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Preface to the second edition

The aim of this book is to describe and illustrate the modelling approach to
the analysis of survival data. This new edition is designed to reflect current
statistical practice and take proper account of the widespread availability of
computer software for survival analysis. The material in each chapter has been
substantially revised and updated, and there has been some reorganisation of
the material on parametric models and model checking. The opportunity has
also been taken to provide a more detailed treatment of some topics, most
notably accelerated failure time models and the analysis of interval-censored
data. Over 80 references have been added to the sections at the end of each
chapter that give suggestions for further reading.

I hope that this comprehensive practical account of statistical methods for
use in modelling survival data will continue to meet the needs of statisticians
in the pharmaceutical industry and medical research institutes. Much of the
book should also be accessible to scientists who are analysing their own data,
with or without the support of a statistician. The text is also designed for
use by students following undergraduate and postgraduate courses in survival
analysis.

Although it is anticipated that computer software will be used for the anal-
ysis of survival data, sufficient methodological details have been given to pro-
vide a sound understanding of the nature of the techniques, and corresponding
computer output. The more technical sections continue to be indicated with
an asterisk.

The main part of the book is formed by Chapters 1 to 7. After an intro-
duction to survival analysis in Chapter 1, Chapter 2 describes methods for
summarising survival data, and for comparing two or more groups of survival
times. The modelling approach is introduced in Chapter 3, where the Cox
proportional hazards model is presented in detail. Since model checking is
such an important part of the modelling process, this chapter is followed by
a description of methods for checking the adequacy of a fitted Cox regres-
sion model. Parametric proportional hazards models are covered in Chapter
5, with an emphasis on the Weibull model for survival data. In Chapter 6,
parametric accelerated failure time models are described, and a detailed ac-
count is given of the log-linear representation of such models, used in most
computer software for parametric modelling. Model-checking diagnostics for
parametric models are then presented in Chapter 7.

The remaining chapters describe a number of extensions to the basic mod-
els. The use of time-dependent variables is covered in Chapter 8, which now
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incorporates material on estimating the baseline functions in the presence of
time-dependent variables. The analysis of interval-censored data is consid-
ered in Chapter 9, which gives details of how the Cox regression model, and
fully parametric models, can be used in modelling arbitrarily interval-censored
data. This is followed by a chapter on sample size requirements for survival
studies. Chapter 11 provides a brief introduction to a number of additional
topics, including non-proportional hazards, informative censoring, and frailty
modelling.

Since the first edition was published, computer software for survival analysis
has become a standard feature of many statistical packages. It is no longer
feasible to review all of these, and so Chapter 12 focuses on the use of SAS.
The output from this package is examined in detail, and the methods used
by the software to generate the output are summarised. Because output from
many other packages is quite similar, users of these packages should be able to
reconcile their output with that of SAS, and the many illustrative examples
in this book.

Some additional data sets that may be used to obtain a fuller appreciation
of the methodology, or as student exercises, are given in Appendix D. All
of the data sets used in this book are available in electronic form from the
publisher’s web site at

www.crcpress.com/e_products/downloads/

I am very grateful to all who took the trouble to let me know about errors
and ambiguities in the first edition. While these have been corrected, the
revision process may have led to the introduction of other errors. Naturally, I
would be very pleased to be informed of any that are detected.

Dave Collett
January 2003

Preface to the first edition

In the course of medical research, data on the time to the occurrence of 5
particular event, such as the death of a patient, are frequently encountered.
Such data are generically referred to as survival data. However, the event of
interest need not necessarily be death, but could, for example, be the end
of a period spent in remission from a disease, relief from symptoms, or the
recurrence of a particular condition. Although there are a number of books
devoted to the analysis of survival data, this book is designed to meet the need
for an intermediate text that emphasises the application of the methodology to
survival data arising from medical studies, which shows how widely available
computer software can be used in survival analysis, and which will appeal to
statisticians engaged in medical research.

This book is based on a course on the analysis of survival data from clinical
trials that has been given annually by the Statistical Services Centre of the
University of Reading, since 1986. Although it is written primarily for those
working as statisticians in the pharmaceutical industry and in medical re-
search institutes, much of the text should be accessible to numerate scientists
and clinicians working alongside statisticians on the analysis of their own data
sets. This book could also be used as a text to accompany undergraduate and
postgraduate courses on survival analysis in universities and other institutes
of higher education.

Many illustrative examples have been included in the text. In addition,
sufficient methodological development is given to enable the reader to un-
derstand the assumptions on which particular techniques are based, and to
help in adapting the methodology to deal with non-standard problems. A
number of data sets are based on fewer observations than would normally be
encountered in medical research programmes. This enables certain methods
of analysis to be illustrated more easily, and means that tabular presentations
of results are not too unwieldy. Naturally, the methods described in this book
can be applied without modification to larger data sets.

The book begins with an introduction to survival analysis, and a descrip-
tion of four studies in which survival data were obtained. These data sets,
and others besides, are then used to illustrate the techniques for analysing
survival data presented in subsequent chapters. In Chapter 2, some methods
for summarising survival data are introduced, and non-parametric methods
for comparing the survival times of patients in two or more treatment groups
are described.

A modelling approach to the analysis of survival data, based on the Cox
proportional hazards model, is presented in Chapter 3. Models which assume
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a Weibull distribution for survival times are developed in Chapter 4, and
Chapter 5 gives a comprehensive account of diagnostics that can be used to
check the adequacy of both the Cox and Weibull proportional hazards models.
Some other parametric models for survival data, including the accelerated
failure time model and the proportional odds model, are described in Chapter
6. This is followed by a chapter that shows how variables whose values change
over time can be incorporated in models for survival data.

When the survival times of patients are not known exactly, methods used
to analyse interval-censored data may be appropriate, and these are described
in Chapter 8. The important issue of sample size requirements for a survival
study is considered in Chapter 9, and this is followed by a chapter that contains
a brief discussion of some additional topics in the analysis of survival data.

In order to implement many of the techniques for analysing survival data,
appropriate computer software is needed. Accordingly, the final chapter of the
book contains details on the use of some widely available statistical packages
for survival analysis, particularly SAS, BMDP and SPSS. In this chapter, the
facilities for survival analysis in these three packages are summarised, and
illustrated using a particular data set.

Bibliographic notes and suggestions for further reading are given at the end
of each chapter, but so as not to interrupt the flow, references in the text itself
will be kept to a minimum. Some sections contain more mathematical details
than others, and these have been denoted with an asterisk. These sections can
be omitted without loss of continuity.

