnosis. The criterion used for choosing the \best" discriminating question at

each recursive step, the evaluation function, varies between di�erent implemen-

tations of the TDIDT method.

The program used in this paper is called C4:5 [22] and it is an improved

version of one of the most popular TDIDT algorithms: ID3 [21]. ID3 uses

an information-theoretic evaluation function, which is based on the minimisation

of the entropy, i.e., the information content, of the unpartitioned dataset. The

entropy of a set { be it the unpartitioned set or any of its subsets { is given by

the formula

�
kX

i=1

ni

n
log

ni

n
; (1)

where k the number of categories in the problem, ni the number of cases in the

ith category and n the total number of cases in the dataset. The implementation

of ID3 in C4:5 incorporates a host of useful features, including soft thresholds for

numeric attributes, pruning of decision trees and extraction of optimal rule sets

from trees. These features are described in detail in [22]. Two of the parameters of

the program { labelled m and c { have a signi�cant in
uence on the behaviour of

the system. The former determines the least number of design cases to be found

on a leaf node of the decision tree and the latter is a con�dence factor, taken

into account when the tree is being pruned. These parameters have been tuned,

where needed, using 10-fold cross-validation on the design set and optimising the
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Figure 1: The multivariate decision tree DT1N.

8



classi�cation accuracy, as well as the complexity, i.e., the size, of the derived

decision tree.

3.2 Logistic Regression

Since the data classes are ordered, an appropriate LR model to use here is the so-

called Proportional Odds (PO) model. The PO model was introduced by Walker

and Duncan [33], studied in detail by McCullagh [18], and compared to other LR

models by [26]. It is the most commonly used ordinal logistic regression model,

and can be simply described as follows. Let Y denote the disease-class variable,

where the values 1, 2, 3, 4 correspond, respectively, to severe CTS, moderate

CTS, mild CTS and NAD in our context. PO assumes cutpoints �
1
< �

2
< �

3

and postulates a linear form for the log odds of Y � j (j = 1; 2; 3) given the

vector of covariates x:

logfP (Y � jjx)=P (Y > jjx)g = �j + �Tx; (2)

where � is the vector of parameters for x and P (Y � jjx) denotes the conditional
probability of Y � j given the covariate vector x.

Equation f2g is termed the proportional odds assumption, since the ratio of

the odds of the event fY � jg at x = x
1
and x = x

2
is

P (Y � jjx
1
)=P (Y > jjx

1
)

P (Y � jjx
2
)=P (Y > jjx

2
)

= expf�T (x
1
� x

2
)g;

which is independent of the choice of category j.

Equation f2g can be expressed equivalently in terms of the logits of the cu-

mulative probabilities, where logit(x) = lnfx=(1� x)g for 0 < x < 1:

logitfP (severe CTSjx)g = �
1
+ �Tx (3)

logitfP (severe or moderate CTSjx)g = �
2
+ �Tx (4)

logitfP (severe, moderate or mild CTSjx)g = �
3
+ �Tx (5)

logitfP (NADjx)g = �logitfP (severe, moderate or mild CTSjx)g

(6)

The PO assumption is a very strong, if simplifying, one, which needs to be

checked. Peterson & Harrell [20] proposed a score test of the PO assumption,

against the general alternative hypothesis in which � in f2g is replaced by �j.

However, the score test su�ers from several drawbacks (Scott, Goldberg & Mayo

[29]): spuriously low p-values may be produced if the samples are large or if a

categorical covariate has zero cells at inner values of Y . Peterson & Harrell [20]

carried out a simulation study using categorical covariates only, as a result of

which they concluded that their score test often gives blatantly erroneous results
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when the corresponding contingency table has empty inner cells. They also state

that the score test may be slightly anticonservative in the sense that the simulated

sizes always exceeded the nominal signi�cance levels. The latter statement was

interpreted by Ananth & Kleinbaum [1] as the \extreme anticonservatism" of

the score test, while the SAS Logistic Regression Examples [27] stated that this

test is \very anticonservative". For these reasons, the p-values given in the SAS

output for the present dataset (mainly of the order of 0.0001) were treated with

considerable caution. Since the PO models performed very comparably to the

DT ones, and used similar covariates, it was felt that they could be used without

further investigation.

