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A note on the rank transform for interactions

BY G. L. THOMPSON
Department of Statistical Science, Southern Methodist University, Dallas, Texas 75275, U.S.A.

SUMMARY

The asymptotic properties of the rank transform statistic for testing for interaction in a balanced
two-way classification are studied. Necessary and sufficient conditions are obtained for the
asymptotic distribution of this rank transform statistic to be chi-squared under the null hypothesis
of no interaction. It is shown that the rank transform test statistic for interaction is asymptotically
chi-squared, divided by its degrees of freedom, when there are exactly two levels of both main
effects or when there is only one main effect. In the latter case, the test detects a nested effect
instead of an interaction. In all other two-way layouts, there exist values for the main effects such
that, under the null hypothesis of no interaction, the expected value of the rank transform test
statistic goes to infinity as the sample size increases.
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1. INTRODUCTION

The rank transform procedure was proposed by Conover & Iman (1981) as a bridge between
nonparametrics and classical analysis of variance. All the observations are ranked together without
regard to row or column membership, and classical normal theory tests are applied to the ranks,
instead of to the observations. This procedure has gained much popularity because it is very easy
to implement and is initially very appealing.

Confusion about the performance of the rank transform statistic for interactions in a two-way
layout stems from several seemingly contradictory simulation studies. For a limited case with
small sample sizes and small main effects, the simulation studies of Iman (1974) and Conover &
Iman (1976) show that this rank transform statistic performs well at detecting interactions. On
the other hand, simulations by Blair, Sawilowsky & Higgins (1987) show that the type I error
rates are unacceptably large if either the main effects or the sample size are large. This points to
a critical need to study the asymptotic properties of the rank transform test for interaction. In
contrast, the asymptotic properties of rank transform statistics column effects and row effects
have been widely studied by Hora & Conover (1984), Iman, Hora & Conover (1984), Kepner &
Robinson (1988), Hora & Iman (1988), Thompson & Ammann (1989,1990) and Thompson (1991).
The author does not know of theoretical studies of the small sample properties of the rank
transform test.

This discussion is motivated by the fact that the critical points for the rank transform test are
identical to the critical points for the normal theory test from the F-distribution. The asymptotic
null distribution of the normal theory test for interaction is chi-squared, divided by its degrees
of freedom. For the rank transform test to behave properly, it must have the same asymptotic
null distribution as the normal theory test. Even more importantly, the test must be asymptotically
distribution-free over a reasonably large class of distribution functions and the asymptotic null
distribution must not depend on the values of the unknown main effects. It is shown that this is
the case when either there is only one main effect, or when there are exactly two levels of both
main effects. Otherwise, values of the main effects exist such that the expected value of the test
statistic under the null hypothesis approaches infinity as the sample size increases. As a result, it
becomes grossly liberal with large type I error rates even for large sample sizes.
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These theoretical results proving that a commonly used rank transform statistic has unacceptable
properties are important because despite the limited asymptotic results, the complete absence of
theoretical small sample results, and contradictory simulation results, the rank transform procedure
has become popular with social scientists, business professionals, and other researchers in both
academic and industrial fields. Easily implemented tests that detect alternatives are attractive.
Further contributing to the inappropriate use of the rank transform are two widely used manuals
for statistical procedures that endorse the procedure without reservation. The 1985 release of SAS
(SAS, 1985, p. 647) states:

For example, a set of data may be passed through PROC RANK to obtain the ranks for a response
variable that could then be fit to an analysis-of variance model using the ANOVA or GLM procedures.

The 1987 IMSL User's Manual Stat/Library also suggests applying analysis of variance tests to
ranked data (IMSL, 1987). These endorsements are misleading. Because ranking is a nonlinear
transformation, the rank transform does not always behave like its normal theory counterpart.
Extreme care must be taken to assure that both tests at least have the same asymptotic null
distribution. In § 2 the model and the rank transform statistic are denned. In § 3 the asymptotic
properties are discussed.