In writing this book, I have assumed that the reader has a basic knowledge
of statistical methods, and has some familiarity with topics such as linear
regression analysis and analysis of variance. Matrix algebra is used to give an
expression for the standard error of a percentile of the Weibull proportional
hazards model in Chapter 4 and Appendix B, and to express some diagnostics
for model checking in Chapter 5. However, an understanding of matrices is
not an essential requirement.

I have received help from a number of colleagues while writing this book.
Mike Patefield and Anne Whitehead provided constructive comments on ini-
tial drafts of some of the chapters, and Marilyn Collins provided valuable as-
sistance in writing the SAS macros described in Chapter 11. I would also like
to thank Doug Altman for his many comments and suggestions on the first six
chapters of the book. I owe a particular debt of gratitude to John Whitehead
for many helpful discussions and for his comments on several draft chapters.
In addition, the chapter on interval-censored survival data, and sections in
some of the other chapters, are based heavily on material prepared by John
for courses that he has given on survival analysis. However, I take full respon-
sibility for any errors in the text. Finally, I would again like to thank my wife
Janet for her support and encouragement over the period that this book was
written.

Dave Collett
October 1993

CHAPTER 1

Survival analysis

Survival analysis is the phrase used to describe the analysis of data in the
form of times from a well-defined time origin until the occurrence of some
particular event or end-point. In medical research, the time origin will often
correspond to the recruitment of an individual into an experimental study,
such as a clinical trial to compare two or more treatments. This in turn may
coincide with the diagnosis of a particular condition, the commencement of
a treatment regimen, or the occurrence of some adverse event. If the end-
point is the death of a patient, the resulting data are literally survival times.
However, data of a similar form can be obtained when the end-point is not
fatal, such as the relief of pain, or the recurrence of symptoms. In this case,
the observations are often referred to as time to event data. The methods
for analysing survival data that are presented in this book can be used when
the response variable is literally a survival time, but apply equally to data
on the time to other end-points. The methodology can also be applied to
data from other application areas, such as the survival times of animals in an
experimental study, the time taken by an individual to complete a task in a
psychological experiment, the storage times of seeds held in a seed bank, or
the lifetimes of industrial or electronic components. The focus of this book is
on the application of survival analysis to data arising from medical research,
and for this reason much of the general discussion will be phrased in terms of
the survival time of an individual patient from entry to a study until death.

1.1 Special features of survival data

We must first consider the reasons why survival data are not amenable to
standard statistical procedures used in data analysis. One reason is that sur-
vival data are generally not symmetrically distributed. Typically, a histogram
constructed from the survival times of a group of similar individuals will tend
to be positively skewed, that is, the histogram will have a longer “tail” to the
right of the interval that contains the largest number of observations. As a
consequence, it will not be reasonable to assume that data of this type have
a normal distribution. This difficulty could be resolved by first transforming
the data to give a more symmetric distribution, for example by taking log-
arithms. However, a more satisfactory approach is to adopt an alternative
distributional model for the original data.

The main feature of survival data that renders standard methods inappro-
priate is that survival times are frequently censored. The survival time of an
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individual is said to be censored when the end-point of interest has not been
observed for that individual. This may be because the data from a study are
to be analysed at a point in time when some individuals are still alive. Al-
ternatively, the survival status of an individual at the time of the analysis
might not be known because that individual has been lost to follow-up. As an
example, suppose that after being recruited to a clinical trial, a patient moves
to another part of the country, or to a different country, and can no longer
be traced. The only information available on the survival experience of that
patient is the last date on which he or she was known to be alive. This date
may well be the last time that the patient reported to a clinic for a regular
check-up.

An actual survival time can also be regarded as censored when death is from
a cause that is known to be unrelated to the treatment. However, it can be
difficult to be sure that the death is not related to a particular treatment that
the patient is receiving. For example, consider a patient in a clinical trial to
compare alternative therapies for prostatic cancer who experiences a fatal road
traffic accident. The accident could have resulted from an attack of dizziness,
which might be a side effect of the treatment to which that patient has been
assigned. If so, the death is not unrelated to the treatment. In circumstances
such as these, the survival time until death from all causes, or the time to
death from causes other than the primary condition for which the patient is
being treated, might also be subjected to a survival analysis.

In each of these situations, a patient who entered a study at time ¢y dies
at time ty + ¢t. However, ¢ is unknown, either because the individual is still
alive or because he or she has been lost to follow-up. If the individual was last
known to be alive at time ¢ + ¢, the time c is called a censored survival time.
This censoring occurs after the individual has been entered into a study, that
is, to the right of the last known survival time, and is therefore known as right
eensoring. The right-censored survival time is then less than the actual, but
unknown, survival time.

Another form of censoring is left censoring, which is encountered when the
actual survival time of an individual is less than that observed. To illustrate
this form of censoring, consider a study in which interest centres on the time
to recurrence of a particular cancer following surgical removal of the primary
tumour. Three months after their operation, the patients are examined to
determine if the cancer has recurred. At this time, some of the patients may
be found to have a recurrence. For such patients, the actual time to recurrence
is less than three months, and the recurrence times of these patients is left-
censored. Left censoring occurs far less commonly than right censoring, and
so the emphasis of this book will be on the analysis of right-censored survival
data.

Yet another type of censoring is interval censoring. Here, individuals are
known to have experienced an event within an interval of time. Consider
again the example concerning the time to recurrence of a tumour used in the
above discussion of left censoring. If a patient is observed to be free of the
disease at three months, but is found to have had a recurrence when examined
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six months after surgery, the actual recurrence time of that patient ig known
to be between three months and six months. The observed recurrence time is
then said to be interval-censored. We will return to interval censoring later,
in Chapter 9.

1.1.1 Patient time and study time

In a typical study, patients are not all recruited at exactly the same time, but
accrue over a period of months or even years. After recruitment, patients are
followed up until they die, or until a point in calendar time that marks the end
of the study, when the data are analysed. Although the actual survival times
will be observed for a number of patients, after recruitment some patients may
be lost to follow-up, while others will still be alive at the end of the study.
The calendar time period in which an individual is in the study is known as
the study time.

The study time for eight individuals in a clinical trial is illustrated diagram-
matically in Figure 1.1, in which the time of entry to the study is represented
by a “o”. Individuals 1, 4, 5 and 8 die (D) during the course of the study,
individuals 2 and 7 are lost to follow-up (L), and individuals 3 and 6 are still
alive (A) at the end of the observation period.

