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ABSTRACT: This paper derives a formula to calculate the number of deaths required for a
proportional hazards regression model with a nonbinary covariate. The method does
not require assumptions about the distributions of survival time and predictor variables
other than proportional hazards. Simulations show that the censored observations do
not contribute to the power of the test in the proportional hazards model, a fact that
is well known for a binary covariate. This paper also provides a variance inflation factor
together with simulations for adjustment of sample size when additional covariates are
included in the model. Control Clin Trials 2000;21:552–560  Elsevier Science Inc. 2000
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INTRODUCTION

In survival analysis, the Cox proportional hazards (PH) regression model
assumes that the hazard function l(t) for the survival time T given the predictors
X1, X2, . . . , Xk has the following regression formulation:

log[l(t|X)/l0(t)] 5 u1X1 1 u2X2 1 . . . 1 ukXk

where l0(t) is the baseline hazard. The survival analysis allows the response,
the survival time variable t, to be censored. In the use of this model, one often
wishes to test the effect of a specific predictor, X1, possibly in the presence of
other predictors or covariates, on the response variable. The null hypothesis
on the parameter u1 is H0: [u1, u2, . . . , uk] 5 [0, u2, . . . , uk] tested against alternative
[u* u2, . . . , uk]. In the proportional hazards model, u1 represents the predicted
change in log hazards at one unit change in X1 when covariates X2 to Xk are
held constant.

When comparing two groups in a univariate model, the group indicator X1

is binary, and u1 5 logD is the log hazard ratio of the two groups. Cox proposed
testing H0 with the Rao-type statistic, also known as the score statistic [1]. When
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there is only one binary covariate X1, the score test is the same as the Mantel-
Haenszel test and the log-rank test if there are no ties in survival times. It is
known that the power of the log-rank test depends on the sample size only
through the number of deaths. This simplifies the sample-size formula. For
comparing two groups, Schoenfeld derived the following formula:

D 5 (Z12a 1 Z12b)2 [P(12P) (logD)2]21 (1)

where D is the total number of deaths, P is the proportion of the sample
assigned to the first treatment group, and Z12a and Z12b are standard normal
deviates at the desired one-sided significance level a and power 1 2 b, respec-
tively [2]. Formula (1) was designed for a randomized comparison of two groups
using survival analysis with covariates, although it applies to nonrandomized
comparisons as well. In addition to formula (1), there are other sample-size
formulas, such as Freedman’s and Lakatos’ formulas, proposed for the log-
rank test to compare two survival distributions [3, 4]. Zhen and Murphy derived
a formula for a nonbinary covariate assuming exponential survival time [5].
In this paper we derive a sample-size formula for a nonbinary covariate X1

without assuming exponential survival time by generalizing formula (1). How-
ever, in our experience, a nonbinary covariate occurs most often in a nonexperi-
mental context such as an epidemiologic study. In this context, one must often
adjust for other confounding covariates to appropriately model the effect of
X1, the covariate of greatest interest.

Schoenfeld extended the multivariate model power calculation for binary
X1 to the case that additional covariates X2 . . . Xk are included [2]. His argument
depends on the assumption that X1 is independent of X2 . . . Xk, as would
occur if X1 were randomly assigned in a controlled experiment. We show that
Schoenfeld’s argument also works when X1 is nonbinary and is independent
of X2 . . . Xk. This could be relevant in a randomized study if, for example, X1

records dose levels to which the study subjects are randomized. In epidemio-
logic studies, X1 is often a measure of a risk factor, such as numbers of cigarettes
smoked per day, of interest to the investigators, and X2 . . . Xk are possible
confounders such as age and sex. By definition, covariates X2 . . . Xk are corre-
lated with the main factor of interest, X1, and formula (1) doesn’t apply. We
describe a method for adjusting sample sizes to preserve power when X1 is
correlated with X2 . . . Xk.

SAMPLE-SIZE METHOD FOR NONBINARY COVARIATES

In a univariate model, without making assumptions about the distributions
of covariate X1 and survival time T, the total number of deaths required is
given by the following formula, derived in Appendix A:

D 5 (Z12a 1 Z12b)2 [s2 (logD)2]21 (2)

where s2 is the variance of X1 and logD 5 u* is the log hazards ratio associated
with a one-unit change in X1. Formula (2) is similar to formula (1) except that
the variance of X1, P(1 2 P) in formula (1) is now replaced by a more general
term, s2. The required sample size is then equal to the number of deaths divided
by the overall proportion of death. In practice, investigators may have a good
idea of the overall death rate. In clinical trials with specific numbers of years
of patient recruitment and follow-up, the overall death rate can also be approxi-
mately calculated [2, 5].
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In deriving formula (2), we assumed that either (1) X1 is the only covariate
and PH holds or (2) there are additional covariates, PH holds for the full
model with all covariates, and X1 is independent of other covariates. These
assumptions are likely to be justified in an experiment where X1 has been
randomized and the other covariates are introduced specifically to improve
the fit of the data to the PH assumption. In a later section, we relax the indepen-
dence assumption.

