UNDERSTANDING STATISTICS, 2(4), 267-280
Copyright © 2003, Lawrence Erlbaum Associates, Inc,

TEACHING ARTICLE

A Warning About the Large-Sample
Wilcoxon—-Mann—Whitney Test
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It is known that the Wilcoxon-Mann-Whitney test is strongly influenced by unequal
variances of treatment groups combined with unequal sample sizes. This simulation
study indicates that, for various continuous and discrete distributions, the discrepancy
between the empirical Type I error rate and the nominal significance level is large even
when sample sizes are equal. In some cases, it exceeds the similar discrepancy charac-
teristic of the Student r test. Furthermore, for some distributions. the discrepancy be-
comes increasingly more extreme as sample sizes increase. When sample sizes are rela-
tively large, so that the normal-approximation form of the Wilcoxon-Mann—Whitney
statistic is appropriate, minor and usually undetected differences in variability of treat-
ment groups can substantially inflate the Type [ error rate. For several distributions, in-
cluding some that occur frequently in psychological research, ratios of population stan-
dard deviations as small as 1.1 or 1.2 have sizeable effects.

Keywords: Wilcoxon-Mann-Whitney test, Student ¢ test, Type I error,
homogeneity of variance, large-sample normal approximation

The validity of widely used significance tests of differences in location, such as the
Student ¢ test and the analysis of variance F test, depends on an assumption of ho-
mogeneity of variance of treatment groups. When this assumption is violated and at
the same time sample sizes are unequal, Type I error rates are substantially modi-
fied. When a larger variance is associated with a larger sample size, the probability
of a Type I error declines below the nominal significance level, and when a larger
variance is associated with a smaller sample size, the probability increases, some-
times far above the significance level (Hsu, 1938; Overall, Atlas, & Gibson, 1995;
Scheffé, 1959).
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Quite some time ago, Cohen (1965) warned psychologists that nonparametric
tests are not tests without assumptions and that some assumptions of these tests are
strong. In recent years, it has become apparent that nonparametric tests of location,
including the Wilcoxon-Mann-Whitney rank-sum test and the van der Waerden,
or normal-scores test, are seriously influenced by unequal variances of treatment
groups, although the changes typically are not as large as those of their parametric
counterparts (Zimmerman, 1996; Zimmerman & Zumbo, 1993). It is still widely
believed that both parametric and nonparametric significance tests are robust to
variance heterogeneity when sample sizes are equal, For normal distributions, this
belief perhaps is justified in the case of the Student 1 test, although slight modifica-
tions of the nominal significance level do occur.

In this study. I disclose that for various non-normal distributions, the outcome
for the Wilcoxon-Mann—-Whitney test is not the same. For these non-normal distri-
butions, variance heterogeneity inflates the Type I error rate considerably, even
when sample sizes are equal. In addition, the magnitude of this inflation increases
as sample size increases. When sample sizes are relatively large so that the nor-
mal-approximation form of the Wilcoxon-Mann—Whitney test statistic is appro-
priate, minor differences in the variability of treatment groups, even seemingly
insignificant ratios of standard deviations of 1.1 or 1.2, produce sizeable changes
in the Type I error rate.

GENERATION OF VARIATES WITH PREDETERMINED
DISTRIBUTIONS?

The following continuous probability densities were included in this study: normal,
exponential, lognormal, gamma, truncated normal (half-normal), Weibull, and
power function. In addition, several distributions of the type identified by Micceri
(1989). which often occur in psychological research. were examined. A geometric
distribution with probability of success .1 and a skewed binomial distribution with
20 trials and probability of success .05 were included. Also, an asymmetric bimodal
distribution consisted of a mixture of two normal distributions with different
means. Finally, two normal distributions were modified to have “ceilings"—one at
.5 ¢ above the mean and one at 1.0 o above the mean—in which all scores above a
selected cutoff value were replaced by that cutoff value. Exponential and geometric
distributions are encountered in measurement of response times in psychological
research, and distributions with ceilings often characterize test scores. All these
distributions are skewed.