Patient

5] ~ap

End of recruitment End of study

Study time

Figure 1.1 Study time for eight patients in a survival study.

As far as each patient is concerned, the trial begins at some time fo- The
corresponding survival times for the eight individuals depicted in Figure 1.1
are shown in order in Figure 1.2. The period of time that a patient spends
in the study, measured from that patient’s time origin, is often referred to
as patient time. The period of time from the time origin to the death of a
patient (D) is then the survival time, and this is recorded for individuals 1, 4,
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5 and 8. The survival times of the remaining individuals are right-censored (C).

Patient

Patient time

Figure 1.2 Patient time for eight patients in a survival study.

In practice, the actual data recorded will be the date on which each indi-
vidual enters the study, and the date on which each individual dies or was last
known to be alive. The survival time in days, weeks or months, whichever is
the most appropriate, can then be calculated. Most computer software pack-
ages for survival analysis have facilities for performing this calculation from
input data in the form of dates.

An important assumption that will be made in the analysis of censored sur-
vival data is that the actual survival time of an individual, ¢, is independent
of any mechanism that causes that individual’s survival time to be censored
at time ¢, where ¢ < ¢. This means that if we consider a group of individ-
uals, all of whom have the same values of relevant prognostic variables, an
individual whose survival time is censored at time ¢ must be representative
of all other individuals in that group who have survived to that time. A pa-
tient whose survival time is censored will be representative of those at risk
at the censoring time if the censoring process operates randomly. Similarly,
when survival data are to be analysed at a predetermined point in calendar
time, or at a fixed interval of time after the time origin for each patient, the
prognosis for individuals who are still alive can be taken to be independent
of the censoring, so long as the time of analysis is specified before the data
are examined. However, this assumption cannot be made if, for example, the
survival time of an individual is censored through treatment being withdrawn
as a result of a deterioration in their physical condition. This type of censoring

‘is known as informative censoring. Great care should be taken to ensure that
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any censoring is non-informative, for otherwise the methods presented in thig
book for the analysis of survival data are no longer valid.

1.2 Some examples

In this section, the essential features of survival data are illustrated through a
number of examples. Data from these examples will then be used to illustrate
some of the statistical techniques presented in subsequent chapters.

Ezample 1.1 Time to discontinuation of the use of an IUD

In trials involving contraceptives, prevention of pregnancy is an obvious crite-
rion for acceptability. However, modern contraceptives have very low failure
rates, and so the occurrence of bleeding disturbances, such as amenorrhoes
(the prolonged absence of bleeding), irregular or prolonged bleeding, become
important in the evaluation of a particular method of contraception. To pro-
mote research into methods for analysing menstrual bleeding data from women
in contraceptive trials, the World Health Organisation has made available
data from clinical trials involving a number of different types of contraceptive
(WHO, 1987). Part of this data set relates to the time from which a woman
commences use of a particular method until discontinuation, with the discon-
tinuation reason being recorded when known. The data in Table 1.1 refer to
the number of weeks from the commencement of use of a particular type of
intrauterine device (IUD), known as the Multiload 250, until discontinuation
because of menstrual bleeding problems. Data are given for 18 women, all of
whom were aged between 18 and 35 years and who had experienced two pre-
vious pregnancies. Discontinuation times that are censored are labelled with
an asterisk.

Table 1.1 Time in weeks to discontinuation of the use of an IUD.

10 13* 18* 19 23* 30 36 38%  H4*
56* 59 75 93 97 104* 107  107* 107*

In this example, the time origin corresponds to the first day in which a
woman uses the IUD, and the end-point is discontinuation because of bleed-
ing problems. Some women in the study ceased using the IUD because of the
desire for pregnancy, or because they had no further need for a contracep-
tive, while others were simply lost to follow-up. These reasons account for the
censored discontinuation times of 13, 18, 23, 38, 54 and 56 weeks. The study
protocol called for the menstrual bleeding experience of each woman to be
documented for a period of two years from the time origin. For practical rea-
sons, each woman could not be examined exactly two years after recruitment
to determine if they were still using the IUD, and this is why there are three
discontinuation times greater than 104 weeks that are right-censored. '

One objective in an analysis of these data would be to summarise the dis‘Frl—
bution of discontinuation times. We might then wish to estimate the median
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time to discontinuation of the IUD, or the probability that a woman will stop
using the device after a given period of time. Indeed, a graph of this esti-
mated probability, as a function of time, will provide a useful summary of the
observed data.

Example 1.2 Prognosis for women with breast cancer
Breast cancer is one of the most common forms of cancer occurring in women
living in the Western world. However, the biological behaviour of the tumour
is unpredictable, and there is at present no reliable method for determining
whether or not a tumour is likely to have metastasised, or spread, to other
organs in the body. Around 80% of women presenting with primary breast
cancer are likely to have tumours that have already metastasised to other sites.
If these patients could be identified, adjunctive treatment could be focused
on them, while the remaining 20% could be reassured that their disease is
surgically curable. The most accurate assessment of the prognosis of a patient
is based on whether or not there is lymph node involvement. However, as
a result of the trend toward more conservative forms of breast surgery, this
indication will often be unknown. This has prompted research into alternative
procedures for predicting the survival prospects of breast cancer patients.

The aim of an investigation carried out at the Middlesex Hospital, and
documented in Leathem and Brooks (1987), was to evaluate a histochemical
marker that discriminates between primary breast cancer that has metasta-
sised and that which has not. The marker under study was a lectin from the
albumin gland of the Roman snail, Heliz pomatia, known as Heliz pomatia
agglutinin, or HPA. The marker binds to those breast cancer cells associ-
ated with metastasis to local lymph nodes, and the HPA stained cells can be
identified by microscopic examination. In order to investigate whether HPA
staining can be used to predict the survival experience of women who present
with breast cancer, a retrospective study was carried out, based on the records
of women who had received surgical treatment for breast cancer. Sections of
the tumours of these women were treated with HPA and each tumour was sub-
sequently classified as being positively or negatively stained, positive staining
corresponding to a tumour with the potential for metastasis. The study was
concluded in July 1987, when the survival times of those women who had died
of breast cancer were calculated. For those women whose survival status in
July 1987 was unknown, the time from surgery to the date on which they were
last known to be alive is regarded as a censored survival time. The survival
times of women who had died from causes other than breast cancer are also
regarded as right-censored. The data given in Table 1.2 refer to the survival
times in months of women who had received a simple or radical mastectomy
to treat a tumour of Grade II, III or IV, between January 1969 and December
1971. In the table, the survival times of each woman are classified according to
whether their tumour was positively or negatively stained. Censored survival
times are labelled with an asterisk.

