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Multivariate Aligned Rank Test for Interactions in Multiple
Group Repeated Measures Designs

T. Mark Beasley
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University of Alabama at Birmingham

This study showed that a multivariate test of interactions for aligned ranks in a split-plot
design controlled Type I error rates for non-normal data with non-spherical covariance
structures. Furthermore, it performed well in the presence of a strong repeated measures
main effect, whereas tests performed on rank transformed scores demonstrated severely
inflated Type I error rates. This test also demonstrated more statistical power than
parametric tests performed on non-normal data sampled from a skewed, heavy-tailed
distribution. Methods for conducting multiple comparisons are proposed.

Aligned Rank Test for Testing Interactions in Multiple Group
Repeated Measures Designs

Repeated measures designs involving two or more independent groups
are among the most common experimental designs in behavioral research
(see Keselman & Algina, 1996). The parametric technique used to analyze
a design in which a repeated measures (i.e., within-subjects) factor is
crossed with a between-subjects (i.e., independent grouping or treatment
variable) factor is the split-plot analysis of variance (ANOVA). It can be
expressed with the following linear model:

(M V= Pous T B, ) 41 BT T T e

where, j is referenced to the J groups of the between-subjects factor, 7 is
referenced to the n, subjects nested within the j™ group, & is referenced to the
Klevels of the within-subjects factor, Cijk is arandom error vector, and N= Enf
is the total number of subjects. In applications of the split-plot design in
behavioral research, the interaction of the between-subjects and the repeated
measures factors is usually of most interest (Boik, 1993). It is tested with an
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F-ratio, F t'hat is distributed approximately as Fo k- nav-ni-n) under the
null hypothesis:

2) Hy, o B'Tjk =0, foralljand k.

When the ANOV A model in Equation 1 involves a within-subjects factor
with K > 2, it requires the pooled within-group covariance matrix to have a
specific form (i.e., a sphericity assumption) in order for the sampling distribution
of the F ) test of the interaction to approximate F v nw-ni- under the
interaction null hypothesis in Equation 2 (Huynh & Feldt, 1970). With increasing
departures from sphericity, the ANOVA F-ratio demonstrates a general lack of
robustness, resulting in increasingly liberal tests. Unfortunately, the traditional
univariate £, is commonly (mis)used when the sphericity assumption is violated
(Keselman et al., 1998; Robey & Barcikowski, 1995).

Huynh and Feldt (1976) developed an €-adjusted test for split-plot
models. Lecoutre (1991) corrected this formula so that in split-plot designs

€ is replaced with € :

(N=J+1)(K-1)E=-2
(K=D[N-J—-(K-1¢£]’

3) =

where € is a sphericity parameter estimated from the sample pooled within-
group covariance matrix (see Winer, Brown, & Michels, 1991, p. 257). The
Lecoutre adjusted test for the interaction, F, . is distributed approximately
as Fl o k-1 & venk-r Kegelman, Alglna, Kowalchuk, and Wolfinger
(1999) reported that Fy provided effective Type I error control for non-
normal data with non-spherical covariance structures; however, it
demonstrated low power under several conditions.

F, ,, was designed to correct for non-sphericity only. Thus, in cases of non-
spherical and/or heteroscedastic between-subjects covariance matrices,
Huynh (1978) proposed the general approximate (GA) procedure to estimate
the dfs for the univariate F-tests in the split-plot design and the improved
general approximate (IGA) for situations where covariance matrices are close
to possessing sphericity and/or homoscedasticity. Both GA and IGA exhibit
Type I error rates substantially below the nominal alpha in many conditions
(Algina & Oshima, 1994). Because the current study does not focus on the
heterogeneity of covariance matrices issue and the general approximate
procedures have demonstrated low power in preliminary analyses, these
techniques are excluded from further elaboration.
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Another suggested approach for dealing with non-spherical data is the
use of multivariate tests because they do not require sphericity of the
covariance matrix. However, multivariate tests have strict sample size
requirements based on the number of repeated measures. Furthermore, the
degrees-of-freedom (dfs) for the error term of the univariate F|,, can be
much larger than the error dfs (df)) for the F' approximate tests for the
multivariate approach. Thus, the multivariate approach may have less
statistical power in small sample situations (Keselman & Algina, 1996).

In practice, it is likely that both the sphericity and normality assumptions are
violated. Regardless of whether (a) the univariate ANOVA test with possible
df-corrections or (b) the multivariate approach to analyzing repeated measures
design is employed, there are normality assumptions. For the univariate F' o from
model 1, the assumption on the random error component is that gijk is NID(O0, (rgz)
for each of the JK cells. Multivariate test statistics assume multivariate
normality for the K repeated measures. Because repeated measures designs
can be analyzed with multivariate tests applied to (K - 1) transformed variables
(see Marascuilo & Levin, 1983), the multivariate normality assumption applied
to split-plot designs implies that multivariate parametric tests assume that the
random error components are independent and multivariate normal with means
of zero and a common covariance matrix, that is, NID[O(K_ Iy C, 3C 1, where
0. isa (K - 1) vector of zeros, C, is a (K - 1) x K transformation matrix, and
3, is the K x K pooled within-group covariance matrix. However, multivariate
tests are prone to inflate Type I error rates with violations of the multivariate
normality assumption, especially with a small sample size to number of repeated
measures (N/K) ratio (e.g., Blair, Higgins, Karniski, & Kromrey, 1994). By
contrast, univariate tests are generally conservative with data sampled from
heavy-tailed distributions (Wilcox, 1993). Thus, as compared to their multivariate
extensions, univariate tests are noted to be more robust to non-normality. For
example, simulation studies have indicated that F°, , adequately corrects fornon-
sphericity (Huynh, 1978) and is reasonably robust to non-normality (Keselman
etal., 1999). However, there are many skewed, heavy-tailed distributions that
can affect the performance of both univariate (e.g., Wilcox, 1993; Zimmerman
& Zumbo, 1993) and multivariate parametric tests (e.g., Blair et al., 1994;
Keselman et al., 1993).

Rank-Based Alternatives
Rank-based competitors relax the normality assumptions by assuming
that the random error components are independent identically distributed

random variables from some continuous distribution, not necessarily the
normal.  However, Sawilowsky (1990) has contended that good
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nonparametric tests for interactions do not exist. Thus, there have been few
recent studies (e.g., Akritas & Arnold, 1994; Beasley, 2000) concerning the
use of rank-based tests as nonparametric alternatives for analyzing non-
normal, non-spherical data from split-plot designs.

Rank Transform Procedure

Univariate Approach. One approach to transforming the data from a
repeated measures experiment is to rank the entire data matrix regardless of
measure or group membership. InaJ x K split-plot design, scores (Y, from
model 1 are replaced with ranks (Rijk) ranging from 1 to NK, the total number
of observations. Iman, Hora, and Conover (1984) suggested calculating the
ANOVA F from model 1 on the Rank Transformed scores [F ] as atest of
the interaction in a split-plot design.

Consistent with Zimmerman and Zumbo’s (1993) contention that ranks
often inherit the properties of the original data, the data can still be non-
spherical, although to a lesser degree, after rank transformation (Harwell &
Serlin, 1994). Under the complete null hypothesis of no effects, Beasley and
Zumbo (1998) showed that the ANOVA performed on R, ina split-plot
design inflated Type I errors when the original data was non-spherical. They
also demonstrated that deriving € from the Rank Transformed scores (Rijk)
and applying the Lecoutre (1991) e-adjustment (3) to the split-plot ANOVA
F-test [F, ] held the Type I error rate near the nominal alpha.