The random number generator used in this study was introduced by Marsaglia,
Zaman, and Tsang (1990) and was described by Pashley (1993, pp. 395-415). Nor-

"The computer programs in this study were written in PowerBASIC, Version 3.5, PowerBASIC,
Ine., Carmel. California. Listings of the programs can be obtained by writing to Donald W, Zimmerman
at 1978 134A Street, Surrey. British Columbia, V4A 6B6. Canada.
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mal variates, N(0,1), were generated by the rejection method of Marsaglia and Bray
(1964), and these were transformed to have the various distribution shapes men-
tioned previously, Let U/ be aunitrectangular variate and Y a unit normal variate. The
various continuous and discrete distributions in the study were obtained by the in-
verse distribution functions given in Table 1. After these transformations, scores
were standardized by subtracting the mean and dividing by the standard deviation,
so that it = 0 and ¢ = 1. For further discussion of generation of variates, see Evans,
Hastings, and Peacock (1993) and Patel, Kapadia, and Owen (1976).

Each replication of the sampling procedure obtained two independent samples
of the same size. In successive replications, all scores in one sample were multi-
plied by a constant so that the ratio ¢,/02 had a predetermined value. The
Wilcoxon-Mann—Whitney rank-sum test was performed. and the result was evalu-
ated at the .01, .05, and .10 significance levels. In the small-sample case (Table 2),
the critical values of the Wilcoxon statistic were based on exact probabilities ob-
tained from standard tables chosen to be as close as possible to the .01, .05, and .10
levels. As a comparison, for some distributions, the Student 7 test was evaluated at
the same modified significance levels.

In the large-sample case (Table 3 and Figures | and 2), the nor-
mal-approximation form of the Wilcoxon-Mann—Whitney test was performed,
again using the .01, .05, and .10 significance levels. Also, in the case of the data in
Figures | and 2, an independent samples Student 7 test was performed, and the re-
sult was evaluated at the same significance levels.

The ratio of population standard deviations, ¢ /o,. was either 1.0, 1.1, or 1.2,
Sensitivity to these small differences is a serious matter. [n one part of the study
(the data in Tables 2 and 3), sample sizes were 6, 8, or 10. In another part of the

TABLE 1
Generation of Variates With Specitied Distributions
Distribution Transformaiion
Exponential, & = | X=-log(l))

Lognormal, shape parameter 1. scale parameter | X = exp(¥), where Yis M0, 1)
Gamma, shape parameter 2

Power function, shape parameter .5 X=12

Geometric, p= .1 X = [log(U)log(N] -1

Weibull, shape parameter .5, scale parameter | X =|-log(th})?

Skewed binomial (20, .05) Generation of Bim, p), n=20,p = 05

Asymmetric bimodal N(O, 1) with probability .7 and N(3. 1) with
probability .3

Normal, ceilingat g+ 1.0 X = M0, 1), values exceeding p + 1.0 o replaced
byu+1.06

Nommal, ceilingat g+ 50 X = N(0. 1), values exceeding |t +.5 o replaced
byp+.30

Truncated normal (half normal) X = abs(Y), where ¥is N(O, 1)
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study, using the large-sample normal approximation (the data in Table 3), sample
sizes were 20, 30, 60, 90, 120, or 200. For the graphs plotted in Figures | and 2,
sample sizes varied between 10 and 100 in increments of 10. All significance tests
were nondirectional, and there were 50,000 replications of the sampling procedure
for each combination of parameters.

RESULTS OF SIMULATIONS

Table 2 provides Type I error rates of the small-sample Wilcoxon-Mann-Whitney
test for the 12 population distributions and for ratios of population standard devia-
tions of 1.0, 1.1, and 1.2. Inall cases, N, =N, and the mutual sample size was 6, 8, or
10. The significance levels (the columns labeled o) were exact probabilities associ-
ated with the Wilcoxon statistic for various sample sizes. Critical values of the sta-
tistic were chosen so that these probabilities were close to the conventional .01, .05,
and .10 significance levels.