Automatic variable selection is a widely used, if much criticised, technique

which is routinely provided in many statistical packages. The latter, however,

do issue warnings against the unthinking use of such methods. For example, [27]

states that \Model selection methods are exploratory. It is useful to verify the �t

of the selected model on other data." The exploratory nature of variable selection

in logistic regression is in part due to the fact that it involves multiple hypothesis

testing. As a result, the actual signi�cance level of the tests involved will be

much higher than their nominal value. In addition, none of the test statistics

used has exactly got a �2 distribution. This means that the usual results for

Normal population distributions do not apply precisely in this context. Indeed,

the exact distributions of the test statistics involved are not known, and only

asymptotic �2 distributions are quoted [27].

Among outspoken critics of automatic variable selection, we can list [31], [12],

[8] and [13]. Reference [13], p. 935, states that \It is tempting to use P -values

and stepwise methods to develop a parsimonious prediction model. Besides in-

validating con�dence limits and causing measures of predictive accuracy such

as adjusted R2 to be optimistic, there are many other reasons not to rely on

stepwise techniques (see Harrell et al. [12] for citations)." According to [12], p.

363, \Researchers apparently do not realize that when many predictor variables

are analysed, variable screening based on statistical signi�cance and stepwise

variable selection involve multiple comparisons problems that lead to unreliable

models. These methods are therefore not viable for data reduction (see Ref-

erence 17 for a condemnation of stepwise variable selection)." Their Reference

17 [8] deals, strictly speaking, only with least squares multiple linear regression

(Normal) models, but Reference 17's comments (p.268) should, nevertheless, be

taken seriously: \ In short, stepwise methods were not designed to �nd `best'

models or to indicate the relative importance of variables. On the contrary, they

were designed to select subsets from data sets `padded with extraneous variables

- for example, those that contain everything we could measure' (Hoerl et al. [14],

p. 378)." Finally, Steyerberg et al. [31] point out four drawbacks to stepwise

selection.

1. The selection is unstable, in that addition or deletion of a few patients in
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the data set can substantially alter the selection [11].

2. Stepwise selection may have limited power to select important covariates in

small data sets.

3. There is a substantial risk that one or more (almost) random covariates are

selected, since multiple comparisons are made [8].

4. The coe�cients of the selected covariates are biased to more extreme values.

Steyerberg et al. [31] distinguish three types of bias.

(a) Selection bias caused by selective inclusion of covariates with more

extreme coe�cients.

(b) Confounding bias caused by correlation between selected and unse-

lected covariates.

(c) Estimation bias, a statistical artifact of regression analysis which

leads to overestimation of the coe�cients. Estimation bias occurs es-

pecially when many covariates are �tted in relatively small data sets

[5], [32].

Bearing all the above points in mind, we have nevertheless used variable

selection since �rstly our dataset is large, thus nullifying objections 2. and 4.(c),

secondly the covariates selected by LR are very similar to those selected by the

more rigorous, 10-fold cross-validated DT, and thirdly the covariates selected by

LR are clinically important.

The SAS LOGISTIC procedure [28] uses iteratively reweighted least squares

to compute estimates of the parameters in the PO model, and outputs the re-

sult (test statistic and p-value) of the Peterson and Harrell score test. Variable

selection can be done using forward selection, backward elimination or stepwise

selection. For our dataset, the results obtained from these three methods were

almost identical. For this reason, we have only quoted them for forward se-

lection. As part of its output, the SAS LOGISTIC procedure prints out the

results of the Wald tests of signi�cance of the covariates' coe�cients. Let �̂j
denote the maximum likelihood estimate of the coe�cient of the jth covariate,

and ds:e:(�̂j), its estimated standard error. The Wald �2 statistic is the square of

the ratio �̂j=ds.e.(�̂j). Under general conditions, and with large samples, this ratio

is approximately distributed as a standard Normal variable. Thus, the Wald �2

statistic is approximately distributed as a �2 variable with one degree of free-

dom, and can be used to give a preliminary indication of the importance of the

covariate. The usual remarks regarding multiple testing apply in this situation,

too, which is why the Wald test is only regarded as a preliminary indicator [15].