Multivariate Approach. Agresti and Pendergast (1986) recommended a
multivariate F-test based on Hotelling’s (193 1) 77 for testing repeated measures
effects in a single sample design. Their results showed that this multivariate test
held the Type I error rate near the nominal alpha with departures from normality
and sphericity. Harwell and Serlin (1997) confirmed these results and also
demonstrated that the Akritas and Arnold (1994) chi-square approximate test,
which is functionally related to the Agresti-Pendergast test, inflated Type I error
rates with total sample sizes of N =30 or less. However, these findings are
limited to the single sample repeated measures design. Unfortunately, there has
been a paucity of research on rank-based interaction tests in the split-plot design.

To extend the Agresti and Pendergast (1986) approach for testing the
interaction in a split-plot design, define E as a K x K pooled-sample cross-
product error matrix with elements:

4) Chpr = 2 2 (Rijk - Ejk )(Ri/‘k - Ejk') .

j=1i=1
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Let E* be a JK x JK block diagonal matrix where the ;™ block of the
main "diagonal" for E” is defined as E/n, and all other off-diagonal
blocks are zero. That is, E” is the Kronecker product of a diagonal
matrix n = diag{1/n,, 1/n,, ..., 1/n)) and E, E" = n®E. Also, define
R,=®R,, Ry, ..Ry,R,, .. R, ..R,, ... R,) asaJK-dimensional vector
of mean ranks and C , as a (/- 1)(K - 1) x JK contrast matrix that represents
the interaction. In general, C, can be defined as C, = C ®C,, where C,
is a (J - 1) x J contrast matrix for the between-subjects effect and C, is a
(K - 1) x K contrast matrix for the repeated measures effect. For example, in
aJ =3 x K =4 split-plot design, define:

-3 -1 1 3

2 -1 -1
C, = 0 1 -1 andC,=|-1 1 1 -1
-1 3 3 1

as orthogonal contrast matrices. Thus, the interaction contrast matrix is:

(6 =2 2 6 3 1 -1 -3 3 1 -1 -3]

2 2 2 =21 -1 -1 1 1-1 -1 1

c - 2 6 -6 2 1 =3 3 -11 -3 3 -l
- 0 0 0 =3 -1 1 3 3 1 -1 =3
0 0 -1 1 =11 -1 -1 1

| 0 0 -1 3 -3 1 1 -3 3 -1

It should be noted, however, that C,and C, need not be orthogonal, only full
row rank.
Based on Agresti and Pendergast (1986), the distribution of the statistic,

(5) H= (CJK RJK), (CJK E*C}K)-I(CJK RJK)

multiplied by (N - 1), should approximate a x? distribution with df=(J- 1)(K - 1)
asymptotically. It should be noted that H is the Hotelling-Lawley trace for the
interaction effect from a multivariate profile analysis performed on the Rank
Transformed scores. Consistent with Agresti and Pendergast (1986),
transforming H to an F-test may better control Type I error rates as opposed
to comparing (N - 1)H to a chi-square distribution with df = (J - 1)(K - 1),
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especially with smaller sample sizes (Harwell & Serlin, 1997). Based on
Hotelling (1951), Hin Equation 5 is transformed to an F approximation statistic
by:

(6) F,={2(sn+ 1)/[s*2m + s + D]} H,

where s =min[(J- 1),(K-1)],m=[(K-J|-1)/2],and n=[(N-J - K)/2]. This
F approximation has numerator dfs of df, = [s(2m + s + 1)] = [(J - 1)(K - 1)]
and denominator dfs of df, = [2(sn + 1)]. Alternatively, a researcher could
obtain a critical value for H in Equation 5 from the sampling distribution of
the Hotelling-Lawley trace using the s, m, and n parameters. Unfortunately,
few multivariate texts have these critical values tabled.

Aligned Rank Transform Procedure

The Rank Transform concept is appealing because from a univariate
perspective all data points (Yl.fk) are observations of one dependent variable
measured under K different conditions or time points. Because the Rank
Transform is monotonic, it is commonly believed that the null hypothesis for
the parametric test of interaction [i.e., Fl from model (1) is similar to the
null hypothesis for similar tests performed on ranks [e.g., F, ], except
statistical inferences concern mean ranks. However, test statistics for
interactions used in parametric analyses of factorial designs are applied to
monotone transformations (e.g., Rank Transformation), the resulting tests
lack an invariance property (Headrick & Sawilowsky, 2000). Specifically,
the expected value of ranks for an observation in one cell will have a non-
linear dependence on the original means of the other cells. Thus, interaction
and main effect relationships are not expected to be maintained after rank
transformation are performed (e.g., Blair, Sawilowsky, & Higgins, 1987).

Given these problems encountered by interaction tests based on the
Rank Transform when other non-null effects are present (e.g., Blair et al.,
1987; Toothaker & Newman, 1994), one solution is to treat other effects as
nuisance parameters and remove them from the scores before ranking and
analysis. McSweeney (1967) developed a chi-square approximate statistic
for testing the interaction using Aligned Ranks in the two-way layout.
Hettmansperger (1984) developed a linear model approach in which the
nuisance effects are removed by obtaining the residuals from a regression
model. However, both of these alignment procedures were developed for
the two-way between-subjects factorial design and thus are not desirable
because they do not remove the subjects’ individual differences effect that
is nested in the between-subjects factor, i) from model 1. Higgins and

202 MULTIVARIATE BEHAVIORAL RESEARCH



T. Beasley

Tashtoush (1994) proposed subtracting the subject effect and the repeated
measures main effect and then ranking the aligned data from 1 to NK as
follows:

(7 Ay =Rank(Y, =Y. =Y, +Y.),
where ﬁkiis the marginal mean of the &™ measure averaged over all N
subjects, Y. is the mean for the i subject averaged across the K measures,
and Y,, is the grand mean of all NK observations. Following Hettmansperger
(1984), this alignment could also be accomplished by obtaining the residuals
from a linear model in which Y isregressed on a set of (V- 1) dummy codes
that represent the subjects effect [, ] and a set of (K - 1) contrast codes
that represent the repeated-measures main effect (7,) from model 1.
Higgins and Tashtoush (1994) recommended applying the split-plot
ANOVA from model 1 to the Aligned Ranks [F ], thus replacing Y, with
A, It should be noted, however, that many of the properties of the original
data transmit to ranks, including heterogeneity of variance (Zimmerman &
Zumbo, 1993) and non-sphericity (Harwell & Serlin, 1994). Therefore, the
Aligned Ranks may inherit some of the distributional properties of the original
data as well. Thus, when performing the split-plot ANOVA F on Aligned
Ranks, the df-correction methods may be employed if the pooled covariance
matrix is non-spherical (e.g., €-adjusted F) or if the between-subjects
covariance matrices are heterogeneous (e.g., GA, IGA). As an alternative
to the univariate df-correction procedures, a multivariate test based on
Agresti and Pendergast (1986) may be used. That is, the multivariate tests
(Equations 5 or 6) could be performed on the Aligned Ranks (Equation 9),
replacing R, with A

Assumptions and Hypotheses for Interaction Tests Performed on Ranks

Itis important to note that statistically significant values of the univariate
and multivariate tests performed on Rank Transformed scores (Rifk) or
Aligned Ranks (4,) do not necessarily imply that the interaction is due to
differences in location parameters unless additional assumptions are made.
That is, because ranks inherit the distributional properties of the original data,
a significant test statistic may reflect differences in other distributional
characteristics (i.e., variance or shape) rather than differences in location
(Serlin & Harwell, 2001). Fortunately, significant test statistics can
generally be attributed to differences in location parameters (Marascuilo &
McSweeney, 1977, pp. 304-305). However, credible inferences about
means require the assumption that the population distributions are symmetric
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(Serlin & Harwell, 2001); whereas, credible inferences concerning location
parameters in general require the assumption that the population distributions
are of identical shape, not necessarily symmetric (Varga & Delaney, 1998).