It is apparent that, for various non-normal distributions, Type I error rates were
inflated somewhat when ¢)/g> was 1.1 or 1.2, although the change was not ex-
treme. For example, for N) = N, = 6, the rates were slightly inflated for the

TABLE 2
Probability of Rejecting Hy by Wilcoxan-Mann-Whitney Rank-Sum Test (Small Samples)
for Various Sample Sizes, Ratios of Standard Deviations, and Significance Levels

N, ¥ N =8 Ny= 10,

Distribution G /G ; o N.=6 o N:=8§ o Ny=10
Normal 1.0 009 009 010 010 009 009
041 040 050 049 052 053
093 092 105 103 105 106
1.1 009 008 010 009 009 0609
041 041 050 049 052 053
093 095 105 02 05 105
1:2 009 009 010 010 009 010
041 043 050 050 052 054
093 095 105 103 105 A08
Exponential 1.0 109 D09 010 010 009 D10
{IEY| 041 050 052 052 054
093 094 105 06 05 A6
1.1 009 09 010 011 009 009
4] 043 (50 052 A52 055
093 96 105 08 105 109
1.2 009 010 010 012 o0y 012
041 044 050 057 052 064
093 100 103 BEE 105 121

(continued)




TABLE 2 (Continued)

Nj=6 N;=8, N, = 10,

Distribution G,/0: iV N;=6 o Ny=8 (¢] N:=10

Lognormal 1.0 009 009 010 011 009 009
04] 041 050 051 052 052
093 093 105 106 05 04

1.1 009 010 010 011 009 011
041 044 050 055 052 059
093 096 105 12 105 114
1.2 009 011 010 014 009 014
041 050 050 063 052 071

093 A1 105 127 105 133
Gamma 1.0 09 009 RULE 010 009 009
041 042 050 049 052 054
093 093 A05 104 105 107

1.1 009 009 010 011 009 009
041 042 050 050 052 052
093 095 105 104 105 105
1.2 009 009 010 011 009 010
041 043 050 052 052 056
093 096 05 107 105 110
009 008 010 011 009 09
041 041 050 050 052 052
093 094 105 105 105 104
1.1 008 010 010 012 009 009
041 045 050 054 052 056
093 099 105 A1 105 A11
1.2 009 011 A10 014 009 011
041 047 050 060 052 063

Power function

093 105 105 120 105 24
Geometric 1.0 009 009 010 011 009 010
041 042 050 051 052 052
093 094 J05 108 105 103

1.1 009 009 010 010 009 010
041 043 050 052 A52 056
093 094 105 109 105 107
1.2 009 010 010 013 009 013
041 046 050 059 052 065

093 104 05 A28 105 JA25

Weibull 1.0 009 008 010 010 009 009
041 040 050 051 052 051

093 091 105 105 105 104

1.1 009 0l6 010 023 009 022

A4 066 050 092 052 104

093 137 05 169 105 81

1.2 009 027 010 044 009 049

041 095 D050 137 052 168

093 183 105 234 105 264

{continued)




TABLE 2 (Continued)

N, =6, N; =8, N, =10,

Distribution g.,/a, o Ny=6 o N:=8 o N,= 10
Skewed binomial, n= 20, p = .05 1.0 D09 009 010 011 9 009
041 042 050 048 052 054
093 094 105 A02 103 08
1.1 09 013 010 017 D09 D16
041 052 050 068 052 076
93 d13 105 136 A05 140
1.2 009 013 010 017 009 016
041 051 050 068 052 078
0v3 14 105 133 105 1410
Asymmietric bimodal 1.0 009 009 D10 010 A9 008
041 042 050 050 052 052
093 093 105 105 05 04
1.1 008 009 010 D10 009 009
041 041 050 050 052 051
093 095 105 104 05 J05
1.2 009 M0 010 01l 009 010
A4 043 050 0350 052 157
093 096 105 104 105 10
Normal, ceiling at 1.0 o 1.0 009 008 010 Ol 009 009
041 040 050 049 052 052
093 092 105 105 105 04
1.1 009 009 010 011 009 010
041 043 050 051 052 0156
093 097 105 108 105 10
1.2 009 009 010 012 09 010
041 042 050 053 052 058
093 097 05 d11 105 A12
Normal, ceiling at 5o 1.0 009 009 010 010 009 D08
041 041 050 049 052 051
093 091 105 104 08 102
i1 009 012 010 D16 009 015
04 052 050 070 052 076
093 Jd12 105 136 105 41
1.2 09 013 010 017 009 016
4] 054 050 071 052 JAR]
093 18 105 139 105 146
Truncated normal (half-normal) 1.0 009 009 010 010 009 009
A4 043 050 {050 052 052
093 093 105 106 05 106
1.1 009 009 010 010 09 010
041 042 050 051 052 033
093 095 105 A08 105 107
1.2 009 009 010 011 009 010
041 044 050 054 052 057
093 097 105 A1 105 d12
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lognormal distribution and the truncated normal distributions and were inflated to
a greater extent for the Weibull distribution. The same pattern held for these distri-
butions when N = N> = 8. In all these cases, one will see, the change was far
greater when sample sizes were larger. For almost all distributions in Table 2, the
probability of a Type L error increased systematically from row to row in each sec-
tion representing a particular distribution (as the ratio 6/c; increased) and also in-
creased across columns (as the sample size increased).