Logistic regression itself is only a method of estimating the probabilities of

the various diagnostic classes. In order to achieve a classi�cation (diagnosis), it is

necessary to specify a diagnostic algorithm. The simplest, most commonly used
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one, and the one used in this paper, is the highest class probability algorithm,

i.e., assign to the class with the highest probability. In the unlikely case of a tied

maximum probability, assignment is to the higher class, i.e., less serious diagnosis

in our context.

4 RESULTS

This section presents the performance results for the two methods in the context

of CTS diagnosis. Section 4.1 examines the classi�cation performance, against

Dr. James' full diagnosis, of multivariate models (with three or more covariates),

which have been constructed by automatic variable selection. DT performs vari-

able selection using the entropy metric of Eq. f1g and pruning of the generated

decision tree, as explained in [22]. For the LR model, forward variable selec-

tion has been used [28], bearing in mind the reservations expressed in section

3.2. Section 4.2 reduces the dimensionality of the problem by choosing two vari-

ables which are of particular diagnostic importance. It also includes the bivariate

model DTJJ suggested by Dr. James and which approximates the nerve conduc-

tion studies part of his diagnostic approach, ignoring history and clinical signs.

DTJJ, as well as the bivariate models selected by DT and LR, are analysed

graphically by examining the way in which they partition the covariate space.

4.1 Multivariate Models

The pro-formas used to obtain the data were intended as an epidemiological

exercise, including variables which were suspected to have some involvement in

the development of CTS. As a result, a large number of variables were recorded.

One of the aims of our work was to investigate which of these variables were

important in the diagnosis of CTS. For this reason, two types of experiment were

done. The �rst used all the recorded variables, i.e., history, clinical examination

and nerve conduction studies. The second focused on the variables which are

considered most important by EMG experts for the �nal diagnosis of CTS: nerve

conduction studies.

However, the variable selection process on the large dataset of the �rst ex-

periment eliminated almost all of the history and clinical examination variables,

con�rming their relatively low diagnostic signi�cance, in the context of the models

considered. Furthermore, comparing the performance results of both the LR and

DT models on the two experiments, it became obvious that even the few his-

tory and clinical examination variables which survived the variable elimination

process did not add to the diagnostic power of the selected models. As a result,

these variables have been ignored in the rest of the work. This decision should be

interpreted with caution, because it does not imply that the history and clinical
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examination variables are irrelevant for the problem. Indeed, as was discussed in

section 2, this information is used by the medical experts to various degrees, and

in some cases it will be given higher weight than the nerve conduction studies.

However, the �nal diagnosis of (the cause of) carpal tunnel syndrome, namely

entrapment of the median nerve at the wrist, can only be achieved with nerve

conduction studies.

Thus, using the reduced dataset which contains the nerve conduction studies

only, the selected decision tree is the one shown in Fig. 1, named DT1N. The

chosen variables for the decision tree are: median motor latency at the wrist

(MMLW), median sensory amplitude (MSA) and median sensory latency (MSL).

The �rst interesting result is that the model is very simple and uses just three

variables. Due to the recursive application of the entropy evaluation function for

the selection of diagnostic variables, the variables appearing in the nodes closer

to the root of the tree are more important than the ones closer to the leaves.

Thus, it can be said that according to C4:5, MMLW is the most important

discriminating variable, MSA comes second and MSL is the least important of

the selected variables. This result agrees with the use of the variables by some

medical experts, who base their diagnosis of CTS mainly on the MMLW and MSA

measurements. Others, however, regard MSL as the most important criterion for

diagnosing CTS, since MSAs re
ect only secondary axonal damage and their

normal limits are more variable than those of MSL (Dr. K. M. Spillane, personal

communication).