Strictly, statistical tests performed on the Rank Transformed scores (RUA)
involve inferences concerning the distribution of the original data ( le)
because ranks are “placeholders” for the percentiles of the original data (M.
R. Harwell, personal communication, April 24,2001). For Aligned Ranks, the
major purpose of the alignment process (Equation 7) is to remove the nuisance
effects (i.e., main effects) so that test statistics will be sensitive to the effect
of'interest (i.e., interaction). However, the alignment process simply removes
the mean values for the nuisance main effects, thus involving linear
transformations of the data. However, the Aligned Ranks are a monotone
transformation of the aligned data. Therefore, the Aligned Ranks (4,,) are

“placeholders” for the percentiles of the original data (Y ,) with the nuisance
location parameters removed (M. R. Harwell, personal communlcatlon April
24,2001). In either case, there is no guarantee that test statistics performed
onR, ord, . will reflect differences in location parameters.

Akrltas and Arnold (1994) have argued that hypotheses should be
expressed in a manner that does not place additional distributional
assumptions on the data. These fully nonparametric hypotheses differ
because they do not attribute the rejection to location parameters alone but
rather to any distributional differences (Marascuilo & McSweeney, 1977),
a concept recently referred to as “stochastic heterogeneity” (Varga &
Delaney, 1998). Thus, hypotheses of this form reduce the risk of drawing
incorrect conclusions about the likely sources of the significant interaction,
but do so at the cost of not being able to characterize precisely how
population distributions differ (Serlin & Harwell, 2001).

To elaborate, the univariate statistics, F and F . fora split-plot design
actually test a restrictive null hypothesis of “exchangeability” or
permutational equivalence:
®) Hy, o G(Y)=G(Y)=...=G(Y)=...=G/(Y),
where G (Y ) is the K-dimensional distribution function of the original scores
for the]“‘ group (Agresti & Pendergast, 1986, p. 1418). This implies that
under the null hypothesis in Equation 8 not only are all.J groups expected have
identical error distributions, but the error distributions for the K repeated
measures are also expected to be identically distributed: IID(0, (r?) for allj
and k. This is similar to the NID(0, O'Z) assumption for univariate parametric
tests except normal error distributions are not required.
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The multivariate procedures (Equations 5 or 6) test a broader null
hypothesis of between-group marginal homogeneity:

) Hy oG (Y)=G(Y,)=...=G(¥)=...=G(Y,) fork=1,...K,

o
where Gj( Y/.k) is the one-dimensional distribution function of the k™" repeated
measure for the /" group. Strictly, this is a null hypothesis of distributional
equivalence across the J groups for each of the K measures. That is, each
of the K repeated measures may have different distributions, but as long as
there are no distributional differences across the J groups, (Equation 9) is
true. Thus, to obtain the asymptotic null distributions of the test statistics
(Equations 5 or 6), it is only necessary to assume the null hypothesis of
between-group distributional equivalence of error terms in Equation 9:
[IID(0, 03) for all j for each k separately] or IID[0,, 1),CKECK’]. Thus, it is
not necessary to make stronger assumptions concerning joint (or
permutational) distributions (i.e., common correlations between pairs of
measures) as in Equation 8. This is similar to the NIDI[O,, . l),CKECK’]
assumption for multivariate parametric tests except normal error
distributions are not required.

Strictly, rejections of these null hypotheses (Equations 8 and 9) typically
imply a pattern in which one of the J groups is stochastically larger that the
other(s) on at least one of the K repeated measures and that this “stochastic
superiority” is not constant across all K repeated measures. To illustrate,
imagine a J = 2 groups (e.g., Control and Treatment) by K = 3 repeated
measures (e.g., Pretest, Posttest, Follow-up) design. Suppose that for the
first measure (k = 1) the two groups are stochastically identical, G (Y,,) =
G,(Y,,), which would be expected on a pretest if the groups were randomly
assigned. Thus for all real values, u, the probability of scores larger than u
is the same in both groups, P(Y,, > u) = P(Y,, > u). Now imagine that the
posttest (k= 2) was measured after some treatment had been administered
to second group (j = 2) while the first group remained a control. If the
treatment “worked,” then the second group should have higher scores, and
thus, G (Y,) # G,(Y,,). Because the Treatment group has scores (Y,)) that
are stochastically larger than the scores for the Control group (Y,,) the
between-group probabilities of scores larger than all real values () are not
equal, P(Y,, >u) = P(Y,, > u).

Shift Model for Ranks in Split-Plot Designs

Ifthe univariate assumption that all JK cells have identically shaped error
distributions with a common variance [i.e., [ID(0, (rgz) for all j and £] is
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tenable, then rejection of the null hypothesis (Equation 8) must be due to
shifts in the location parameters (Lehmann, 1998). To illustrate the shift
model for the univariate approach to the split-plot design, define the null
hypothesis in Equation 8 as:

(10)H, . :G,(Y,-18)=G,(Y,-1A))=.. =G(Y,-1A)=.. =G/(Y,-1A)

where Y, is the N x K data matrix for the /™ group, A (8/ 19, BM 8/ ©
isalx K vector of location parameters for the /™ group, and 1is anN x 1 vector
ofones. By requiring the univariate IID(0, (rgz) assumption, if Equation 10 is
true then a statistically significant test statistics [i.e., Fg or F ] and a
rejection of Equation 8 implies that the interaction is due to shifts in location
parameters, a result conceptually similar to a rejection of the parametric null
hypothesis in Equation 2.

To illustrate the shift model for the multivariate approach to the split-plot

design, define the null hypothesis in Equation 9 as:
(IDH,,, G (Y, -8) = G)(Y,, -8))=.=G(Y,-8,)=.=G(Y,-3))
fork=1,...K,

where Y, is the N x 1 data matrix for the /™ group on the " measure and 3,
is a scalar location parameter for the jk™ cell. Thus, under the multivariate
model assumption that the random error vectors are [ID[0 «- l),C 3C/ cJacross
the J groups, if Equation 11 is true then a statistically s1gn1ﬁcant multlvariate
test statistics (Equations 5 or 6) performed on R, or 4, and a rejection of
Equation 9 implies that the interaction is due to shifts in location parameters,
Again, this is aresult conceptually similar to a rejection of the parametric null
hypothesis in Equation 2.

Note that the null hypotheses (Equations 10 and 11) are equivalent in
terms of location parameters. Also, the location parameters within a group
(Sjk) are not required to be equal under Equations 10 or 11. In other words,
repeated measures main effects may exist in the absence of an interaction.
Furthermore, it is important to note that if Equation 10 or 11 is false, then
Equations 8 and 9 are also false. However, a false Equation 8 or 9 does not
imply that Equation 10 (or 11) is necessarily false. That s, a significant test
statistic may reflect differences in other distributional characteristics (i.e.,
variance or shape) rather than differences in location (Serlin & Harwell,
2001), unless additional distributional assumptions are met. Also, a null
hypothesis for the interaction implies that differences in the location
parameters for any two groups (j = 1 .. .J) are equal for all K measures.
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Furthermore, if Equation 10 is true so is Equation 11; however, if
Equation 11 is true, it does not imply that Equation 10 is true. Likewise, a false
Equation 10 does not imply a false Equation 11. These distinctions are
important because in order to test a null hypothesis of shifts in location
parameters analogous to the null hypothesis in Equation 2, the univariate null
model for ranks (Equation 10) requires an assumption that the data for all JK
cells are sampled from identically shaped distributions with a common
variance. By contrast, the multivariate null model for ranks (Equation 11)
only requires an assumption that the error distribution for each of the K
repeated measures is identical for each of the J groups; however, there is no
assumption that the error distributions for all K repeated measures are
identically distributed. Thus, the relationship between the multivariate
approach to analyzing aligned ranks and the F-ratio performed on aligned
ranks is analogous to the relationship of the multivariate approach to
repeated measures designs and the univariate approach that requires the
sphericity assumption (Agresti & Pendergast, 1986).