POWER SIMULATIONS (FOR A SIMPLE COVARIATE X1)

Formula (2) is based on asymptotic arguments, in the limit of small effect
size u*, for a proportional hazards model with a possibly nonbinary predictor.
In this section, these estimated sample sizes are compared with power simula-
tions. For each set of design parameters, enough simulations (6200, 3500, and
1000 for powers of 80, 90, and 95%, respectively) were generated to calculated
power, with simulation errors within 1%, using a published simulation program
[6]. The simulations of survival times use a simple random censoring pattern,
and the single predictor variable X1 has either a normal distribution N(2,1) or
a gamma distribution G(4, 0.5). The latter is used to get an idea of the robustness
of the results to non-normality in X1. Without loss of generality, the predictor
X1 in both distributions has a mean of 2 and variance of 1. The results of
simulations, tabulated in Table 1, indicate that formula (2) provides sample
sizes in most designs with either a normal or gamma variate, within 1% of the
expected power. The results also show that the power remains unchanged
when the number of deaths remains constant while the number of patients
entered varies.

EFFECT OF ADJUSTMENT FOR COVARIATES ON POWER

In randomized trials, the baseline variables have no population correlation
with the treatment variables. Therefore, the inclusion of baseline variables or
nonconfounding covariates in a correctly specified linear model usually im-
proves the precision of the estimate of the treatment parameter by reducing
the residual variance in the model. The adjustment for baseline variables in a
linear model thus increases the power of the analysis. The covariates also
adjust for chance confounding (despite random allocation of X1 the observed
conditional distribution of the other covariate depends on X1).

In nonlinear models like PH, adjusting for covariates such as gender, race,
or disease group may improve the fit of the data to the model. The hazard
functions of two treatment groups may not be proportional if the covariates
are not included in the model. For a conservative sample-size calculation, one
can use formula (2) in designing an experiment since the use of covariates in
the analysis can substantially increase power when the PH model holds in the
full model.

However, in epidemiologic studies or nonrandomized trials where X1 will
not usually be independent of X2 . . . Xk, the covariate adjustments necessary
for PH will not always increase the power. Note also that in this context u* is
the “correct” alternative for X1, the effect of X1 adjusted for the confounders.
Hsieh et al. [7–9] proposed increasing the sample size for linear regression,



Sample-Size for PH Regression Model 555

T
ab

le
1

Po
w

er
s

of
Sa

m
pl

e
Si

ze
s

C
al

cu
la

te
d

fr
om

Fo
rm

ul
a

(2
)

C
om

pa
re

d
w

it
h

Si
m

ul
at

io
ns

,O
ne

–S
id

ed
Si

gn
if

ic
an

t
L

ev
el

5%
E

xp
ec

te
d

Si
m

ul
at

ed
Po

w
er

(%
)

D
es

ig
n

D
ea

th
N

um
be

r
Po

w
er

N
um

be
r

of
Pa

ra
m

et
er

R
at

e
of

D
ea

th
s

Sa
m

pl
e

Si
ze

(%
)

Si
m

ul
at

io
ns

N
or

m
al

G
am

m
a

u
*

5
0.

2
0.

3
21

5
71

7
90

35
00

89
.1

6
0.

53
88

.5
6

0.
54

u
*

5
0.

2
0.

5
21

5
43

0
90

35
00

90
.6

6
0.

49
90

.7
6

0.
49

u
*

5
0.

2
1.

0
21

5
21

5
90

35
00

91
.2

6
0.

48
86

.7
6

0.
57

u
*

5
0.

35
0.

1
51

51
0

80
62

00
78

.1
6

0.
53

83
.8

6
0.

47
u
*

5
0.

35
0.

3
51

17
0

80
62

00
81

.3
6

0.
50

79
.2

6
0.

52
u
*

5
0.

35
0.

5
51

10
2

80
62

00
79

.8
6

0.
51

78
.8

6
0.