2. DEFINITIONS AND PRELIMINARY NOTATION

Consider the model for a two-way layout with interaction:

X,Jn = 0 + a l + Pj + ( a P ) u + eijn ( i = 1 , . . . , / ; j = 1 , . . . , / ; n = 1 , . . . . N ) ,

where e,Jn are independent random variables with an absolutely continuous distribution function
F(x) such that F(0) = | . Because the object of this paper is to show that the rank transform has
an undesirable property, we consider only the balanced case. Assume that a. = 0, /3. = 0, (af3 )j = 0
and {afi)L = 0 where a dot in the subscript indicates summing over that index. The null hypothesis
of no interaction effect is Ho: (a/3)y = 0 for all i and j ; the alternative is Ha: (a/3),j #0 for some
i and/ Let Ftj(x) = F(x- 6 — a, — /3/) be the distribution function of X,Jn under the null hypothesis,
and let the average distribution function be H(x) = (IJ)~l 22 F(J(x). Let Xti denote a random
variable with distribution function Fy(x) and denote H(Xy) by Hi}. Because H(x) is bounded
and increasing on the support of X(J, it follows that 0<var(//y)<oo. To avoid trivial situations,
assume that the supports of X,} and Xah intersect for all (i, j) and (a, b).

To define the rank transform statistic, let Rl)n be the rank of XiJn among all of the UN
observations. We restrict our attention to Wilcoxon scores and let aIJn = RiJn/(IJN + 1). Define

N J I

IJ n - | j = l l-\

Then, the statistic

T = -
( / y - / - y + i ) D

is the classical normal theory test with the scored ranks, aljn, substituted in place of the observations.

3. ASYMPTOTIC PROPERTIES O F T UNDER HO

To determine when the asymptotic null distribution of T cannot be XUJ-I-J + U/(H ~ I ~J +1),
first define / x y = NE(Hi}). When applicable, we assume throughout that the second index runs
faster than the first. Thus, define the vectors a = {au,..., au)' and n = ( / x , , , . . . , n-u)', and let
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T be an IJ x IJ matrix whose rows and columns are indexed by the ordered pairs (i, j) and (r, 5)
(1, r= 1 , . . . , /, j , 5 = 1,. . . ,J). The (i,j), (r, s)th element of F is

cov
L IJ u « l U - l i J O - l U - l J

Let yfjj, be the (i, j)th diagonal element of F. Note that 0<var(Hh)<00 implies 0<y((j),,,.,,<°°-

LEMMA 1. Under the null hypothesis, N~^(a— fi) converges in distribution to N,_/(0, F); in
particular, N~^(a,j.— Mf/V îu) converges in distribution to N(0, 1).

Proof. The univariate result follows by applying Theorem 3.3 of Thompson & Ammann (1989)
to the linear rank statistic al}_ with Wilcoxon scores and simplifying the expression for the variance.
The proof of the multivariate result is very similar to the proof of Theorem 4.2 of Thompson &
Ammann (1989). •

LEMMA 2. Under the null hypothesis D converges in probability to the nonnegative, finite constant

^2 = ̂ -^II{£(Hy)}2 = ̂ IIvar(H,). (1)

Proof. This proof is almost identical to the proof of Theorem 5.3 of Thompson & Ammann
(1989). Note that D 3=0 for all N implies that 3> a2 3=0. •

THEOREM 3. Under the null hypothesis of no interaction as N ->oo, lim E(T) is finite if and only
if

(i) E(HU- H4) does not depend on j for all 1 =£ i, a =£ / and 1 =£./ =£ /,
(ii) E(H,j — Htb) does not depend on i for all 1 =£/=£/ and l^j, b^J.

Proof. It follows from Lemma 2 and Slutsky's theorem that lim E(T) is finite if and only if
lim E(Q) is finite. Let 5(i, r) = 1 or 0 indicating i = r or i; #= r, and define an IJ x / / matrix A with
elements

)-±8(j,s)-j8(i,r) + jj

which are indexed exactly as the elements of F. Then, Q is the quadratic form N'^a'Aa. Because
A does not depend on N and because the elements of F converge to finite values, tr (AT) is finite,
and

lim E(Q) = tr (AT) + lim N~ye'Ae, (2)

where e = (en,... ,euy is the vector with elements eu = E(al}). Therefore, lim E(Q) is finite if
and only if e'Ae= O(N). Note that