Summary and Research Purpose

There is no consensus concerning the analysis of data from split-plot
designs when both the sphericity and normality assumptions are violated. A
simulation study compared the performance of the univariate F-ratio from
model 1, the Lecoutre (1991) e-adjusted ' (Equation 3), and statistics
(Equations 5 and 6) from a multivariate approach to repeated measures for
testing the interaction hypothesis concerning location parameters in a split-
plot design under several conditions. These procedures were applied to
Rank Transformed data (R,;) and the original data without any
transformation (Yijk)' Because tests for interactions applied to the Rank
Transform scores have been noted to perform poorly when main effects are
present in the original data (e.g., Blair et al., 1987), these tests performed on
the Aligned Ranks (Aijk from Equation 7) proposed by Higgins and Tashtoush
(1994) were also investigated.

Method
Design
A 2 (sample size: n,=10 and 30) x 3 (covariance structure: independent,
correlated spherical, and correlated non-spherical) x 3 (shape of error

distribution: Normal, Double Exponential, and Exponential) x 3 (degree ofa
main effect: ¢ = 0, 0.25, and 0.50) factorial design was employed for this
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simulation study. For each of these 54 conditions, 10,000 replications were
generated using SAS/IML 6.12 (SAS Institute, 1996). Comparisons were made
among 12 procedures for testing the interaction effect in aJ =3 x K =4 split-
plot design at the a = 0.05 significance level. For the original data (Y,./.k), the
Rank Transformed data (Rijk)’ and the Aligned Ranks (A[.jk), the following
four statistics were calculated: (a) the conventional F-test; (b) the Lecoutre
(1991) e-adjusted F from Equation 3; (c) the F approximate test (Equation
6) for the Hotelling-Lawley trace (H) from a multivariate profile analysis;
and (d) H (Equation 5) using a critical value from the Hotelling-Lawley trace
distribution. Since the Rank Transform procedure proposed by Agresti and
Pendergast (1986) was based on Hotelling’s (1931) 77, it seemed reasonable
to calculate the Hotelling-Lawley trace on the original data and Aligned
Ranks for the purposes of consistency. ForaJ=3 x K =4 split-plot design,
the parameters for the Hotelling-Lawley trace distribution are s =2, m =0,
n=11.5 for n= 10, and n=41.5 for n= 30. Therefore, the a = .05 critical
values for H are 0.587 and 0.155 for n,=10 and 30, respectively.

The n, = 10 condition was chosen because it has been used in other
studies (e.g., Agresti & Pendergast, 1986; Blair et al., 1987). Also, Harwell
and Serlin (1997) reported that for a single sample repeated measures design
the multivariate " approximate test of Rank Transformed scores inflated
Type I error rates with total sample sizes of N = 30.

The Double Exponential distribution was chosen as a condition where the
errors were symmetric but heavy-tailed with skewness and kurtosis values
of y,=0and vy, =3, respectively. The Exponential distribution was selected
as a condition where the errors were skewed (y, = 2) and extremely heavy-
tailed (7, = 6). Wilcox (1993) has noted that heavy-tailed distributions are
common in practice and tend to inflate variances which in turn reduces
power. In the case of empirical alpha rates, heavy-tailed distributions are
likely to lead Type I error rates that are below the nominal alpha. Micceri
(1989) reported that 30.9% of the data from educational and psychological
research had asymmetry as extreme as that of the Exponential distribution.
Furthermore, the Exponential distribution condition is similar to the lognormal
distribution (y,=1.75;y,= 5.90) used in other simulation studies (e.g., Algina
& Keselman, 1998; Algina & Oshima, 1994; Keselman et al., 1993).
Moreover, it is representative of skewed, heavy-tailed distributions found in
experimental psychology, most notably reaction time data (Zumbo &
Coulombe, 1997).
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Simulation Procedures and Conditions

Using the SAS/IML RANNOR function, a (nj =10 or 30) by (K =4)
matrix of normally distributed random variates with zero means and unit
variances (X)) was generated for each of the J =3 groups. A covariance
matrix 2/. was subsequently imposed on the X scores by deriving a K x K
matrix of principal component coefficients, F, from the pre-specified
covariance matrix (EJ,) and pre-multiplying it by the transpose of X, to create
a data matrix Y, that simulates . :

(12) Y =FX'

(Beasley, 1994; Kaiser & Dickman, 1962). Because only constants were
added later to create fixed effects (i.e., main effects, interactions), the
values of Y, are the error components.

In the first covariance structure condition, the repeated measures were
independent. That is, the expected value for all pairwise correlations was
zero (p = 0), and thus, 2], and F were identity matrices. The results of this
condition were expected to be similar to what would happen in a between-
subjects factorial design, a replication of Blair et al. (1987).

In the second condition, all population correlations between measures
(i.e., off-diagonal elements of Ej) were p = 0.60. This condition yielded
results for a spherical covariance structure (¢ = 1) in which case the
univariate F-tests should not inflate Type I error rates. In the third condition,
covariance structures with € = 0.64 were imposed. The pairwise inter-
correlations were p,, and p,, = 0.70 with all other population correlations
equal to 0.30. These values were taken from Headrick and Sawilowsky
(1999) and represent a realistic situation in which the sphericity assumption
is violated because a measure taken at time point k = 1 is more correlated
with a measure taken at time k = 2 than it is with measures taken later in the
experiment (i.e., time points k=3 and 4). Likewise, measures taken at time
points k£ =3 and 4 were more correlated with each other than with previous
measurements.

Two conditions of error non-normality were simulated: Exponential and
Double Exponential. To simulate the error distributions for both non-normal
conditions, intermediate population correlation values were derived (see
Headrick & Sawilowsky, 1999) for each of the three covariance structure
conditions described above. First, the random normal variates (X ) were
generated. Then, a matrix of principal component coefficients, F, was
derived from the intermediate values for the pre-specified correlation
matrix. Subsequently, covariance structures with the intermediate values
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were imposed using Equation 12. Then, data transformations using an
extended Fleishman (1978) power method were performed (Headrick &
Sawilowsky, 1999).

This process yielded data with zero means, unit variances, and the
expected covariance structure (2}.) after the non-linear transformations were
performed to make these values non-normal. Thus, these values were
transformed so that the variances and shapes of each of the K error
components were the same. This transformation process was also completed
for each of the J =3 groups so that there were no between-group differences
in variance or shape. Thus, under conditions in which the covariance
structures were spherical, the random error components (¢,,) were IID(0, o))
for each of the JK cells, which permitted an investigation of the 12 statistics
as tests of interaction in terms of a univariate shift model for location
parameters (Equation 10). Under condition in which the covariance structures
were not spherical, however, only the less restrictive multivariate was valid
assumption (i.e., HD[O(K i l),CKECK’]), thus creating a violation of the
underlying assumptions for the univariate parametric F-tests.

Using a balanced J =3 x K =4 split-plot design from model 1, a repeated
measures main effect pattern resulting in no interaction was imposed (see Blair
etal., 1987, p. 1143). Specifically for group 1, a vector of constants, ¢, = [0
0 2¢ 0], was added to each observation for the K = 4 repeated measures. For
group 2, ¢, = [-c -¢ ¢ -], and for group 3, ¢, = [-2¢ -2¢ 0 -2¢]. Consistent with
Blair et al. (1987), three values of ¢ were used: ¢ =0, 0.25, and 0.50. For ¢ =0,
both the repeated measures main effect and interaction effect null
hypotheses were true. For all other values of ¢, a repeated measures main
effect of [-c -c ¢ -c] was present in terms of location parameters, but there was
no interaction nor any other distributional differences. Blair et al. (1987)
demonstrated that when data with this pattern are ranked without alignment,
the ranks (R,./.k) exhibit a non-zero interaction effect when ¢ # 0. Correlation
among the repeated measures was expected to exacerbate this problem.
Again, when the correlation structure was independent, the results of this study
were expected to be similar to those of Blair et al. (1987).