52
u
*

5
0.

35
1.

0
51

51
80

62
00

81
.3

6
0.

50
74

.5
6

0.
55

u
*

5
0.

35
1.

0
70

70
90

35
00

90
.2

6
0.

50
87

.0
6

0.
57

u
*

5
0.

35
1.

0
89

89
95

10
00

94
.3

6
0.

73
91

.0
6

0.
90

u
*

5
0.

50
0.

1
25

25
0

80
62

00
82

.0
6

0.
49

83
.7

6
0.

47
u
*

5
0.

50
0.

3
25

84
80

62
00

80
.5

6
0.

50
82

.3
6

0.
48

u
*

5
0.

50
0.

5
25

50
80

62
00

83
.1

6
0.

48
81

.1
6

0.
50

u
*

5
0.

50
1.

0
25

25
80

62
00

76
.2

6
0.

54
83

.0
6

0.
48

u
*

5
0.

50
1.

0
34

34
90

35
00

87
.0

6
0.

57
88

.1
6

0.
55

u
*

5
0.

50
1.

0
44

44
95

10
00

93
.7

6
0.

77
93

.3
6

0.
79



556 F.Y. Hsieh and P.W. Lavori

logistic regression, and Cox PH regression by a variance inflation factor when
covariates are included in the model. In this context, the use of covariates
(which are necessary for the model assumption to hold) increases the true
variance of the estimate of the parameter, and hence formula (2) may overesti-
mate the power. Robinson and Jewell showed that adjustment for covariates
in logistic regression increases the variance of the estimate of a parameter and
results in a loss of precision of the estimate [10]. However, they suggested that
when testing for a treatment effect in randomized studies, it is always more
efficient to adjust for covariates in the logistic model. Whitehead suggested
increasing sample size to preserve power when covariates are adjusted in
polytomous logistic regression with proportional odds model [11]. Ford et
al. showed that in an exponential regression model, inclusion of important
covariates can only increase the variance of the estimates of the covariates
already in the model [12]. Lagakos and Schoenfeld discussed the effects on
hazard ratios when the PH assumption no longer holds in a reduced model
[13]. Here we suppose that the PH assumption holds in the full model and
show that one can apply a variance inflation factor (VIF) to the estimate of
sample size obtained by using formula (2) as if the reduced model were correct,
and obtain good estimates of the true required number of deaths.

VARIANCE INFLATION FACTOR

In a regression model, the variance of the estimate b1 of the parameter u1 is
inversely related to the variance of the corresponding covariate X1. For example,
if we increase the scale of X1 by a factor of 10, the variance of X1 will increase
by 100 and the variance of b1 will decrease by 100. If covariates explain some
of the variance of X1, the same effect results. Let R be the multiple correlation
coefficient r1.23 . . . k relating X1 with X2, . . . , Xk. Then R2 is the proportion of
variance explained by the regression of X1 on X2, . . . , Xk. In a multiple regression
model with covariates X1, X2, . . . , Xk, the conditional variance of X1|X2, . . . ,
Xk is smaller than the marginal variance of X1 by a factor of 1 2 R2. Therefore
the variance of b1 estimated from the multiple regression model will increase
by a factor of 1/(1 2 R2). In multiple linear regression the variance inflation
factor can also be shown directly from the ratio

Vark(b1)/Var1(b*1 ) 5 1/(1 2 R2)

where Vark (b1) and Var1 (b*1 ) are the variances of the parameter estimate b1 and
b*1 obtained from multiple regression models with k and 1 covariates, respec-
tively [8]. In the PH context, to preserve the power we propose that the required
number of deaths be calculated as if there were only one predictor and then
inflated by the same proportion that the variance of the estimate of the effect
of the predictor has been inflated by the adjustment for the other covariates.
That is, D 5 D1/(1 2 R2), where we define 1/(1 2 R2) as the VIF and D1 is the
required number of deaths calculated from formula (2). In Appendix B, we
present simulations that allow u2 to vary from small to large and to be statisti-
cally significantly different from 0, and demonstrate that this only increases
the variation of the approximation.
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EXAMPLE

A multiple myeloma data set from an example in the SAS PHGLM procedure
is used to illustrate the sample-size calculation [14, 15]. In this data set, 65
patients were treated with alkylating agents and, during the study, 17 of the
65 survival times were censored. The data was fitted into a PH model to identify
which of the nine prognostic factors are significant predictors.