In the analysis of the data from this study, we will be particularly interested
in whether or not there is a difference in the survival experience of the two
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Table 1.2 Survival times of women with
tumours that were negatively or positively
stained with HPA.

Negative staining Positive staining
23 5 68
47 8 71
69 10 76*
70%* 13 105%*
T1* 18 107*

100%* 24 109*
101* 26 113
148 26 116*
181 31 118
198* 35 143
208* 40 154%*
212* 41 162*
224% 48 188*
50 212%
59 217*
61 225%

groups of women. If there were evidence that those women with negative
HPA staining tended to live longer after surgery than those with a positive
staining, we would conclude that the prognosis for a breast cancer patient was
dependent on the result of the staining procedure.

Ezample 1.8 Survival of multiple myeloma patients

Multiple myeloma is a malignant disease characterised by the accumulation
of abnormal plasma cells, a type of white blood cell, in the bone marrow.
The proliferation of the abnormal plasma cells within the bone causes pain
and the destruction of bone tissue. Patients with multiple myeloma also ex-
perience anaemia, haemorrhages, recurrent infections and weakness. Unless
treated, the condition is invariably fatal. The aim of a study carried out.at
the Medical Center of the University of West Virginia, USA, was to examine
the association between the values of certain explanatory variables or covari-
ates and the survival time of patients. In the study, the primary response
variable was the time, in months, from diagnosis until death from multiple
myeloma.

The data in Table 1.3, which were obtained from Krall, Uthoff and Harley
(1975), relate to 48 patients, all of whom were aged between 50 and 80 years.
Some of these patients had not died by the time that the study was com-
pleted, and so these individuals contribute right-censored survival times. The
coding of the survival status of an individual in the table is such that zero
denotes a censored observation and unity death from multiple myeloma. At
the time of diagnosis, the values of a number of explanatory variables were
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recorded for each patient. These included the age of the patient in years, their
sex (1 = male, 2 = female), the levels of blood urea nitrogen ( Bun), serum cal-
cium (Ca) and haemoglobin (Hb), the percentage of plasma cells in the bone
marrow (Pcells) and an indicator variable (Protein) that denotes whether or
not Bence-Jones protein was present in the urine (0 = absent, 1 = present).

The main aim of an analysis of these data would be to investigate the effect
of the risk factors Bun, Ca, Hb, Pcells and Protein on the survival time of the
multiple myeloma patients. The effects of these risk factors may be modified
by the age or sex of a patient, and so the extent to which the relationship
between survival and the important risk factors is consistent for each sex and
for each of a number of age groups will also need to be studied.

Ezxample 1.4 Comparison of two treatments for prostatic cancer

A randomised controlled clinical trial to compare treatments for prostatic
cancer was begun in 1967 by the Veteran’s Administration Cooperative Uro-
logical Research Group. The trial was double blind and two of the treatments
used in the study were a placebo and 1.0 mg of diethylstilbestrol (DES). The
treatments were administered daily by mouth. The time origin of the study is
the date on which a patient was randomised to a treatment, and the end-point
is the death of the patient from prostatic cancer.

The full data set is given in Andrews and Herzberg (1985), but the data used
in this example are from patients presenting with Stage III cancer, that is, pa-
tients for whom there was evidence of a local extension of the tumour beyond
the prostatic capsule, but without elevated serum prostatic acid phosphatase.
Furthermore, the patients were those who had no history of cardiovascular
disease, had a normal ECG result at trial entry, and who were not confined
to bed during the daytime. In addition to recording the survival time of each
patient in the study, information was recorded on a number of other prognos-
tic factors. These included the age of the patient at trial entry, their serum
haemoglobin level in gm/100 ml, the size of their primary tumour in cm?, and
the value of a combined index of tumour stage and grade. This index is known
as the Gleason index; the more advanced the tumour, the greater the value
of the index.

Table 1.4 gives the data recorded for 38 patients, where the survival times
are given in months. The survival times of patients who died from other causes,
or who were lost during the follow-up process are regarded as censored. A
variable associated with the status of an individual at the end of the study
takes the value unity if the patient has died from prostatic cancer, and zero if
the survival time is right-censored. The variable associated with the treatment
group takes the value 2 when an individual is treated with DES and unity if
an individual is on the placebo treatment.

The main aim of this study is to determine the extent of any evidence that
patients treated with DES survive longer than those treated with the placebo.
Since the data on which this example is based are from a randomised trial, one
might expect that the distributions of the prognostic factors, that is the age
of patient, serum haemoglobin level, size of tumour and Gleason index, will

SOME EXAMPLES

Table 1.3 Survival times of patients in a study on multiple myeloma.