Results

For all tables, F refers to the univariate ANOVA F-test for model 1, F7,
refers to the Lecoutre (1991) e-adjusted F* (Equation 3), I, refers to the /'
approximation (Equation 6) for the Hotelling-Lawley trace (Equation 5), and
H refers to testing the Hotelling-Lawley trace (Equation 5) with a critical
value from its referent distribution. Subscripts of ¥, R, and 4 refer to the tests
performed on the Original Data (Yifk), Rank Transform scores (Rl.fk), and
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Aligned Ranks (4,,) from Equation 9, respectively. The results for the
condition in which the K = 4 repeated measures were generated
independently is denoted by p = 0; € = 1.00 refers to the condition where the
repeated measures were equicorrelated (p = 0.60) and thus spherical; and
€ = 0.64 refers to the non-spherical condition.

Table 1
Type I Error Rates for the Interaction Tests in the Absence of a Repeated
Measures Main Effect (¢ = 0)

Normal Double Exponential Exponential
n=10 p=0 €=100 £¢=064 p=0 €¢=100 =064 p=0 e=100¢e=0.64
Fy, 0511 0527 0829 * 0480 0483 0817 * 0472 0453 + 0746 *
Fey 0383+ 0418 + 0523 0351 + 0359 + .0475 0324+ 0310 + 0451 +
Fy, 0535 0557 * 0559 * 0492 0535  .0496 0426+ 0402 + 0421 +
H,, 0483 0515 0508 0450+ 0482 0444 + 0386+ .0368 + 0385 +
Fp 0514 0523 0765 * 0507 0534 0803 * .0485 .0468 0797 *
Fe 0500 0504 0570 * 0496 0524  .0539 0470 0447 0564 *
Fuw 0576*% 0546 * 0546 * 0552* 0575 * 0548 * 0525 0533 0532
H, 0520 0506 0499 0508 0530  .0499 0478 0488 0487
F 0525 0542 0756 * 0507 0532 0755 * 0518 0499 0745 *

Fe 0513 0531 0579 * 0498 0521 0572 * 0501 .0481 0569 *
Fuw 0558% 0595 * 0564 * 0554 * 0560 * 0547 * 0531 0529 0552 *
H, 0522 0542 0535 0515 0544  .0506 0476 0494 0499

n=30 p=0 e=100e=064 p=0 =100 =064 p=0 &=100e=0.64

Fy, 0501 0487 0800 * 0489 0528 0777 * 0466 0472 .0751%*
Fey 0456 0465 0499 0429+ 0469 0480 0399+ 0416 + 0464

Fyw 0526 0493 0510 0495 0558 * 0490 0453+ 0460 0436 +
Hy, 0507 0473 0497 0476 0533 0480 0441+ 0444 + 0423 +

F 0487 0485 0773 * 0497 0529 0776 * 0490 0474 0810 *
Fow 0483 0479 0512 0493 0524 0517 0485 0468 0542
Fuw 0518 .0482 0516 0529 0514 0522 0496 0478 0496
Hy, 0497 0468 0500 0513 .0491 0502 0480 0454 + 0472

0487 0489 0730 * 0490 0540 0712 * 0468 0500 0728 *
! 0498 0515 0487 0538 0505 0464 0489 0530
0527 0510  .0532 0518 0557 * .0508 0482 0496 0503
0503 0498 0515 0494 0539 0494 0468 0477 0488

g

™
5

=
=

=

Note. * refers to liberal Type I error rates. + refers to conservative Type I error rates.
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Type I Error Rates

For this study, tests that demonstrated a Type I error rate considerably
lower than 0.05 were considered “conservative” but acceptable, while those
with rates that were significantly above the nominal alpha were considered
unacceptably “liberal.” Given a = 0.05 and 10,000 replications, a simulated
estimate has a standard error of 0.0022. Thus for empirical estimates of Type
I error rates, any rejection rate 2 standard errors above 0.05 (i.e., 0.0544) was
considered “significantly liberal.” An asterisk (*) is used to denote empirical
values that were significantly above the nominal alpha (i.e., liberal). This is
consistent with Bradley’s (1978) stringent criterion of non-robustness in which
the empirical Type I error rate should never exceed 1.1a. Likewise, any
rejection rate below 0.0456 was considered significantly below the nominal
alpha (i.e., conservative) and is denoted with a plus (+).

Consistent with Toothaker and Newman (1994) and Wilcox (1993), the
effects of violating the normality assumption were a “dampening” of
empirical alpha rates with small samples. For example, when the univariate
F, the Lecoutre df-correction procedure, and the multivariate tests were
performed on the original data with non-normal error distributions (¥, for
n, = 10, the Type I error rates were below Bradley’s (1978) stringent
criterion for a nominal alpha of 0.05, especially for data with Exponential
error distributions. The general effects of non-sphericity on the univariate
F-test whether performed on Y,./.k, Rijk’ or Aijk are also evident in all of these
results. That is, when the covariance structure was not spherical (€ = 0.64),
univariate F-tests demonstrated drastically inflated Type I error rates
regardless of sample size, shape of the error distribution, or whether the data
were ranked.

The Lecoutre (1991) e-adjusted F-test (/) performed on data with
Exponential error distributions was somewhat conservative, especially with
n, = 10. When F_ was performed on the Aligned Ranks of data with
Exponential error distributions, however, Type I error rates were more
consistent with the nominal alpha even with the smaller sample size. In most
other conditions, excluding the Rank Transformed scores in the presence of
a repeated measures main effect (see Tables 2 and 3), F, performed on the
original data and the Aligned Ranks held the Type I error rate near the
nominal alpha of 0.05 with departures from normality and sphericity.

The multivariate approach using /, (Equation 6) was liberal, especially for
the Rank Transform scores and Aligned Ranks with n = 10 (see Table 1).
However, these results may be a function of sample size in that the empirical
Type I error rates were more consistent with the nominal alpha of 0.05 when
sample size was increased to n,=30. Also for n, =10, testing H (Equation
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5) with an exact critical value was generally effective in controlling Type I
errors as compared to /. The rejections for these two multivariate tests
were similar with n,=30, although testing H with an exact critical value was
slightly more conservative in general (see Tables 1, 2, and 3).

Table 2
Type 1 Error Rates for the Interaction Tests in the Presence of a Repeated
Measures Main Effect (¢ = 0.25)

Normal Double Exponential Exponential

=10 p=0 &=100 e=064 p=0 =100 £=064 p=0 &=100e=0064

F(y 0510 0490 0774 * 0480 0482 0805 * .0455+ 0445 + 0743 *
Fe(yy 0371+ 0383 + 0487 0348+ .0409 + 0486 0329+ 0298 + 0421 +
Fay) 0574*% 0496 0559 * (0482 0510  .0515 0455+ .0396 + 0404 +
+
*

+

Hy) 0526 0448 + 0510  .0432 + 0463 0472 0412+ .0350 + 0368

F(R) 0517 0472 0726 * 0505 0525 0792 * .0558* .0565 * .0883
Fe(ry 0500 0459 0530 0490 0517 0575 * 0541 0528 0603
FHR) 0586* 0495 0522 0564 * 0552 * 0550 * .0599* 0572 * 0748
H) 0548% 0450 0473 0494 0510 0506 0549* 0551 * .0690

Fla) 0515 0485 0735 * 0491 0507 0776 * 0515 0500 0712 *
Fe(q) 0504 0478 0550 * 0475 0512 0581 * 0502 0478 0536
FH(q) 0611* 0517 0571 * 0540 .0540 0548 * 0547* 0527 0540
Hy) 0537 0477 0532 0493 0518  .0506 0500 0487 0504

m=30 p=0 £=100 e=064 p=0 e=100 e=064 p=0 &=100 =064

Fy 0490 0528 0794 * 0501 0484 0771 * 0502 0515 0761 *
Fg(yy 0457 0506 0527 0469 0448 + 0480 0445+ 0469 0478
FH(yy 0505 0546 * 0546 * 0505 0489 0476 0471 0487 (478