The model selected by LR (LRM0) uses a similar set of variables to that used

by DT1N: MMLW, median motor latency at the elbow (MMLE), MSA and ulnar

motor latency at the elbow (UMLE). The important variables MMLW and MSA

are again selected, plus two latency measurements at the elbow. Linearity and

additivity of the LR model were checked by �tting second-order, logarithmic and

interaction terms involving MMLW, MSA, MMLE and UMLE. However, inclu-

sion of the extra terms did not improve the model's performance, and they were

therefore omitted. The relative importance of the variables MMLW and MSA is

re
ected in the values of their Wald �2 statistics, which exceed the corresponding

values of the other covariates by factors of at least ten. The positive sign of the

coe�cients of MMLW and MMLE (see table 1) indicate that increased MMLW or

MMLE raise the probability of CTS, at all levels of severity, while the negative

signs of the coe�cients of MSA and UMLE indicate the reverse. This follows

from Eq. f3g { f6g, and is consistent with the known neurophysiological fact

that damage to the median nerve at the wrist in general results in longer median

motor latency at the wrist and elbow, as well as lower median sensory amplitude.

The inclusion of UMLE among the chosen covariates illustrates the points made

in section 3.2. However, since LRM0's performance is very close to that of DT1N,

we have continued to use it for comparison purposes. The selection of MMLW by

both DT and LR models is surely related to the fact that MMLW non-response

is a very good predictor of severe CTS (see section 2).
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Parameter Standard

Variable Estimate Error Wald �2 Pr > �2

�
1

{8.1040 0.9461 73.3687 0.0001

�
2

{3.2187 0.7860 16.7692 0.0001

�
3

1.1286 0.7734 2.1295 0.1445

MMLW 1.1691 0.1041 126.1253 0.0001

MMLE 0.0792 0.0359 4.8843 0.0271

MSA {0.2207 0.0158 194.6008 0.0001

UMLE {0.2856 0.0802 12.6704 0.0004

Table 1: Coe�cients of the LRM0 logistic regression model �tted to the design

dataset.

In order to evaluate the models' performances, crosstabulations of the diag-

noses of DT1N and LRM0 with Dr. James' diagnoses on the test set of unseen

cases were obtained. These are shown in Table 2. The percentages correct for the

two methods were 79.3% for DT1N and 78.4% for LRM0. The di�erence between

the two percentages is well within sampling error, suggesting that the two models

have similar diagnostic power. The more detailed performance results of Table 2

reinforce this suggestion. The patterns of diagnosis for the two algorithms are

roughly the same. The majority of misdiagnoses are one category away from Dr.

James' diagnosis, e.g., DT1N classi�es 56 NAD cases as mild CTS, but only one

as moderate CTS and none as severe CTS. This is an encouraging result, showing

that the two models have captured the ordering of the four categories in the co-

variate space. In that sense, the misdiagnoses can be justi�ed by the uncertainty

in the de�nition of the boundaries between the four categories. For instance, the

distinction between mild and moderate CTS will not always be clear, and Dr.

James will have taken the clinical examination into account when deciding on

the classi�cation of cases close to the boundary. This point is illustrated further

with the simpler bivariate models in section 4.2.

As a comparison, we �tted the full model involving all history, clinical exam-

ination and nerve conduction studies variables. Its performance was disappoint-

ing, achieving only 75.1% correct classi�cations.

4.2 Bivariate Models

Dr. James had designed a simple decision rule, using MMLW and MSA, which

we shall denote DTJJ. This rule { as described to the �rst author by one of Dr.

James' technicians { is as follows:

IF MSA = 0 OR MMLW = 99.9 THEN Severe CTS

ELSE IF MSA � 15 �V AND MMLW > 4.6 msec THEN Moderate CTS
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(a) Decision Tree DT1N

Dr. James' DT1N

Diagnosis Diagnosis

Mild Moderate Severe

Frequency NAD CTS CTS CTS Total

NAD 318 56 1 0 375

Mild CTS 29 247 20 1 297

Moderate CTS 1 42 90 8 141

Severe CTS 0 1 19 27 47

Total 366 247 134 113 860

(b) Logistic Regression LRM0

Dr. James' LRM0

Diagnosis Diagnosis

Mild Moderate Severe

Frequency NAD CTS CTS CTS Total

NAD 314 61 0 0 375

Mild CTS 33 239 25 0 297

Moderate CTS 2 36 97 6 141

Severe CTS 1 2 20 24 47

Total 350 338 142 30 860

Table 2: Crosstabulation of the multivariate decision tree and logistic regression

algorithms by Dr. James' diagnosis.