For comparison, Table 3 shows results of the Student 7 test using sample sizes of
6. 8, and 10 at significance levels corresponding to the same probabilities associ-
ated with the small-sample Wilcoxon-Mann-Whitney test. For 6/62 = 1.0, the re-
sults for these non-normal distributions was similar to familiar findings: The Type
I error probabilities declined slightly below the nominal significance level. For
oi/o2= 1.1 and 6,/6> = 1.2, there were only slight increases, less than those of the
Wilcoxon-Mann-Whitney test. Furthermore, there were only slight increases at-
tributable to sample size.

Table 4 provides Type I error rates of the large-sample, normal-approximation
form of the Wilcoxon-Mann-Whitney test for significance levels of .01, .05, and
.10; for the same ratios of standard deviations included in Table 2; and for sample
sizes of 20, 30, 60, 90, 120, and 200. For many non-normal distributions, the proba-
bility of rejecting Hp increased far above the nominal significance level. Again,
probabilities of rejecting Hy increased systematically from row to row and across
columnsin the table—thatis, the magnitude of the increase was a function of both the
ratio of standard deviations and the sample size. Although the ratios deviated from
1.0 only slightly, to a degree that most likely would be ignored in research, the
changesin Type l error rates were sizeable, especially for the larger sample sizes.

Figures 1 and 2 present a more detailed picture of the dependence of the change in
Type Lerror rate on sample size for the exponential, lognormal, and binomial distri-
butions and for the normal distribution with a ceiling. In these graphs, the sample
sizes varied from 10 to 100 in increments of 10. The ratio 6,/c2 was 1.1 inall cases.
For comparison, the graphs also plot the Type [ error rates of the Student r test. The 1
test was not influenced by either variance heterogeneity or sample size in the case of
the binomial distribution and the normal distribution with a ceiling and was only
slightly influenced in the case of the exponential and lognormal distributions. How-
ever, it appears that the Type I error rate of the Wilcoxon-Mann—Whitney testis a
linear function of sample size over this range of sample sizes.

PRACTICAL IMPLICATIONS FOR STATISTICAL
SIGNIFICANCE TESTING

For all the non-normal distributions included in this study, the Type I error rates of
the Wilcoxon-Mann-Whitney test were close to the .01, .05, and .10 significance
levels when ¢,/c; was 1.0. This outcome is hardly surprising in light of the fact that




TABLE 3

Probability of Rejecting H, by Student t Test (Small Samples), for Various Sample Sizes,

Ratios of Standard Deviations, and Significance Levels

N, =6, N, =8, N;= 10,

Distribution G /0> e N:=6 o N:=8 o N:=10
Weibull 1.0 009 002 010 002 009 002
041 021 050 024 052 026
093 068 105 076 105 080
1.1 009 002 010 002 009 002
41 025 050 027 052 028
093 075 105 .0RD 105 084
1.2 009 006 010 008 009 005
041 036 050 034 052 035
093 Ora 105 092 105 093
Exponential 1.0 N9 006 010 007 009 006
041 039 050 042 052 042
093 095 105 01 05 099
1.1 09 006 010 006 008 007
041 041 050 043 052 046
093 097 05 100 105 106
1.2 09 007 01n 008 009 008
04] 43 050 45 052 046
093 101 105 101 105 106
Lognormal 1.0 009 004 010 D04 D09 004
41 031 050 032 052 034
1193 084 105 LRE 105 090
1.1 009 003 010 005 09 004
041 033 050 034 052 034
093 086 105 D88 105 092
12 009 5 010 006 009 006
041 037 050 037 052 R0
093 092 105 091 105 098
Normal, ceiling at 5 1.0 D09 010 010 (1]10] 009 009
041 048 050 049 052 048
093 102 105 104 105 104
1.1 009 010 010 010 (09 010
D4 049 050 049 M52 049
093 105 105 104 105 106
1.2 009 011 010 011 009 011
04] 052 030 {050 052 051
0493 06 05 106 05 105