Let us assume that LOGBUN is the variable X1 of interest. The standard
deviation of LOGBUN is s 5 0.3126 and the R2 obtained from the regression
of X1 on X2, . . . , X9 is 0.1837. The overall death rate is 1 2 17/65 5 0.738.
Suppose one wanted to have 80% power with a one-sided significance level
of 5% to detect a log hazards ratio of logD 5 u* 5 1. By applying formula (2),
with no other covariates, the required number of deaths would be (1.645 1
0.842)2/(0.3126 3 1)2 5 64. Equivalently, a sample size of 64/0.738 5 87 is
needed. Now suppose that it was considered necessary to adjust for the other
covariates, perhaps because of confounding. The approximated VIF for the full
model obtained from 1/(1 2 r1.23 . . . 9

2) 5 1/(1 2 R2) is 1.225. The required total
sample size for a full model can be approximated by (87 3 1.225) 5 107.

DISCUSSION AND CONCLUSION

If the PH assumption holds with respect to the full model with k covariates,
it may no longer hold if some of the k covariates are left out of the model
[12]. In addition, the inclusion of confounding variables may be necessary on
scientific grounds to produce meaningful estimates of the effects of the covariate
X1. We assume that the model with k covariates is valid with a PH assumption,
and we would like to estimate the required sample size for this model. The
“naive” sample-size calculation begins with a reduced model with only one
covariate. We then inflate the sample size to the correct power for the model
with k covariates. We only use formula (2) as a start to the variance calculation
to estimate the power in the full model. The VIF is obtained from the multiple
correlation of X1 with X2, . . . , Xk, which will often be available from prior
studies, even when estimates of the parameters relating the covariates to sur-
vival are not available.

The proposed sample-size formula is useful for a nonrandomized study or
for a randomized study with a nonbinary predictor. This formula does not
assume anything about the distributions of the survival time and the covariates
other than proportional hazards. The simulations so far attempted show that
the power remains unchanged when the number of deaths or events remains
constant while the number of patients entered varies under random censoring.
In other words, the censored observations do not contribute to the power. The
simulations also show that the proposed formula provides sample sizes, in a
range of designs with either a normal or gamma variate, within 5% of the
expected power. In PH regression, the adjustment for covariates in epidemio-
logic analyses may result in a true precision of an estimate of the correct
parameter that is lower than naively estimated. We use simulation to show
the VIF for confounders with various effect in mortality (Appendix B). When
the coefficient of the confounder increases, the variation of the VIF approxima-
tions also increases. The simulations show that in general the proposed VIF
approximates the ratio of estimated variances well.



558 F.Y. Hsieh and P.W. Lavori

This work was supported by the Department of Veterans Affairs Cooperative Studies Program.
The authors wish to thank an associate editor for suggesting the formula to generate survival
times from bivariate normal variates.

REFERENCES
1. Miller RG Jr. Survival Analysis. New York: Wiley; 1981.
2. Schoenfeld DA. Sample-size formula for the proportional-hazards regression model.

Biometrics 1983;39:499–503.
3. Freedman LS. Tables of the number of patients required in clinical trials using the

logrank test. Stat Med 1982;1:121–129.
4. Lakatos E. Sample sizes based on the logrank statistics in complex clinical trials.

Biometrics 1988;44:229–241.
5. Zhen B, Murphy J. Sample size determination for an exponential survival model

with an unrestricted covariate. Stat Med 1994;13:391–397.
6. Akazawa K, Nakamura T, Moriguchi S, Shimada M, Nose Y. Simulation program

for estimating statistical power of Cox’s proportional hazards model assuming
no specific distribution for the survival time. Computer Methods and Programs in
Biomedicine 1991;35:203–212.

7. Hsieh FY. Sample size tables for logistic regression. Stat Med 1989;8:795–802.
8. Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for

linear and logistic regression. Stat Med 1998;17:1623–1634.
9. Hsieh FY, Lavori WP, Bloch DA. A Simple Method of Sample Size Calculation for

Multiple Linear, Logistic and Proportional Hazards Regressions. Presentation at
Workshop in Biostatistics, Division of Biostatistics, Stanford University, May 14,
1998.

10. Robinson LD, Jewell NP. Some surprising results about covariate adjustment in
logistic regression models. International Statistical Review 1991;58:227–240.

11. Whitehead J. Sample size calculation for ordered categorical data. Stat Med 1993;
12:2257–2271.

12. Ford IF, Norrie J, Ahmadi S. Model inconsistency, illustrated by the Cox proportional
hazards model. Stat Med 1995;14:735–746.