15



ELSE IF MSA � 15 �V OR MMLW > 4.6 msec THEN Mild CTS

ELSE NAD

The �rst case in the above simple rule deals with severe CTS diagnoses, which

are regarded by the rule as the only ones without median sensory response or

median motor response at the wrist. This re
ects the fact, noted in section 2,

that MMLW, and to a lesser extent MSA, is a very good predictor of severe

CTS. Excluding these cases, the rest are separated by dichotomising each of

the two variables MMLW and MSA. An interesting observation at this point is

the proximity of the selected dichotomising values in DTJJ and DT1N, e.g., the

MSA node in DT1N examines the MSA value 15 �V, as does DTJJ. It should be

noted at this point that DTJJ performed relatively poorly against Dr. James' full

diagnosis; it only achieved 70.1% agreement with the latter. This is consistent

with the fact that Dr. James also took the clinical examination into account when

reaching his diagnosis.

The simplicity of the DT1N and LRM0 models and Dr. James' bivariate

decision rule DTJJ raised an interesting question: how would bivariate DT and

LR models perform? Thus, a further experiment was done, generating the models

BVDT (bivariate DT) and BVLR, which use only two independent variables. The

natural choice of variables is MMLW and MSA, since they are used in DTJJ,

DT1N and LRM0. Checks for linearity and additivity in BVLR were carried out;

no reason was found to reject them. Figure 2 presents the simple BVDT and

Table 3 contains the coe�cients for BVLR.

Parameter Standard

Variable Estimate Error Wald �2 Pr > �2

�
1

{9.3290 0.7492 155.0470 0.0001

�
2

{4.7364 0.5169 83.9695 0.0001

�
3

{0.4739 0.4744 0.9980 0.3178

MMLW 1.1794 0.0970 147.9140 0.0001

MSA {0.2182 0.0155 197.7638 0.0001

Table 3: Coe�cients of BVLR, the bivariate logistic regression model �tted to

the design dataset.

The simplicity of the bivariate models is very appealing. However, one needs

to question their diagnostic accuracy. Intuition suggests that the classi�cation

performance of the bivariate models will be lower than that of the multivariate

ones. After all, the variable selection methods could have reduced the DT1N and

LRM0 models to be bivariate ones, but they did not. Surprisingly, the intuitive

outcome is not veri�ed in this case. The performance of the two bivariate models

is slightly higher than that of their multivariate counterparts. Table 4 presents

the results for the BVDT and BVLR models. The percentages correct were 80.6%
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Figure 2: The bivariate decision tree BVDT.
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for BVDT and 79.4% for BVLR, an increase over the multivariate models of 1%

for LR and 1.3% for DT, well within sampling error. The more detailed picture

drawn by the crosstabulation results is broadly similar to that for the multivariate

case.

(a) Decision Tree BVDT

Dr. James' BVDT

Diagnosis Diagnosis

Mild Moderate Severe

Frequency NAD CTS CTS CTS Total

NAD 348 27 1 0 375

Mild CTS 36 239 22 0 297

Moderate CTS 1 54 79 7 141

Severe CTS 1 8 11 27 47

Total 386 328 112 34 860

(b) Logistic Regression BVLR

Dr. James' BVLR

Diagnosis Diagnosis

Mild Moderate Severe

Frequency NAD CTS CTS CTS Total

NAD 318 57 0 0 375

Mild CTS 33 239 25 0 297

Moderate CTS 2 34 99 6 141

Severe CTS 1 2 17 27 47

Total 354 332 141 33 860

Table 4: Crosstabulation of the bivariate decision tree and logistic regression

algorithms by Dr. James' diagnosis.