274




TABLE 4
Probability of Rejecting H, by Wilcoxon-Mann—Whitney Rank-Sum Test Using
Large-Sample Normal Approximation, for Various Sample Sizes, Ratios of Standard
Deviations, and Significance Levels

N,=20, N, =30, N, =60, N =9, N/ =120, N,=200

Distribution C/G: o N:=20 No=30 No=60 No=90 N,=120 N,=200
Normal 1.0 010 009 009 010 010 010 010
050 48 050 051 050 050 050
100 01 101 A01 A01 101 100
I.1 010 009 010 010 011 010 010
050 49 051 050 050 048 051
100 100 101 101 102 100 101
1.2 010 009 009 010 010 010 010
050 050 051 050 051 051 051
400 04 100 101 101 102 102
Exponential 1.0 010 009 009 011 010 010 010
030 049 49 050 051 050 050
100 102 100 099 101 100 100
| 010 11 012 017 020 023 035
050 056 060 070 081 090 118
OO A1l A15 129 145 158 196
1.2 010 015 019 031 046 059 106
(050 069 L85 J12 148 A77 266
00 132 149 190 237 273 379
Lognormal Lo 010 009 008 010 010 010 010
050 (49 048 050 049 049 050
100 102 098 101 (99 10 101
.1 010 012 018 022 030 036 (60
0350 059 068 (85 05 [22 174
100 119 126 153 179 202 271
1.2 010 020 029 59 090 125 231
050 88 10 173 236 299 452
100 A60 184 270 345 417 578
Gamma 1.0 010 009 009 009 010 011 010
050 049 049 (140 050 051 051
100 101 100 100 100 102 101
1.1 010 009 (111] 012 014 013 017
050 051 052 055 059 062 070
400 106 104 109 113 119 129
1.2 .010 012 012 016 020 023 36
{050 057 (60 071 080 {089 120
100 115 116 133 144 156 197
Power function 1.0 010 009 010 009 010 010 010
050 (149 51 050 049 050 050
106 103 (199 00 100 101 098
1.1 010 011 012 016 021 026 {038
(50 057 061 070 084 093 124
00 115 115 132 149 163 207

(continued)




TABLE 4 (Continued)

Ni=20, N;=30, N, =60, N, =90, N =120 N,=200
Distribution 3 o N:=20 N:=30 N;=60 N;=9%9 Ny= 120 N;=200

010 014 017 028 037 049 086

050 067 077 104 A28 155 224

00 130 140 174 210 242 328

Geometric 010 009 009 010 009 010 010
050 049 (49 050 049 (49 050

100 102 099 101 100 099 100

010 01 012 014 016 018 027

050 035 058 063 071 076 097

100 I AL A2 A33 A37 168

010 016 019 035 049 069 120

030 072 085 121 155 193 289

100 139 151 199 247 295 406

Weibull . 010 009 008 009 010 009 010
50 048 047 048 048 048 48

100 101 097 099 099 100 98

a1 046 073 175 278 303 650

050 156 210 372 S0R 631 842

00 253 315 494 634 740 907

010 106 173 399 605 757 947

050 275 377 632 809 904 986

100 396 495 740 880 945 994

Skewed 010 008 009 010 010 010 010
binomial, n = 050 049 050 051 050 049 050
20, p= .05 100 103 00 01 00 100 A00
010 020 027 045 D68 091 159

050 085 101 44 192 233 343

00 153 172 227 291 338 462

010 020 027 047 067 091 159

050 {085 102 J44 187 231 345

100 156 173 232 285 335 461

Asymmelric 01 009 010 009 010 010 010
bimadal 050 (049 050 050 050 0S80 049
100 A 100 101 099 100 100