13. Lagakos SW, Schoenfeld DA. Properties of proportional-hazards scores tests under
misspecified regression models. Biometrics 1984;40:1037–1048.

14. SAS Institute Inc. SAS Technical Report P-229, SAS/STAT software: Changes and
Enhancements. Gary, NC, pp. 458–460, 1992.

15. Krall JM, Uthoff VA, Harley JB. A step-up procedure for selecting variables associ-
ated with survival. Biometrics 1975;31:49–57.

16. Tsiatis AA. A large sample study of Cox’ regression model. Ann Stat 1981;9:93–108.

APPENDIX A
To simplify the derivations, we first assume that there is only one predictor

in the model. The PH model assumes that the hazard function has the following
relationship

log[l(t|X)/l0(t)] 5 uX

To test the null hypothesis H0 : u 5 0, the score statistic for the Cox proportional
hazards model can be written in a simple form

S2 5 [SD(Xi 2 Ei)]2/SDVi

where i indexes the ordered death times; R(i) and D(i) identify the risk set and
the death set, respectively, at the ith death time; Ei 5 SR Xj/ni, Vi 5 SR (Xj 2
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Ei)2/ni, where ni 5 number of patients in R(i); and SD and SR are summations
over D(i) and R(i), respectively [1]. Under the null hypothesis, S2 is treated as
chi-square distributed with one degree of freedom, or equivalently, S is stan-
dard normal with mean 0 and variance 1. To follow the derivation of Schoenfeld
[2], we define

ei 5 [SRXj exp (uXj)]/[SR exp (uXj)]

The numerator of S can be written as

SD(Xi 2 Ei) 5 SD(Xi 2 ei) 1 SD(ei 2 Ei)

The first term is asymptotically normal [16] with mean 0 and variance SD SR

(Xj 2 ei)2/ni. Since u → 0, ei approaches Ei, and the variance SD SR (Xj 2 ei)2/ni

approaches SD Vi. The first term has an asymptotic normal distribution N(0,
SD Vi). Expanding the second term in a Taylor series about u 5 0, this term
approaches u [SD Vi]. By adding the two terms together and dividing by the
denominator [SD Vi]1/2, S is asymptotically normal with unit variance and mean
equal to D1/2 u s where s2 is the variance of X and D is the expected number
of deaths on the trial. Formula (2) follows this result.

To adjust for other covariates in an experiment where X is randomly as-
signed, we can assume that X is independent of other covariates and follow
the derivation of Schoenfeld to obtain formula (2). Without the independence
assumption, the estimate of the required number of deaths from formula (2)
is in general too small and should be increased by a variance inflation factor
for adjustment for other covariates (see text).

APPENDIX B

In a Cox proportional hazards regression model with two normally distrib-
uted covariates, we used simulations to demonstrate how well the ratio of the
estimated variances Var2 (b1)/Var1 (b*1 ) is approximated by 1/(1 2 r1 2

2) where
r1 2 is the Pearson correlation coefficient between X1 and X2.

The 100 computer simulations each used a sample size of 1000 generated
from SAS [14]. First we generated variates X1 and Z from a normal generator
RANNOR and variate U from a uniform generator RANUNI. We then obtained
variate X2 5 r1 2 * X1 1 (1 2 r1 2

2)1/2 * Z where the two bivariate normal variables
X1 and X2 had ten different correlation coefficients r1 2 ranging from 0.01 to
0.46. The survival times were generated from T 5 2log (U)/exp (b1X1 1 b2 X2)
where b1 had a fixed value at 0.01 and b2 had ten values ranging from 0.01 to
1.81. As a result, each of the 100 computer simulations consisted of a different
pair of r1 2 and b2. In each simulation, the survival time T was first regressed
with X1 alone and then with X1 and X2 using the SAS PHGLM procedure. The
ratio of the variances, Var2 (b1)/Var1 (b*1 ), obtained from the two PHGLM proce-
dures was compared with 1/(1 2 r1 2

2). The estimates of Var2 (b1)/Var1 (b*1 )
versus 1/(1 2 r1 2

2) from the simulations are plotted in Figure 1. The results
show that the estimates of 1/(1 2 r1 2

2) closely approximate the ratio Var2 (b1)/
Var1 (b*1 ). As expected, with the increases of the values of b2, the variation of
the approximation of the VIF to the variance ratio also increases (Figure 2).
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Figure 1 Results of 100 simulations: variance ratio versus VIF.

Figure 2 Difference of VIF and variance ratio versus b2.