One possible explanation for the higher classi�cation accuracy of the bivariate

models could be that the multivariate models over�t the design data. This is

very unlikely, however, due to the simplicity of DT1N and LRM0. Moreover, the

classi�cation performance on the design set is almost identical for the multivariate

and the bivariate DT models. DT1N's performance is 79.4% correct on the design

set, while BVDT's is 79.3%. On the test set, DT1N's performance remains almost

unchanged at 79.3%, while there is a small improvement for BVDT to 80.6%

correct. The multivariate LR, LRM0, performs roughly the same on the design

(78.5% correct) as on the test set (78.4% correct), while the bivariate model,
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BVLR, performs substantially worse on the design set (76.9% correct) than it

does on the test set (79.4% correct). This latter result is perhaps surprising,

since it is well known that resubstitution error rates tend to be lower than error

rates on test sets. Perhaps there are some hidden features of the design set which

prevent the bivariate LR model from performing better than its multivariate

counterpart. Thus, the bivariate models are truly better in the test set than the

multivariate ones. The failure of the variable selection methods to discover this

characteristic of the problem should be interpreted as a de�ciency of their search

biases. Both the forward selection method for LR and the recursive partitioning

for DT perform a greedy search in the space of possible variable sets and therefore

do not guarantee the optimal solution. The unexpected result obtained here

suggests that the results of the variable selection methods should be treated with

caution, as indeed pointed out in [27] for logistic regression and discussed in

section 3.2.

A further interesting feature of the bivariate models is that they can be rep-

resented graphically, in terms of the corresponding decision regions in the two-

dimensional covariate space. Fig. 3 presents the comparison between BVDT and

DTJJ in the (MSA,MMLW) space. Both models divide the space up into (pos-

sibly in�nite) rectangular regions, using axis-parallel discrimination lines. It is

clear from Fig. 3 that BVDT is a re�ned version of the simpler DTJJ rule. The

hatched areas in the graph correspond to the disagreement between the two mod-

els. Their main di�erence is that the discriminating MSA value is 13 �V for the

BVDT, instead of 15 �V for DTJJ. The additional discrimination attempted by

BVDT with the use of MSA=18 �V seems to be unnecessary. Its omission should

not a�ect the performance of the model signi�cantly. An additional di�erence

between BVDT and DTJJ is in the diagnosis of severe CTS. BVDT allocates a

larger area to this category, corresponding to high MMLW values and low MSA.

This result suggests that the simple de�nition of severe CTS in DTJJ, as non-

response in either of the two nerves, is not a su�ciently broad one. There is a

group of severe CTS cases in the design set which have responses for both nerves.

Furthermore, many of the sensory non-response cases are not diagnosed by Dr.

James as severe CTS (see table 8).

Figure 4 presents the decision regions for BVLR and DTJJ. Note that the

decision regions for the LR are bounded by parallel sloping lines. This �ts in

with the de�nition of the PO model for LR. The lines have a positive slope, rep-

resenting the fact that the two covariates are related with CTS in opposite ways,

i.e., as MSA increases and MMLW decreases, the probability of CTS decreases.

Moreover, the ordering of the four categories is preserved in the ordering of the de-

cision regions, i.e., adjacent regions correspond to consecutive categories. Again

the areas of disagreement between the models are indicated by various forms of

hatching. The �t between the two models is not as close as between BVDT and

DTJJ, because of the di�erent nature of the two models. However, there are still

large areas of agreement. Moreover, the good performance of the BVLR model,
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Figure 3: Comparison of Dr. James' simple rule DTJJ with the bivariate decision

tree BVDT. Notation: MMLW = median motor latency at the wrist; MSA =

median sensory amplitude.
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suggests that the ordering imposed by the PO assumption on the decision regions

is suitable for this problem. Finally, BVLR treats the severe CTS category in a

similar manner as BVDT, i.e., it allocates to it an area of high MMLW values.