is equivalent to

for all 1 and j . Theorem 3.3 of Thompson & Ammann (1989) and Lemma 1.5.5.A of Serfling
(1980) imply that lim (e,j-fiij)/yiiJ) = Q. Because 0<y (U)<oo, both e,j and n,, converge to the
same limit as N increases. Therefore, e,j — J~lelm- l~xe_j + {U)~Ke_. is O(N^) if and only if
ay - J~l n,.-1'1 (ij + (IJ) "V.. is O(Ni), which is equivalent to vIJ-J~tvi.-I~

lpJ + (IJ)~iv,, = 0
for all / and,/ where vu = £(//^). To obtain (i), subtract vaj-J~xva.-I~

yv_j + (IJ)~xv=(} from
Vij-J~'p,_- I~]vj + (IJ)'lv__ = 0. This gives vtJ- vaj = J~x(vl_- va) which does not depend on j .
The result for (ii) is obtained similarly. •
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When E(T) converges to infinity, not only is T not asymptotically chi-squared, but it becomes
very liberal for large samples. This is consistent with the simulation results of Blair et al. (1987)
in which the nominal a-levels approach 1 as sample size increases. Thus, the rank transform
should never be used to detect interactions if (i) and (ii) cannot be shown to hold. Note that
Theorem 3 does not depend on the linearity of the model; it holds for any absolutely continuous
distributions Fu that satisfy (i) and (ii). It is of interest to determine when these two conditions
hold.

Clearly, (i) and (ii) hold if Ftj = F, or Fi} = Fh that is, if there is only one main effect. The
condition Ftj = F, can be interpreted either as testing the null hypothesis of no nested effect,
HOi: (af})ij = 0 for all i and j , in the model

or as testing the null hypothesis of no column effect, H02: fZJ + (af))lj = O for all i and j , in the
two-way layout

With either interpretation, T converges in distribution to *?w_»_.;+i)/(77-7-7 + l) by Lemma
1 and Lemma 2. It is interesting to compare this test for nested effects with the test proposed by
Akritas (1990). In Akritas's test, all the data are ranked together and then a function of the ranks,
namely the ranks divided by an estimate of the standard deviation, is substituted into the classical
F test for a nested effect. In the test T, all of the data are ranked together and the ranks are
substituted into a different classical F test than for a nested effect. Hence, neither test is a rank
transform test, but for different reasons. By contrast, Corollary 4 shows that T is a rank transform
test when 7 = 7 = 2.

COROLLARY 4. When both main effects are present, conditions (/) and (ii) are satisfied for all
values of a, and fy if and only if I = 7 = 2.

Proof. Assume that 7=7 = 2. Conditions (i) and (ii) are equivalent to

E(H n - f f 2 1 ) -E(H I 2 - / / 2 2 ) = 0

which can be shown to be equivalent to

I (3)

by expanding H(x) as a sum, changing variables in the integrals, and cancelling terms. To show
that (3) always holds, we show that J{F(x + 5) + F(x-5)}/(x) dx is a constant function in
S by showing that its partial derivative with respect to S is J{/(x + 8)- / (x-5)}/(x) dx = 0.
Hence, conditions (i) and (ii) hold. Conversely, if 7 s» 3, a counterexample to the condition that
£(H U - H2J) does not depend on j is generated for symmetric distributions by letting a, = -a2,
Pl = -02 and /3y = 0 for 3=s./=£7. Then

E ( H 1 1 H 2 I ) E ( / / I 2 / / 2 2 ) + E ( H 1 , / / 2 J ) .

Counterexamples for 7 55 3 and for nonsymmetric distributions are handled similarly. •
For 7 = 7 = 2, computations show that tr(AF) = a-2 and it follows from Lemma 1, Lemma 2

and the proof of Theorem 3 that T is XUJ-I-J+D/(H ~ 7 - 7 + 1). Power properties of this test are
simulated by S. S. Sawilowsky in an unpublished report.

A fundamental difference between T and the classical F test is illustrated by the proof of
Theorem 3. In the normal theory, the null hypothesis of no interaction is a system of 77 - / - 7 + 1
linearly independent equations in terms of the 77 means E{Xtj). Because ranking is a nonlinear
mapping, the same system of equations in terms of E(atj) instead of £(Xy) is no longer the null
hypothesis of no interaction. Beyond the 2x2 case, the rank transform may be detecting the
nonlinearity of the mapping from the data to the ranks. Similar points are discussed by Blair et
al. (1987).
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