010 009 010 010 011 010 012

050 052 052 053 051 052 056

00 106 02 Aos 102 103 109

010 009 011 011 012 013 016

050 052 54 055 059 062 071

100 106 105 08 A11 118 131

Normal, ceiling 010 D08 009 009 010 010 011
atl0o 050 049 050 50 050 051 052
100 102 100 099 101 0] 102

{continued)
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TABLE 4 (Continued)

Ny =20, N;=230, N, =60, N, =90, N,=120. Ny=200.
N

Distribution o0 o No=20 N;=30 N;=60 N;=9 N:i=120 =200
1.1 010 010 010 013 N5 017 022
050 053 054 060 067 07t {085
100 A08 107 116 A25 132 A51
1.2 010 011 D12 015 017 021 028
{050 054 058 066 072 079 01
100 110 13 125 134 143 J72
Normal, ceiling 1.0 010 009 009 010 010 010 010
aso 050 050 050 051 050 051 49
100 A4 A01 01 100 Aol 00
1.1 010 021 032 038 091 A28 228
050 091 113 175 234 295 447
060 167 89 269 342 A07 572
1.2 010 026 034 069 106 150 268
050 01 124 194 263 334 494
100 177 205 296 376 453 613
Truncated 1.0 010 010 009 D10 10 010 010
norimal 050 051 050 032 049 050 (48
(half-normal) 100 105 o0 A02 099 100 098
1.1 010 010 010 m2 013 013 016
050 051 051 058 059 063 068
00 105 104 11 14 18 127
1.2 010 011 013 015 019 023 033
050 D56 060 068 076 JOR7 A14
100 114 115 A28 140 A53 19]

the Wilcoxon statistic is nonparametric distribution free. This well-established pro-
tection of the significance level by the test under violation of normality is not related
tosample size and in factholds when sample sizes of treatment groups are unequal.

On the other hand, it is apparent from this data that the Wilcoxon-Mann-Whit-
ney test does not protect the significance level when variances are unequal. It is
widely believed that the test is robust to variance heterogeneity when sample sizes
are equal. For various skewed non-normal distributions, however, variance hetero-
geneity distorts the Type | error rates of the test even though sample sizes are equal.
In this study, the effect is obvious despite relatively small differences in variability
that typically would be regarded as unimportant. Itis difficult to say how much devi-
ation from the nominal significance level would be too large for the test to be consid-
ered robust, but for the parameters considered in this study, many deviations are far
above the conservative cutoff values recommended by Bradley (1978).

It is notable that the magnitude of this distortion is a function of sample size. In
circumstances where the large-sample, normal-approximation form of the
Wilcoxon-Mann-Whitney test is recommended, the change in the Type I error
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rate can be extreme, For several non-normal distributions, there is extensive infla-
tion if sample sizes are as large as 20 or 30, and ratios of standard deviations are 1.1
or 1.2, For these same distributions, the inflation exceeds all reasonable bounds
when sample sizes are still larger.

In statistical significance testing, it is generally believed that large samples are
desirable because the power of significance tests, both parametric and
nonparametric, is an increasing function of sample size. However, these results in-
dicate that increasing sample size can be counterproductive when assumptions of
normality and homogeneity of variance are violated together. As a result of sam-
pling error, it is possible for sample variances to be nearly equal or only slightly
different when population variances are substantially different. From sample data
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alone, it would be impossible to rule out slight differences in population variability
like those examined in this study. A researcher may be tempted to employ the
Wilcoxon—-Mann—Whitney test to counteract non-normality, erroneously believ-
ing that population variances are equal. In that scenario, a decision to employ
larger samples in hopes of increasing the power of a significance test could lead to
gross inflation of Type I error rates.

It is well known that neither the 7 test nor the Wilcoxon-Mann—Whitney test is
robust to unequal variances combined with unequal sample sizes. The main practi-
cal message of this study is that the nonparametric Wilcoxon test is vulnerable to
unequal variances even with equal sample sizes. Furthermore, slight differences
can be crucial, and the distortion becomes greater as sample size increases. For this
reason, the Wilcoxon test cannot be relied on as a nonparametric solution to
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non-normality when at the same time there is a suspicion of unequal variances. In
that case, other methods, such as the Welch (1938) test applied to the ranks of
scores (Zimmerman & Zumbo, 1993) or the robust rank test of Fligner and
Policello (1981), are recommended.
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