Figure 5 compares the BVDT and BVLR models, showing the areas where

they disagree by one or two classes. Ignoring the severe CTS class, the disagree-

ment between BVDT and BVLR is almost identical to that between BVLR and

DTJJ, because BVDT is very similar to DTJJ. Regarding the severe CTS cat-

egory, there is a large area of agreement for high MMLW and low MSA values.

However, the two models disagree by two categories for large MMLW and large

MSA. BVLR would classify such cases as severe CTS, while BVDT would assign

them to the mild CTS group. This is shown by the area on the top right of the

graph, which is the only area in which the two models disagree by two classes. A

simple explanation for this phenomenon is that this area is very sparsely popu-

lated. The reason for this is that the two covariates are correlated to some extent.

It would be very unusual for someone to have a high MSA when his/her MMLW

is also high.

In summary, the three bivariate models largely agree in their decision regions.

The decision tree BVDT is very close to Dr. James' simple rule DTJJ. This can be

explained by the decision-theoretic background of decision trees, i.e., the fact that

they were originally designed to help in organising the human decision making

process. Another e�ect of this feature of decision trees is that they are compre-

hensible to humans, even in multivariate spaces (more than two covariates). On

the other hand, BVLR also provides a natural solution to this problem, due to

the ordering of the four categories, and in addition provides probabilities of the

four diagnoses, something which decision trees do not do naturally (see section 1

and [22]).

5 CONCLUSIONS

The diagnosis of Carpal Tunnel Syndrome has been examined using two di�erent

modelling methods: induction of decision trees and logistic regression. A multi-

group classi�cation has been adopted, containing four ordered classes: NAD, mild

CTS, moderate CTS and severe CTS. An initial data pruning was carried out

in that two experiments were done: one with history, clinical examination and

nerve conduction studies; the other with nerve conduction studies only. The con-

clusion reached was that history and clinical examination did not signi�cantly

improve classi�cation performance with these models. Hence, for the purposes

of this study, they were omitted from further consideration. Automatic variable

selection for DT and LR was employed to reduce the nine nerve conduction study

covariates to a more manageable number: three for DT and four for LR. Variable

selection for LR is open to criticism, as discussed at length in section 3.2, but

the selected model performed well, and hence was retained. The performances of
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Figure 4: Comparison of Dr. James' simple rule DTJJ with the bivariate logistic

regression BVLR. Notation: MMLW = median motor latency at the wrist; MSA

= median sensory amplitude.
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the two methods were compared by measuring the classi�cation accuracy of the

selected models, relative to Dr. James' full diagnosis, on unseen data. The two

models were found to perform very similarly on this problem, achieving satisfac-

tory classi�cation accuracy. The coding of non-response, described in section 2,

has turned out to be very e�ective, and both DT and LR handle this coding very

well.

Furthermore, an e�ort was made to understand the decision process corre-

sponding to the two models. This was achieved by examining graphically the

decision regions corresponding to two bivariate models, based on the two most

signi�cant covariates. The main conclusion of this study is that, although the two

models take very di�erent approaches to the division of the covariate space, they

have large areas of agreement. Especially, the bivariate decision tree has been

found to agree to a large extent with a simpli�ed decision rule due to Dr. James,

which is based only on nerve conduction studies. The results of the bivariate

analysis are particularly signi�cant, due to the high classi�cation accuracy of the

bivariate models. Surprisingly, these models performed at least as well as their

multivariate counterparts.

The results of the study presented here suggest that simple bivariate models

are the most appropriate for the CTS dataset that has been examined, providing

that attention has been restricted to nerve conduction studies variables. This con-

clusion holds at least for the two modelling methods participating in the study.

It would be interesting to compare these results with those of a di�erent mod-

elling method, such as a neural network, which is capable of producing complex

decision regions. In particular, it would be of interest to examine the e�ect of

non-linear decision boundaries on the classi�cation accuracy and the choice of

covariates, possibly making use of the history and clinical examination variables.

Furthermore, in view of the drawbacks to automatic variable selection, it would

be interesting to compare our results with other methods of variable selection,

as well as with models also incorporating history and clinical examination in a

more subtle way.