Hy) 0479 0532 0531 0487 0472 0461 0458 0468 0452 +
KRy 0497 0545 * 0781 * 0527 0516 0748 * 0595* 0646 * 0922 *
Fg(ry 0491 0547 * 0529 0527 0516 0514 0574* 0030 * 0625 *
FH@®) 0501 0569 * 0532  0546* 0545 * 0551 * 0647* 0715 * 0970 *
H(R) 0490 0550 * 0515 0522 0518  .0529 0631* 0092 * 0947 *

Fla) 0490 0527 0745 * 0502 0472 0729 * 0532 0521 0733 *
Fe(q) 0488 0528 0531 0506 0471 0519 0523 0517 0530
FH(4) 0505 0544 0530 0524 .0498 0528 0532 0540 0525
Hy) 0486 0531 0514 0503 0484 0514 0514 0518 0511

Note. * refers to liberal Type I error rates. + refers to conservative Type I error rates.
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Table 3

Type I Error Rates for the Interaction Tests in the Presence of a Repeated

Measures Main Effect (¢ = 0.50)

Normal Double Exponential Exponential
nj=10 p=0 €=100 e=064 p=0 =100 =064 p=0 e=100e=064
F(Y) 0506 0527 0808 * 0454 + .0486 0746 * 454+ 0421 + 0759 *
Fe(yy 0379+ 0468 0510 0349 + 0362 + 0467 0316+ 0289 + 0437 +
FH(Y) 0544 0553 * 0543 0511 .0517 0523 0476 0384 + 0441 +
Hy) 0498 0510 0496 0467 0485 0487 0441+ 0347 + 0402 +
F(R) 0502 0579 * 0757 * 0550 * 0650 * 0854 * 0689* .0907 * .1232 *
Fery 07 0573 * 0558 * 0521 0635 * 0656 * 0629* 0862 * 0854 *
FryR) 0562*% 0617 * 0640 * 0628 * 0656 * .0883 * .0827* .1073 * .1640 *
H(p) 0507 0583 * 0581 * 0582 * 0621 * 0800 * .0767* .0990 * .1548 *
F(A) 0498 0545 * 0746 * 0518 .0527 0732 * 0539 0475 0743 *
Fe(4) 0488 0557 * 0558 * 0498 .0513 0550 * 0523 0455 + 0559 *
FH(A) 0571* 0603 * 0586 * 0573 * 0598 * 0584 * 0587* 0504 0531
H(4q) 0512 0553 * 0543 0522 0541 0534 0546 * 0449 + 0472
nj=30 p=0 £=100 =064 p=0 e=100 =064 p=0 &=1.00e=064
Fy) 0497 0499 0775 * 0509 0459 0811 * 0478 0480 0766 *
Fe(yy 0453+ 0470 0489 0462 0414 + 0510 0420+ 0414 + 0482
Fyyy 0504 0509 0510 0517 0471 0526 0472 0460 0434
Hy) 0487 0492 0497 0499 0451 + 0506 0449+ 0443 + 0469
F(R) 0548* 0638 * 0870 * 0690 * .1007 * 1226 * .0942* .1899 * 2097 *
Fe(R) 0544 0634 * 0602 * 0678 * 0995 * 0857 * .0903* .1860 * .1478 *
FH@R) 0577% 0664 * 0868 * .0723* .1049 * 1626 * .1306* 2357 * 4166 *
H(R) 0558% 0640 * 0842 * 0690 * .1013 * 1587 * .1270* 2313 * 4109 *
F4) 0506 0498 0712 * 0515 0477 0733 * 0503 0501 0716 *
Fe(q) 0504 0499 0510 0513 0474 0514 0496 0498 0522
FH(A) 0507 0510  .0526 0541 0485 0543 0500 0513 0507
Hy) 0487 0494 0508 0519 0469 0522 0479 0503 0491

Note. * refers to liberal Type I error rates. + refers to conservative Type I error rates.
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In Tables 2 and 3, it is evident that tests for interactions performed on
Rank Transform scores were inadequate when main effects were present.
For example, the empirical Type I error rates for the interaction tests were
well above Bradley’s stringent criterion for a nominal alpha when a large
main effect (¢ = 0.50) was present (see Table 3). This indicates that the
Rank Transform procedure imposes an interaction effect in the expected
values of the ranked data when main effects are present in the original data
even in the absence of an interaction effect (Blair et al., 1987). Furthermore,
this implies that tests for interactions performed on unaligned ranks (Rl,/,k) are
sensitive to between-group distributional differences (see Equations 8 and 9)
in the form of location parameters, even if these location differences are the
same across the K repeated measures and thus not indicative of an
interaction.

The empirical Type I error rates found in this study were extremely
similar to those reported for between-subjects designs (see Blairetal., 1987, p.
1138). This problem with Rank Transform scores worsened under conditions
where the repeated measures were correlated (i.e., € = 1.00; € = 0.64). That
is, the empirical Type I error rates were considerably higher for tests
performed on the Rank Transformed scores as compared to the results for
the uncorrelated covariance structure condition (p = 0). The Type I error
rate inflation for tests performed on Rank Transformed scores also
worsened with skewed (i.e., Exponential) error distributions and a larger
sample size n, = 30. By contrast, tests for the Aligned Ranks generally
maintained the expected Type I error rate in the presence of a strong
repeated measures main effect (see Table 3). The only problem exhibited
was that the /| (Equation 6) performed on the Aligned Ranks inflated the
Type I error rates with a small sample size (n,=10). Again, testing A with
a critical value from the Hotelling-Lawley trace distribution was more
effective in controlling Type I errors with the smaller sample size of n, = 10.
But with a sample size of n, =30, both multivariate tests for Aligned Ranks
held the Type I error rates near 0.05.

Power Comparison

Because many of the tests exhibited conservative empirical Type I error
rates when data with Exponential and Double Exponential error distributions
were analyzed, an additional simulation study with 10,000 replications per
condition was conducted to investigate whether any of these procedures would
demonstrate an advantage in statistical power. The sample size, shape of the
error distributions, and covariance structure conditions previously described in
the Method section were used. To simulate an interaction effect among the
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location parameters, a vector of A, = A, =[-8 -8 & -8] was added to each
1 x K observation in groupsj = | andj = 2, respectively. The third group was
not transformed; thus, A, =[0000]. A value of=0.375 was chosen because
it created of an interaction effect while also imposing a repeated measures
main effect that was equivalent to the ¢ = 0.25 Type I error rate condition
previously reported in Table 2. To investigate a situation with lower statistical
power, a smaller interaction effect (8 =0.25) was also simulated. It should be
noted that interactions can exist in the absence of main effects, but situations
where both effects exist are more common in behavioral research.

Table 4 shows the rejection rates for several tests under conditions
where there is an interaction effect in the location parameters of the original
data (Yijk)' Because variances and shapes of the error distributions were
held constant across the J = 3 groups and K = 4 repeated measures, these
values represent empirical estimates of statistical power in terms of location
parameters rather other distributional differences. Because most of the tests
performed on the Rank Transformed scores inflated the Type I error rate when
a repeated measures main effect was present, these procedures were excluded
from the power comparison. Results for /', performed on the Aligned Ranks
with n,= 10 were also excluded because of liberal empirical alpha rates (see
Tables 1-3). The rejection rates for all tests under the 3 =0.375, n= 30 condition
were near unity and thus not reported.