Patient Survival Status Age Sex Bun Ca Hb  Pcells Protein
number time

1 13 1 66 1 25 10 146 18 1

2 52 0 66 1 13 11 120 100 0

3 6 1 53 2 15 13 114 33 1

4 40 1 69 1 10 10 10.2 30 1

5 10 1 65 1 20 10 13.2 66 0

6 7 0 57 2 12 8 99 45 0

7 66 1 52 1 21 10 128 11 1

8 10 0 60 1 41 9 14.0 70 1

9 10 1 70 1 37 12 7.5 47 0
10 14 1 70 1 40 11 106 27 0
11 16 1 68 1 39 10 11.2 41 0
12 4 1 50 2 172 9 10.1 46 1
13 65 1 59 1 28 9 6.6 66 0
14 5 1 60 1 13 10 9.7 25 0
15 11 0 66 2 25 9 88 23 0
16 10 1 51 2 12 9 9.6 80 0
17 15 0 55 1 14 9 13.0 8 0
18 5 1 67 2 26 8 104 49 0
19 76 0 60 1 1212 140 9 0
20 56 0 66 1 18 11 125 90 0
21 88 1 63 1 21 9 14.0 42 1
22 24 1 67 1 10 10 124 44 0
23 51 1 60 2 10 10 10.1 45 1
24 4 1 74 1 48 9 6.5 54 0
25 40 0 72 1 57 9 128 28 1
26 8 1 55 1 83 12 8.2 55 0
27 18 1 51 1 12 15 144 100 0
28 5 1 70 2 130 8§ 10.2 23 0
29 16 1 53 1 17 9 10.0 28 0
30 50 1 74 1 37 13 17 11 1
31 40 1 70 2 14 9 5.0 22 0
32 1 1 67 1 165 10 94 90 0
33 36 1 63 1 40 9 11.0 16 1
34 5 1 77 1 23 8 9.0 29 0
35 10 1 61 1 13 10 14.0 19 0
36 91 1 58 2 27 11 110 26 1
37 18 0 69 2 21 10 10.8 33 0
38 1 1 57 1 20 9 5.1 100 1
39 18 0 59 2 21 10 13.0 100 0
40 6 1 61 2 11 10 5.1 100 0
41 1 1 75 1 56 12 11.3 18 0
42 23 1 56 2 20 9 146 3 0
43 15 1 62 2 21 10 8.8 5 0
44 18 1 60 2 18 9 7.5 85 1
45 12 0 71 2 46 9 4.9 62 0
46 12 1 60 2 6 10 5.5 25 0
47 17 1 65 2 28 8 7.5 8 0
48 3 0 59 1 90 10 10.2 6 1
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Table 1.4 Survival times of prostatic cancer patients in a clinical trial to compare

two treatments.

Patient ‘Treatment Survival Status  Age Serum Size of  Gleason

number time haem. tumour index

1 1 65 0 67 13.4 34 8
2 2 61 0 60 14.6 4 10
3 2 60 0 77 15.6 3 8
4 1 58 0 64 16.2 6 9
5 2 51 0 65 14.1 21 9
6 1 51 0 61 13.5 8 8
7 1 14 1 73 12.4 18 11
8 1 43 0 60 13.6 7 9
9 2 16 0 73 13.8 8 9
10 1 52 0 73 11.7 5 9
11 1 59 0 d 12.0 7 10
12 2 55 0 74 14.3 7 10
13 2 68 0 71 14.5 19 9
14 2 51 0 65 14.4 10 9
15 1 2 0 76 10.7 8 9
16 1 67 0 70 14.7 7 9
17 2 66 0 70 16.0 8 9
18 2 66 0 70 14.5 15 11
19 2 28 0 75 13.7 19 10
20 2 50 1 68 12.0 20 11
21 1 69 1 60 16.1 26 9
22 1 67 0 71 15.6 8 8
23 2 65 0 51 11.8 2 6
24 1 24 0 71 13.7 10 9
25 2 45 0 72 11.0 4 8
26 2 64 0 74 14.2 4 6
27 1 61 0 75 13.7 10 12
28 1 26 1 72 15.3 37 11
29 1 42 1 57 13.9 24 12
30 2 57 0 72 14.6 8 10
31 2 70 0 72 13.8 3 9
32 2 5 0 74 15.1 3 9
33 2 54 0 51 15.8 7 8
34 1 36 1 72 16.4 4 9
35 2 70 0 71 13.6 2 10
36 2 67 0 73 13.8 7 8
37 1 23 0 68 12.5 2 8
\ 38 1 62 0 63 13.2 3 8
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be similar over the patients in each of the two treatment groups. However, it
would not be wise to rely on this assumption. For example, it could turn out
that patients in the placebo group had larger tumours on average than those
in the group treated with DES. If patients with large tumours have a poorer
prognosis than those with small tumours, the size of the treatment effect would
be overestimated unless proper account was taken of the size of the tumour
in the analysis. Consequently, it will first be necessary to determine if any of
the covariates are related to survival time. If so, the effect of these variables
will need to be allowed for when comparing the survival experiences of the
patients in the two treatment groups.

1.3 Survivor function and hazard function

In summarising survival data, there are two functions of central interest,
namely the survivor function and the hazard function. These functions are
therefore defined in this first chapter.

The actual survival time of an individual, ¢, can be regarded as the value of
a variable, 7', which can take any non-negative value. The different values that
T can take have a probability distribution, and we call T' the random variable
associated with the survival time. Now suppose that the random variable
T has a probability distribution with underlying probability density function
f(t). The distribution function of T is then given by

F(t) = P(T < t) = /Ot ) du,

and represents the probability that the survival time is less than some value ¢.
The survivor function, S(¢), is defined to be the probability that the survival
time is greater than or equal to ¢, and so

St =P(T=t)=1-F(t). (1.1)

The survivor function can therefore be used to represent the probability that
an individual survives from the time origin to some time beyond ¢.

The hazard function is widely used to express the risk or hazard of death
at some time ¢, and is obtained from the probability that an individual dies
at time ¢, conditional on he or she having survived to that time. For a formal
definition of the hazard function, consider the probability that the random
variable associated with an individual’s survival time, 7', lies between ¢t and
t + dt, conditional on T being greater than or equal to ¢, written P(t < T <
t+ 6t | T > t). This conditional probability is then expressed as a probability
per unit time by dividing by the time interval, ¢, to give a rate. The hazard
function, h(t), is then the limiting value of this quantity, as 6t tends to zero,
so that

P(t<T<t+5tlT>t)}. (1.2)

h(t) = lim

( ) 5t—0 { ot
The function A(t) is also referred to as the hazard rate, the instantaneous death
rate, the intensity rate, or the force of mortality.
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From equation (1.2), h(t)dt is the approximate probability that an individ-
ual dies in the interval (¢,¢ + 6t), conditional on that person having survived
to time t. For example, if the survival time is measured in days, h(t) is the
approximate probability that an individual, who is alive on day ¢, dies in the
following day. For this reason, the hazard function is often simply interpreted
as the risk of death at time ¢.

From the definition of the hazard function in equation (1.2), we can ob-
tain some useful relationships between the survivor and hazard functions.
According to a standard result from probability theory, the probability of an
event A, conditional on the occurrence of an event B, is given by P(A|B) =
P(AB)/P(B), where P(AB) is the probability of the joint occurrence of A
and B. Using this result, the conditional probability in the definition of the
hazard function in equation (1.2) is

Pt<T <t+6t)
P(T > t) ’

which is equal to
F(t+6t) — F(t)

S(t) ’
where F(t) is the distribution function of 7. Then,

{F(t +6t) — F(¢) } Sit) .

h(t) = lim

8t—0 ot

Now,

6t§0 ot

is the definition of the derivative of F(t) with respect to ¢, which is f(t), and
S0

. { F(t+6t) — F(t) }

h(t) = % (1.3)
It then follows that q
h(t) = —a{log S(t)}, (1.4)
and so
S(t) = exp {~H ()}, (1.5)
where

H{t) = /O B du. (1.6)

The function H(t) features widely in survival analysis, and is called the inte-
grated or cumulative hazard. From equation (1.5), the cumulative hazard can
be obtained from the survivor function, since

H(t) = —log 5(¢). (1.7)

 In the analysis of survival data, the survivor function and hagard function
are estimated from the observed survival times. Methods of estimation that
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do not require the form of the probability density function of T" to be specified
are described in Chapters 2 and 3, while methods based on the assumption of
a particular survival time distribution are presented in Chapters 5 and 6.