Another interesting direction for further work is the combination of domain

knowledge with the data analysis methods examined here. For instance, one

could build a model which incorporates the results of this study, with special

rules for handling exceptional cases. The aim in that case would be to provide

a more accurate model of the decision process performed by the medical expert,

additionally making use of the history and clinical examination variables.

A further aspect of the diagnostic problem is that of incorporating cost or

loss functions, thereby taking into account the relative seriousness of the various

misdiagnoses. In particular, the distance between the actual and computed di-

agnoses should play a part in constructing an appropriate loss function (see, for

example, J. Anderson's comments on McCullagh's paper [18]).
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APPENDIX

This section contains the full details of the variables used in the analysis of the

CTS dataset and the distributions of the non-responses in the median nerve by

diagnostic class. Table 5 presents the coding of the history symptom variables. A

classical history of CTS is one of discomfort (any or all of numbness, pain, tingling,

weakness) during the night, lasting typically about ten minutes and relieved by

shaking the hand. The region of the hand a�ected is that of the median nerve

(thenar eminence, thumb, �rst �nger and thumb side of the middle �nger). It was

felt that the length of time the patient had experienced these symptoms might

have a bearing on their condition, so was included in the questions asked.

Descriptor Coding

Duration 1 at most 10 minutes

2 over 10 minutes

First 1 less than 3 months

2 from 3 months to one year

3 from 1 to 5 years

4 from 6 to 10 years

5 over 10 years

Location 1 �rst to third �ngers

2 fourth and �fth �ngers

3 all �ve �ngers

4 other

Relief 1 shaking hand

2 other

3 none

Severity 1 mild

2 moderate

3 severe

Time 1 daytime episodes

2 nocturnal episodes

3 episodes day and night

4 continuous symptom

Table 5: Coding of history symptom variables: numbness, pain, tingling, weak-

ness.

Table 6 contains three clinical examination variables (sensory loss, wasting

and weakness) whose presence can indicate damage to the relevant nerve. Since

these variables are elicited by the clinician or technician, it was felt that they

carry a greater degree of objectivity than the symptoms described by the patient
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in the history symptom variables.

Variable Coding

Sensory Loss

Location 1 �rst to third �ngers

2 fourth and �fth �ngers

3 all �ngers

4 other

Wasting

Location 1 Thenar Eminence

2 Hypothenar Eminence

3 other

Severity 1 mild

2 moderate

3 severe

Weakness

Location 1 Thenar Eminence

2 Hypothenar Eminence

3 other

Severity 1 mild

2 moderate

3 severe

Table 6: Coding of clinical examination variables.

Table 7 records the nerve conduction study variables used in the study. It

should be noted that the ulnar measurements were included by Dr. James in

order to increase the probability of detecting non-CTS abnormalities. For this

reason, it would not be expected that they would play a large role in the four-class

diagnostic problem considered in this paper.

Table 8 shows the distribution of the non-responses by diagnostic class. This

has been discussed in detail in section 2.

26



Nerve Measurement

Median Motor Latency at the Wrist

Motor Latency at the Elbow

Motor Rate, Elbow to Wrist

Sensory Latency

Sensory Amplitude

Sensory Duration

Ulnar Motor Latency at the Wrist

Motor Latency at the Elbow

Motor Rate, Elbow to Wrist

Table 7: Nerve conduction study variables.

(a) Design Set

NAD Mild CTS Moderate CTS Severe CTS Total

MMLW 0 0 0 11 11

Variable MMLE 0 0 0 12 12

MSa 0 11 54 39 104

Total 0 11 54 62 127

(b) Test Set

NAD Mild CTS Moderate CTS Severe CTS Total

MMLW 0 0 1 4 5

Variable MMLE 0 0 1 4 5

MS 1b 6 64 41 112

Total 1 6 66 49 122

aMedian Sensory Response
bThe median sensory responses in this hand had not been recorded, but were entered as a non-response

Table 8: Distribution of non-responses by diagnostic class.
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