The results show that tests performed on the original scores (YUk) with
Normal error distributions demonstrated a slight power advantage over the
rank-based tests. For spherical covariance structures, the univariate F 1
was slightly more powerful than the multivariate tests. For the non-spherical
covariance structure, the multivariate approach was more powerful than the
univariate tests. For data with symmetric, heavy-tailed (i.e., Double
Exponential) error distributions, tests performed on the Aligned Ranks
exhibited a slight power advantage over parametric procedures. Again, for
spherical covariance structures, the univariate F, was slightly more
powerful than multivariate tests performed on Aligned Ranks. For the non-
spherical covariance structure, the multivariate approach was more
powerful than the univariate tests. Thus, these results indicate that if the
errors are identically distributed with symmetric shape there is no clear
advantage to using Aligned Ranks over the original data, especially with cell
sizes of n,= 30 or more.

For data with skewed, heavy-tailed (i.e., Exponential) error distributions,
however, there was a considerable advantage to using Aligned Ranks. For
example. with the smaller sample size of .= 10, using a critical value from the
Hotelling-Lawley Trace distribution for H (Equation 5) performed on the
Aligned Ranks [H wl was generally more powerful than the other tests
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Table 4
Rejection Rates for the Interaction Tests in the Presence of a Repeated Measures
Main Effect and a Interaction Effect

Normal Double Exponential Exponential
8=0.375
nj=10 p=0 €=100 e=064 p=0 €=100 £=064 p=0 £=1.00e=0064
Fy 1843 4344 — 2083 4952 — 1885 4619 —
Fe(yy 1557 3867 3851 1704 4371 4491 1482 3992 4297
Fayy — 3987 — 2040 4729 9061 1875 4733 8758
H(y) 1676 3809 8498 1933 4577 8972 1768 4546 8670
Fa) 1776 4181 — 2331 5295 — 2570 6270 —
Fe(q) 1750 Al45 — 2300 5245 — 2522 6200 7421

Hy) 1709 3922 8362 2232 4975 9128 2574 6011 9269

8=0.250
=10 p=0 &=100 e=064 p=0 =100 £=064 p=0 &=100e=0.064

F(y) 0960 1978 — 1090 2223 — 1074 2146 —
Feyy 0778 1623 1534 0865 .1804 1774 0833 1680 1597
FH(r) — 1879 — J128 2199 5596 1064 2197 5539
Hy) 0890 1778 4549 1049 2084 5436 0996 2060 5388
Fla) 0952 .1906 — 1226 2397 — 1426 3185 —
Fe(q) 0941 1870 — 1208 2354 — 1383 3132 3673

Hy) 0957 1882 4454 1249 2325 5643 1380 3203 6622

8=0.250
7j=30 p=0 &=100 =064 p=0 =100 £=064 p=0 &=100e=0064

Fyy — 2469 59%8 — 2803 6489 @ — 2565 6033 —
Fe(yy 2318 5789 5954 2644 6306 6802 2389 5788 6081
FHyy 247 —  — 2814 M4 982 2611 6067 9676
Hyy — 2364 5767 97125 2762 6401 9816 2563 6008 9670
Fy4y 2421 580 — 331 6960 — 3715 807 —

Fe(q) 2415 5766 7205 3223 6954 364l 3696 8300 9504
FH) 2404 5743 9648 3213 6927 9893 3744 8253 9966
Hy) 2355 5688 9631 3163 6885 9887 3692 8219 9965

Note. Rejection Rates for Tests with Type I error rates above the nominal alpha of 0.05
are omitted.
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performed on data with skewed error distributions. A power advantage of H W
over H performed on the original data with Exponential error distributions [H wl
was evident with a smaller sample size of n= 10. For example, with the non-
spherical covariance structure (€ = 0.64) and smaller effect size (6 = 0.25), the
H , exhibited an empirical power estimate of approximately 66% rejection;
whereas, H ,, exhibited a lower empirical power estimate of approximately 54%
rejection at o = 0.05.

This power advantage of H over H, was also evident with a larger
sample size of n,=30 for both independent (p = 0) and correlated spherical
covariance structures (¢ = 1.00). For example, withz,=30 and the spherical
covariance structure (¢ = 1.00), the H, exhibited an empirical power
estimate of approximately 82% rejection. H (performed on the original data
with Exponential error distributions exhibited a much lower empirical power
estimate of approximately 60% rejection. With a non-spherical covariance
structure (¢ = 0.64) and n. = 30, however, the distinct advantage ofH(A) over
H ,, diminished to some extent.

The advantage of using the Aligned Ranks can also be inferred from the
results of the df-correction procedure (i.e., F,). For example, with n,= 30 and
the non-spherical covariance structure (¢ = 0.64), the F, performed on the
Aligned Ranks exhibited empirical power estimates of approximately 95%
rejection. F, performed on the original data with Exponential error distributions
exhibited much lower empirical power estimates of approximately 61% rejection
(see Table 4). However, this may be attributed to the ranking process reducing
the degree of non-sphericity. That is, Aligned Ranks, although inheriting some
of the non-sphericity present in the original data, did have smaller departures

from sphericity with higher estimates of € and thus larger dfs.
Multiple Comparison Procedures for Aligned Ranks

Given that the Aligned Ranks procedure is a viable approach to analyzing
repeated measures data, then contrast procedures based on this method should
hold quite generally (Agresti & Pendergast, 1986). The most typical form of a
contrast used by behavioral researchers is a product interaction contrast
(Hochberg & Tamhane, 1987, pp. 294-303; Marascuilo & Levin, 1970) defined as:

U=a,(b A, +b, A, +..+ b A, +...+b.A,)
tay(b Ay, +b Ay, ..+ b Ay +.. +b A,,)
(13) @ (b Ay +by Ay o+ b Ay + . b A )
wta, (b Ay +by A, oAb Ay .. b Ay );
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where A4 is the mean Aligned Rank from Equation 9 for the /™ group on the
k™ repeated measure, (a, +a, + ...+ a,...+ta) is a vector of contrast
coefficients, a, that compares the J independent samples, and (b, + b, + . ..
+b, +...+b,) is a vector of contrast coefficients, b, that involves the K
repeated measures with the restriction that Ea = 0 and b, = 0. For
comparing the J independent groups, a set of palrWlse or group comblnat1on
contrasts would most likely be of interest for defining a. For comparing the K
repeated measures either pairwise, polynomial, or trend contrasts would most
typically define b (Lix & Keselman, 1996; Marascuilo & McSweeney, 1967).

From a univariate perspective, a pooled squared standard error of a
contrast in a split-plot design (see Kirk 1982, pp. 516-518) can be calculated
by defining:

K
(14) 4; =ZbkAijk ’
k=1
(15) SS =Y (4;-4;)" ,and
i=1
) 12 SS
(16) SE} = Z( )(N s

where Z; is the mean for the j* group for the transformed score 4 in
Equation 14.

From amultivariate perspective, the covariance matrices are not pooled and
all elements of E (Equation 4) based on Aligned Ranks (Equation 9) are used.
Thus, the squared standard error of a contrast defined in Equation 13 can be
calculated by:

b’Eb
a7 SE? = Z( ’)((N >

Squared standard errors may also be computed from E* such that

(m’E'm)
18 SE; =————
(18) V=)
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where m is a JK column vector of interaction contrasts defined in Equation 13
sothatm’={ab’,..., ajb', ...,a,b’}. Forexample,inaJ=3by K=4 design,
imagine that a researcher tests whether the linear trend,b” = {-3 -1 1 3}, of the
first group is different from the linear trend of the other two groups combined,
a’={2-1-1},and thus, m"={-6-22631-1-331-1-3}.