1.4 Further reading

An introduction to the techniques used in the analysis of survival data is
included in a number of general books on statistics in medical research, such
as those of Altman (1991) and Armitage et al. (2001). Parmar and Machin
(1995) provide a practical guide to the analysis of survival data from clinical
trials, using non-technical language.

There a number of textbooks that provide an introduction to the meth-
ods of survival analysis, illustrated with practical examples. Lee and Wang
(2003) provides a broad coverage of topics with illustrations drawn from bi-
ology and medicine. Kleinbaum (1996) provides a self-learning text in two
column format, which, like the texts of Harris and Albert (1991) and Miller
(1998), emphasises non-parametric methods. Marubini and Valsecchi (1995)
describe the analysis of survival data from clinical trials and observational
studies. Hosmer and Lemeshow (1999) give a balanced account of survival
analysis, with excellent chapters on model development and the interpreta-
tion of the parameter estimates in a fitted model. Klein and Moeschberger
(1997) include many example data sets and exercises in their comprehensive
textbook. Applications of survival analysis in the analysis of epidemiological
data are described by Breslow and Day (1987) and Woodward (1999). Intro-
ductory texts that describe the application of survival analysis in other areas
include those of Elandt-Johnson and Johnson (1999), who focus on actuarial
applications, and Crowder et al. (1991) who provide a good introduction to
the analysis of reliabilty data.

Comprehensive accounts of the subject are given by Kalbfleisch and Prentice
(2002), Le (1987) and Lawless (2002). These books have been written for
the postgraduate statistician or research worker, and are usually regarded as
reference books rather than introductory texts. A concise review of survival
analysis is given in the research monograph of Cox and Oakes (1984), and in
the chapter devoted to this subject in Hinkley, Reid and Snell (1991).

The book by Hougaard (2000) on multivariate survival data incorporates
more advanced topics, after introductory chapters that covers the basic fea-
tures of survival analysis. Therneau and Grambsch (2000) base their presen-
tation of survival analysis on the counting process approach, leading to a
more mathematical development of the material. Smith (2002) describes how
a generalisation of least squares allows linear regression models to be used
in modelling censored data. Harrell (2001) gives details on many issues that
arise in the development of a statistical model not found in other texts, and
includes an extensive discussion of two case studies.



CHAPTER 2

Some non-parametric procedures

An initial step in the analysis of a set of survival data is to present numerical or
graphical summaries of the survival times for individuals in a particular group.
Such summaries may be of interest in their own right, or as a precursor to a
more detailed analysis of the data. Survival data are conveniently summarised
through estimates of the survivor function and hazard function. Methods for
estimating these functions from a single sample of survival data are described
in Sections 2.1 and 2.3. These methods are said to be non-parametric or
distribution-free, since they do not require specific assumptions to be made
about the underlying distribution of the survival times.

Once the estimated survivor function has been found, the median and other
percentiles of the distribution of survival times can be estimated, as shown
in Section 2.4. Numerical summaries of the data, derived on the basis of
assumptions about the probability distribution from which the data have been
obtained, will be considered later in Chapters 5 and 6.

When the survival times of two groups of patients are being compared, an
informal comparison of the survival experience of each group of individuals
can be made using the estimated survivor functions. However, there are more
formal procedures that enable two groups of survival data to be compared.
Two non-parametric procedures for comparing two or more groups of sur-
vival times, namely the log-rank test and the Wilcozon test, are described in
Section 2.6.

2.1 Estimating the survivor function

Suppose first that we have a single sample of survival times, where none of
the observations are censored. The survivor function S(¢), defined in equa-
tion (1.1), is the probability that an individual survives for a time greater
than or equal to ¢. This function can be estimated by the empirical survivor
function, given by

_ Number of individuals with survival times > ¢

S(t) = } 2.1
(*) Number of individuals in the data set (2.1)

Equivalently, S (t) = 1~F(t), where F(t) is the empirical distribution function,
that is, the ratio of the total number of individuals alive at time ¢ to the total
number of individuals in the study. Notice that the empirical survivor function
is equal to unity for values of ¢ before the first death time, and zero after the
final death time. A

The estimated survivor function S(t) is assumed to be constant between
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two adjacent death times, and so a plot of S (t) against t is a step-function.
The function decreases immediately after each observed survival time.

Ezample 2.1 Pulmonary metastasis

One complication in the management of patients with a malignant bone tu-
mour, or osteosarcoma, is that the tumour often spreads to the lungs. This
pulmonary metastasis is life-threatening. In a study concerned with the treat-
ment of pulmonary metastasis arising from osteosarcoma, Burdette and Gehan
(1970) give the following survival times, in months, of eleven male patients.

11 13 13 13 13 13 14 14 15 15 17

Using equation (2.1), the estimated values of the survivor function at times
11, 13, 14, 15 and 17 months are 1.000, 0.909, 0.455, 0.273, and 0.091. The
estimated value of the survivor function is unity from the time origin until 11
months, and zero after 17 months. A graph of the estimated survivor function
is given in Figure 2.1.
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Figure 2.1 Estimated survivor function for the data from Ezxample 2.1.

The method of estimating the survivor function illustrated in the above
example cannot be used when there are censored observations. The reason for
this is that the method does not allow information provided by an individual
whose survival time is censored before time t to be used in computing the
estimated survivor function at ¢. Non-parametric methods for estimating S(t),
which can be used in the presence of censored survival times, are described in
the following sections.
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2.1.1 Life-table estimate of the survivor function

The life-table estimate of the survivor function, also known as the Actuarial
estimate of survivor function, is obtained by first dividing the period of ob-
servation into a series of time intervals. These intervals need not necessarily
be of equal length, although they usually are. The number of intervals used
will depend on the number of individuals in the study, but would usually be
somewhere between 5 and 15.

