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Assumption for a z-test, t-test or F-test

 When conducting a z-test or a t-test, we are actually 
assuming that the data (or the random errors) follow a 
normal distribution.

 Based on this assumption, we know the distribution of 
the test statistic (T.S.) under the null hypothesis.

 Based on the distribution (z-distribution, t-distribution or 
F-distribution), we get a p-value for each observed T.S..

 This can be referred to as “parametric approaches”.
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What if the distributional assumption does not hold?

 If the normal assumption does not hold for the 
data and the sample size is small, the results of 
z-test, t- or F-test are not reliable.

 What can we do?
Transformation of data to make the data normal

Choose some tests that do not make such 
distributional assumptions – “nonparametric 
approaches”
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Permutation test

 Permutation tests (randomization tests) can be 
used without the normal assumption for the 
distribution of data.

 Permutation test is a nonparametric approach to 
establish the null distribution of a test statistic.

 Permutation tests are attractive to microarray 
study because it makes fewer assumptions.
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Permutation

 Permutation is the rearrangement of objects or 
symbols into distinguishable sequences. 

 Each unique ordering is called a permutation.

 For example, for A, B, C, and D, each possible 
ordering of all 4 elements without repetitions is 
one permutation, such as B, C, D, A.
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Calculation the number of permutations

 Definition: For a positive number n, n! (read n factorial) is 
the product of all the positive integers less than or equal 
to n. That is:

n! = n x (n-1) x (n-2) x … x 3 x 2 x 1

e.g.: 4! = 4 x 3 x 2 x 1 = 24

 The number of permutations with n objects is n!
 The number of permutations with r elements from n

objects is n!/(n-r)!
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Combination 

 A combination is an un-ordered collection of 
unique elements.

 For example, for the letters A, B, C and D, we 
want to get a collection of 2 elements from the 4. 

 Note the getting a collection of 2 elements from 
the 4 in total is equivalent to assigning them into 
2 different groups with 2 of them in group 1 and 
the other 2 in group 2.
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Calculation the number of combinations

 Definition: For a positive number n and r, n  r, we 
define 

read n choose r.

 The number of combinations (groupings) of size r from a 

total set of n elements is           .
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Idea of permutation test

 Under H0 (the null hypothesis ), some of the data 
are exchangeable. 

 We permute (rearrange) the data by shuffling 
their labels of treatments, and then calculate our 
T.S. on each permutation. The collection of T.S. 
from the permuted data constructs the null 
distribution.
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Steps of permutation test

1. Analyze the problem and identify the 
hypothesis.

2. Choose a T.S. and establish a rejection rule 
that will distinguish the null from the alternative.

3. Compute the T.S. for the original observations.
4. Rearrange the observations.

1. Compute T.S. for the rearranged data.
2. Compare the T.S. from original observation with the 

ones from re-arranged data.

5. Make conclusion.
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An Example

 Suppose I have an instrument that measures the mRNA 
transcript abundance of a certain gene.

 I have developed a drug that I suspect will alter the 
expression of that gene when the drug is injected into a 
rat.

 I randomly divide a group of eight rats into two groups of 
four. 

 Each rat in one group is injected with the drug. 

 Each rat in the other group is injected with a control 
substance. 12

Hypothetical Data

I use my instrument to measure the expression of the gene in
each rat after treatment and obtain the following results:

Control        Drug
Expression   9 12 14 17  18 21 23 26
Average          13           22

The difference in averages is 22-13=9.

I wish to claim that this difference was caused by the drug.
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Interpretation of the Results

 Clearly there is some natural variation in expression (not 
due to treatment) because the expression measures 
differ among rats within each treatment group.

 Maybe the observed difference (22-13=9) showed up 
simply because I happened to choose the rats with 
larger expression for injection with the drug.

 What is the chance of seeing such a large difference in 
treatment means if the drug has no effect?
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Random                                   Difference
Assignment     Control          Drug       in Averages

1       9  12  14  17  18  21  23  26      9.0
2       9  12  14  18  17  21  23  26      8.5
3       9  12  14  21  17  18  23  26      7.0
4       9  12  14  23  17  18  21  26      6.0
5       9  12  14  26  17  18  21  23      4.5
6       9  12  17  18  14  21  23  26      7.0
7       9  12  17  21  14  18  23  26      5.5
8       9  12  17  23  14  18  21  26      4.5
9       9  12  17  26  14  18  21  23      3.0
10       9  12  18  21  14  17  23  26      5.0
11       9  12  18  23  14  17  21  26      4.0
12       9  12  18  26  14  17  21  23      2.5
13       9  12  21  23  14  17  18  26      2.5
14       9  12  21  26  14  17  18  23      1.0
15       9  12  23  26  14  17  18  21      0.0

69      18  21  23  26   9  12  14  17     -8.5
70      18  21  23  26   9  12  14  17     -9.0

... ... ... ... ... ... ... ... ... ...

Rearrangement of data
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Conclusions

 Only 2 of the 70 possible random assignments would 
have led to a difference between treatment means as 
large as 9.

 Thus, under the assumption of no drug effect, the 
chance of seeing a difference as large as we observed 
was 2/70 = 0.0286.

 Because 0.0286 is a small probability, we have reason to 
attribute the observed difference to the effect of the drug 
rather than a coincidence due to the way we assigned 
our experimental units to treatment groups. 

17

Permutation Test

 R.A. Fisher described such randomization 
(permutation) test in the first half of the 20th 
century.

 Permutation tests are popular for assessing 
statistical significance because they do not rely 
on specific distributional assumptions.
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Permutation Test

 Permutation tests can be applied to more 
general experiments than the example here. 

 This method depends on identifying units to 
permute, which should be the units in the 
experiment that are exchangeable under the null 
hypothesis, determined by the design of the 
experiment and the factor(s) being tested.
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Comments about permutation tests

 When the parametric assumption (e.g. normal 
distribution of data) is correct, the parametric 
tests (z-, t-, F-tests) are more powerful.

 The permutation test is exact under relatively 
non-stringent conditions (less assumptions) and 
protect against deviations from parametric 
assumptions.

 Permutation test is more computationally 
intensive.
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Applying permutation tests into microarray

 If sample size is small, the number of 
permutations is small.

 As a consequence, the p-values have a problem 
called “granularity”.

 Sometimes, one can pool the permuted data 
from all genes if assuming that all genes have 
the same null distribution. Or, one can shuffle 
the residuals instead of the data. 
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