A (1 - )% confidence interval for the contrast of Aligned Ranks can be
formed by:

(19) YES(SE,),

Thenull hypothesis H: =0 is rejected if the confidence interval in Equation
19 does not cover zero. From the univariate approach, SE. is defined as the
square root of (Equation 16). SE. is defined as the square root of Equation
17 or 18 for the multivariate approach. The definition of S depends on the
type of contrast is conducted. For example, to construct a post hoc Scheffé-
type confidence interval, S would be defined as:

(20) S=\df,Foay, ar,

Constructing Scheffé-type confidence intervals is not usually suggested
because it is a generally conservative procedure; however, Klockars and
Hancock (2000) have proposed a more powerful modification based on
Scheffé (1970) that could be applied. As an alternative approach that also
could yield more statistical power, define S as:

(21 S=apgar, »

acritical value from Student’s ¢ distribution using the Dunn-Sidak correction,
a =[1-(1-a)"]/2, ford contrasts. It should be noted that df, for Equations
20 and 21 differs for the univariate and multivariate approaches with the
univariate approach resulting in larger df,. For defining S in terms of the
sampling distribution of the Hotelling-Lawley trace, the reader is referred to
Gabriel (1968) and Sheehan-Holt (1998).

It should also be noted that conducting post hoc analyses is not
generally suggested as an optimal procedure to adopt (Marascuilo & Levin,
1970). Rather, a defined set of planned contrasts with an appropriate
adjustment for controlling Type I errors is often recommended in which
case the omnibus tests previously elaborated should be bypassed. For
conducting multiple planned comparisons or simultaneous test procedures,
there are several excellent references for both the univariate and
multivariate approaches references (e.g., Hochberg & Tamhane, 1987;
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Gabriel, 1968; Lix & Keselman, 1996; Maxwell & Delaney, 2000;
Sheehan-Holt, 1998).

It is debatable whether the multivariate or univariate approach is better
in terms of robustness and power (Maxwell & Delaney, 2000), and thus, this
issue should be investigated. However, the multivariate approach would be
expected to yield more precise confidence intervals than the univariate
approach, especially in situations where the pooled covariance matrix of
Aligned Ranks is non-spherical (Boik, 1981).

Discussion

Despite the perspective that good nonparametric tests for interactions do not
exist (e.g., Sawilowsky, 1990), this study showed that the proposed multivariate
tests of interactions among location parameters using Aligned Ranks in a split-
plot design controlled Type I error rates for data with non-spherical and non-
normal error distributions. Furthermore, these multivariate procedures, as well
as other univariate tests for Aligned Ranks maintained the expected Type I error
rate in the presence of a strong repeated measures main effect, whereas tests
performed on Rank Transformed scores demonstrated severely inflated Type
Ierrorrates. Thus, for testing interactions in a split-plot design, aligning the data
before ranking is essential when main effects are present.

Tests performed on the Aligned Ranks also demonstrated more statistical
power than parametric tests performed on the original data with non-normal
errors, especially with skewed, heavy-tailed (i.e., Exponential) error distributions.
The multivariate approach was most powerful; however, multivariate tests have
strict sample size requirements based on the number of repeated measures.
Thus, with smaller samples sizes (e.g., N = 30), using a critical value from the
referent distribution of the multivariate test is suggested because this method (a)
consistently controlled Type I errors (see Tables 1-3) and (b) demonstrated
superior power (see Table 4). For larger sample sizes (e.g., N = 90), the
Hotelling-Lawley trace and its  approximation showed similar rejection rates,
and thus, either test could be employed. Unfortunately, few multivariate texts
have extensive tables of critical values for multivariate statistics, and thus, F
approximations (Equation 6) may be employed out of necessity.

Although the Aligned Rank procedure for testing interactions performed
better than the Rank Transform method in the presence of main effects, it is
important to reiterate that the Aligned Rank method also involves a monotone
transformation of the original data. Therefore, issues concerning the
interpretation of rank-based tests are of concern. Namely, multivariate
procedures performed on Aligned Ranks test a null hypothesis of distributional
equivalence (Equation 9) across the J groups for each of the K measures.
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Vargha and Delaney (1998) have noted that with K = 1 (a univariate one-
way design which would not require alignment), the ANOVA performed on
ranks [F, ] actually tests a null hypothesis of distributional equivalence or
“stochastic homogeneity.” A null hypothesis of stochastic homogeneity is
equivalent to a null hypothesis of equal expected location parameters only
under conditions where variances are homogeneous and distributional shapes
are symmetric or identically asymmetric. Otherwise the null hypothesis of
equal location parameters is not what is actually tested by rank-based statistics.
Thus, when K > 1, the Hotelling-Lawley trace performed on Aligned Ranks
also evaluates a null hypothesis of distributional equivalence. Therefore, the
interaction null hypothesis in Equation 9 is equivalent to a null hypothesis of
equal expected location parameters only under conditions where each of the
J groups have a symmetric (or identically asymmetric) error distributions with
homogeneous variances for each of the K repeated measures separately.
Thus, if the error distributions of original data (Yi/k) for any of the J groups differ
substantially in terms of variance or shape on any of the K repeated measures,
multivariate statistics performed on 4,, should be considered tests of a null
hypothesis of between-group distributional equivalence (Equation 9), rather
than tests of location parameters only (Serlin & Harwell, 2001).

To elaborate, if the null hypothesis of distributional equivalence (9) is
true, it does imply the absence of an interaction in that differences in the
location parameters for any two groups (j = 1 . .. J) are equal for all K
measures. However, there are situations in which the location parameters
(e.g., mean ranks) would not indicate an interaction, but the distributions
would not be equivalent, and therefore, the interaction null hypothesis
(Equation 9) would be false. This is important because there are situations
where the interaction null hypothesis in Equation 9 would be rejected and the
researcher might assume it was due to differences in location parameters
when in actuality the rejection resulted from other between-group
distributional (i.e., variance, shape) differences (see Agresti & Pendergast,
1986; Beasley, 2000; Serlin & Harwell, 2001; Vargha & Delaney, 1998).
However, situations where distributional equivalence does not hold while
location parameters are identical are rare. Furthermore, these test statistics
have mean rank differences in the numerator of the formula (e.g., 5). Thus,
both univariate and multivariate tests performed on Aligned Ranks would be
considered especially sensitive to differences in location parameters
(Lehmann, 1998; Marascuilo & McSweeney, 1977).

Future studies into tests for Aligned Ranks should investigate statistical
issues that distinguish the multivariate tests from the univariate df-correction
procedures (e.g., Huynh, 1978; Lecoutre, 1991). Specifically, the multivariate
tests used in this study and the Lecoutre (1991) e-adjusted F are known to be
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extremely sensitive to heterogeneity of variance. For other multivariate tests,
several studies (e.g., Keselman & Keselman, 1990; Olson, 1974) have
reported that, as compared to the Hotelling-Lawley trace, the Pillai-Bartlett
trace is more robust to heterogeneous covariance matrices. Keselman et al.
(1993) have suggested a multivariate Welch-James type statistic (Johansen,
1980) for situations in which the covariance matrices are heterogeneous. This
statistic uses separate covariance matrices rather than pooling the covariance
matrices over the J groups. For a univariate approach, Huynh (1978)
developed the GA and IGA specifically for situations where the covariance
matrices were non-spherical and heterogeneous.

Also, pairwise multiple comparison procedures that correct for
heterogeneous variances (i.e., Games & Howell, 1976; Tamhane, 1979)
or simultaneous pairwise multiple comparison procedures developed for
repeated measures designs (Alberton & Hochberg, 1984; Keselman,
1994; Keselman, Keselman, & Shaffer, 1991) could be applied to Aligned
Ranks. If tests of post hoc contrasts are desired, then the Brown and
Forsythe (1974) procedure, which corrects for heterogeneous variances
among complex contrasts, could be implemented with similar
modifications. These suggestions are in agreement with recommendations
to calculate a separate estimate of experimental error for each contrast
(Boik, 1981). However, the statistical properties of other multivariate
statistics (i.e., Wilks’ lambda; Pillai-Bartlett trace; Welch-James test),
univariate procedures (i.e., GA; IGA), and multiple comparison
procedures performed on Aligned Ranks from split-plot designs have not
been evaluated and thus should be investigated under conditions of non-
normality, non-sphericity, and heterogeneous covariance matrices.
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