Suppose that the jth of m such intervals, j = 1,2, ..., m, extends from time
t to t;,,, and let d; and ¢; denote the number of deaths and the number
of censored survival times, respectively, in this time interval. Also let n; be
the number of individuals who are alive, and therefore at risk of death, at
the start of the jth interval. We now make the assumption that the censoring
process is such that the censored survival times occur uniformly throughout
the jth interval, so that the average number of individuals who are at risk
during this interval is

n; =n; —c;/2. (2.2)
This assumption is sometimes known as the actuarial assumption.

In the jth interval, the probability of death can be estimated by d; /nz, S0
that the corresponding survival probability is (n; — d;)/n’;. Now consider the
probability that an individual survives beyond time ¢, k = 1,2,...,m, that
is, until some time after the start of the kth interval. This will be the product
of the probabilities that an individual survives beyond the start of the kth
interval and through each of the k — 1 preceding intervals, and so the life-table
estimate of the survivor function is given by

k / '
s =] (njn_ dﬂ) , (2.3)

j=1 J

for tj, <t < 1.y, k = 1,2,...,m. The estimated probability of surviving
until the start of the first interval, ¢, is of course unity, while the estimated
probability of surviving beyond t/,., is zero. A graphical estimate of the
survivor function will then be a step-function with constant values of the
function in each time interval.

Ezample 2.2 Survival of multiple myeloma patients

To illustrate the computation of the life-table estimate, consider the data on
the survival times of the 48 multiple myeloma patients given in Table 1.3. In
this illustration, the information collected on other explanatory variables for
each individual will be ignored.

The survival times are first grouped to give the number of patients who die,
d;, and the number who are censored, c;, in each of the first five years of the
study, and in the subsequent three-year period. The number at risk of death
at the start of each of these intervals, n;, is then computed, together with the
adjusted number at risk, n; Finally, the probability of survival through each
interval is estimated, from which the estimated survivor function is obtained
using equation (2.3). The calculations are shown in Table 2.1, in which the
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time period is given in months, and the interval that begins at time ¢, and
ends just before time ¢}, for k =1,2,...,m, is denoted #;—.

Table 2.1 Life-table estimate of the survivor function for the data from
Ezample 1.3.

Interval ~ Time period d; ¢ n;  n} (nf—d;)/n; S*(t)

1 0—- 16 4 48 46.0 0.6522 0.6522
2 12— 10 4 28 260 0.6154 0.4013
3 24~ 1 0 14 140 0.9286 0.3727
4 36— 3 1 13 125 0.7600 0.2832
5 48~ 2 2 9 8.0 0.7500 0.2124
6 60~ 4 1 5 4.5 0.1111 0.0236

A graph of the life-table estimate of the survivor function is shown in Fig-
ure 2.2.
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Figure 2.2 Life-table estimate of the survivor function.

. The.fF)rm of the estimated survivor function obtained using this method
is sensitive ‘FO the choice of the intervals used in its construction, just as the
shape of a histogram depends on the choice of the class intervals. On the other
hand, the life-table estimate is particularly well suited to situations in which
the actual death times are unknown, and the only available information is the
number of deaths and the number of censored observations that occur in a
series of consecutive time intervals. In practice, such interval-censored survival
data occur quite frequently.

When the actual survival times are known, the life-table estimate can still be
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used, as in Example 2.2, but the grouping of the survival times does result in
some loss of information. This is particularly so when the number of patients
is small, less than about 30, say.

2.1.2 Kaplan-Meier estimate of the survivor function

The first step in the analysis of ungrouped censored survival data is normally
to obtain the Kaplan-Meier estimate of the survivor function. This estimate
is therefore considered in some detail. To obtain the Kaplan-Meier estimate, a
series of time intervals is constructed, as for the life-table estimate. However,
each of these intervals is designed to be such that one death time is contained
in the interval, and this death time is taken to occur at the start of the interval.

As an illustration, suppose that t(;), £(2) and ¢(3y are three observed survival
times arranged in rank order, so that ¢(1) < t(z) < t(3), and that ¢ is a censored
survival time that falls between t(5) and #(3y. The constructed intervals then
begin at times (1), t(2y and ¢(3y, and each interval includes the one death time,
although there could be more than one individual who dies at any particular
death time. Notice that no interval begins at the censored time of c. The
situation is illustrated diagrammatically in Figure 2.3, in which D represents
a death and C a censored survival time. Notice that two individuals die at
t(1), one dies at {(2y, and three die at ?(s).

D
| D D C
|

|
to t) t2)

>

Time

Pl Belviv;
&

Figure 2.3 Construction of intervals used in the derivation of the Kaplan-Meier
estimate.

The time origin is denoted by tg, and so there is an initial period com-
mencing at to, which ends just before t(;), the time of the first death. This
means that the interval from to to t(;) will not include a death time. The
first constructed interval extends from ¢(1y to just before ¢y, and since the
second death time is at #(5), this interval includes the single death time at ¢(1).
The second interval begins at time t(5) and ends just before #(3), and includes
the death time at t(5) and the censored time c. There is also a third interval
beginning at #(3y, which contains the longest survival time, #(3).

In general, suppose that there are n individuals with observed survival times
t1,t2,...,t,. Some of these observations may be right-censored, and there may
also be more than one individual with the same observed survival time. We
therefore suppose that there are r death times amongst the individuals, where
7 < n. After arranging these death times in ascending order, the jth is denoted

Ly, for j =1,2,...,7, and so the r ordered death times are t(1) < (g) < --- <
t(ry- The number of individuals who are alive just before time ¢(;), including
those who are about to die at this time, will be denoted n;, for j = 1,2,...,r,

and d; will denote the number who die at this time. The time interval from
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t) — 0 to iy, where ¢ is an infinitesimal time interval, then includes one
death time. Since there are n; individuals who are alive just before £(;y and d;
deaths at t;), the probability that an individual dies during the interval from
t(;) — 0 to t;) is estimated by d;/n;. The corresponding estimated probability
of survival through that interval is then (n; — d;)/n;.

It sometimes happens that there are censored survival times that occur at
the same time as one or more deaths, so that a death time and a censored sur-
vival time appear to occur simultaneously. In this event, the censored survival
time is taken to occur immediately after the death time when computing the
values of the n;.

From the manner in which the time intervals are constructed, the interval
from t(;) to t(j41) — 6, the time immediately before the next death time,
contains no deaths. The probability of surviving from ;) to £¢ 1) — 9 is
therefore unity, and the joint probability of surviving from #(;) — ¢ to ¢(; and
from t(;) to t(;1) — 6 can be estimated by (n; —d;)/n;. In the limit, as § tends
to zero, (n; — d;)/n; becomes an estimate of the probability of surviving the
interval from ¢y to Z(j41)-

We now make the assumption that the deaths of the individuals in the sam-
ple occur independently of one another. Then, the estimated survivor func-
tion at any time, ¢, in the kth constructed time interval from ¢y to ¢(rr1),
k=1,2,...,r, where ¢,y is defined to be oo, will be the estimated prob-
ability of surviving beyond #y. This is actually the probability of surviving
through the interval from #(;) to ¢(z41), and all preceding intervals, and leads
to the Kaplan-Meier estimate of the survivor function, which is given by

S(t) = f[ (ﬁfn—‘j@-> , (2.4)

J=1

forty <t <tper, k=1,2,...,r, with S(t) =1fort < t(1), and where ¢(;, 1)
is taken to be co. Strictly speaking, if the largest observation is a censored

survival time, t*, say, S(t) is undefined for ¢ > ¢t*. On the other hand, if the
largest observed survival time, (,-), is an uncensored observation, n, = d,., and

so S(t) is zero for ¢ > t(ry. A plot of the Kaplan-Meier estimate of the survivor
function is a step-function, in which the estimated survival probabilities are
constant between adjacent death times and decrease at each death time.

Equation (2.4) shows that, as for the life-table estimate of the survivor
function in equation (2.3), the Kaplan-Meier estimate is formed as a product
of a series of estimated probabilities. In fact, the Kaplan-Meier estimate is
the limiting value of the life-table estimate in equation (2.3) as the number
of intervals tends to infinity and their width tends to zero. For this reason,
the Kaplan-Meier estimate is also known as the product-limit estimate of the
survivor function.

Note that if there are no censored survival times in the data set, n; —d; =

njy1, 5 =1,2,...,k, in equation (2.4), and on expanding the product we get
- n n
S(t) = "2 I8 o x TR (2.5)
71 n9 Nk
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This reduces to ng.1/n1, for k=1,2,...,7—1, with 5’(7‘) =1fort< t) and
S(t) =0 for t > t(,y. Now, n; is the number of individuals at risk just before
the first death time, which is the number of individuals in the sampl(;, and n X l

P AR Mgy

is the number of individuals with survival times greater than or equal to )
O lksy.

Consequently, in the absence of censoring, S(t) is simply the empirical survivor
function defined in equation (2.1). The Kaplan-Meier estimate is therefore a
generalisation of the empirical survivor function that accommodates censored
observations.

Ezample 2.3 Time to discontinuation of the use of an IUD

Data from 18 women on the time to discontinuation of the use of an TUD
were given in Table 1.1. For these data, the survivor function, S(t), represents
the probability that a woman discontinues the use of the contraceptive device
after any time ¢. The Kaplan-Meier estimate of the survivor function is readily
obtained using equation (2.4), and the required calculations are set out in

Table 2.2. The estimated survivor function, S(t), is plotted in Figure 2.4.

Table 2.2 Kaplan-Meier estimate of the survivor
function for the data from Ezample 1.1.

Time interval ny d;  (nj—dj)/n; S(t)

0- 18 0 1.0000 1.0000
10- 18 1 0.9444 0.9444
19- 15 1 0.9333 0.8815
30~ 13 1 0.9231 0.8137
36— 12 1 0.9167 0.7459
59— 8 1 0.8750 0.6526
75~ 7 1 0.8571 0.5594
93— 6 1 0.8333 0.4662
97— 5 1 0.8000 0.3729
107 3 1 0.6667 0.2486

Note that since the largest discontinuation time of 107 days is censored, S(t)
is not defined beyond t = 107.

2.1.83 Nelson-Aalen estimate of the survivor function

An alternative estimate of the survivor function, which is based on the indi-
vidual event times, is the Nelson-Aalen estimate, given by

k
S(t) = Hexp(—dj/n]-). (2.6)
j=1
This estimate can be obtained from an estimate of the cumulative hazard
function, as shown in Section 2.3.3. Moreover, the Kaplan-Meier estimate of
the survivor function can be regarded as an approximation to the Nelson-
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Figure 2.4 Kaplan-Meier estimate of the survivor function for the data from Fz-
ample 1.1.

Aalen estimate. To show this, we use the result that

x?  z8

o B

which is approximately equal to 1 — z when x is small. It then follows that
exp(—d;/n;) = 1—(d;/nj) = (nj—d;)/n;, so long as d; is small relative to n;,
which it will be except at the latest survival times. Consequently, the Kaplan-
Meier estimate, S(t), in equation (2.4), approximates the Nelson-Aalen esti-
mate, S(t), in equation (2.6).

The Nelson-Aalen estimate of the survivor function, also known as Alt-
shuler’s estimate, will always be greater than the Kaplan-Meier estimate at
any given time, since e™* > 1 — x, for all values of z. Although the Nelson-
Aalen estimate has been shown to perform better than the Kaplan-Meier
estimate in small samples, in many circumstances, the estimates will be very
similar, particularly at the earlier survival times. Since the Kaplan-Meier esti-
mate is a generalisation of the empirical survivor function, the latter estimate
has much to commend it.

ef=1—-z+

Ezxample 2.4 Time to discontinuation of the use of an IUD
The values shown in Table 2.2, which gives the Kaplan-Meier estimate of the
survivor function for the data on the time to discontinuation of the use of
an IUD, can be used to calculate the Nelson-Aalen estimate. This estimate is
shown in Table 2.3.

From this table we see that the Kaplan-Meier and Nelson-Aalen estimates
of the survivor function differ by less than 0.04. However, when we consider
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Table 2.3 Nelson-Aalen estimate of the
survivor function for the data from Ezam-
ple 1.1.

Time interval exp(—d;/n;) S(t)

0- 1.0000 1.0000
10~ 0.9460 0.9460
19— 0.9355 0.8850
30~ 0.9260 0.8194
36~ 0.9200 0.7539
59— 0.8825 0.6653
75— 0.8669 0.5768
93~ 0.8465 0.4882
97— 0.8187 0.3997

107 0.7165 0.2864

the precision of these estimates, which we do in Section 2.2, we see that a
difference of 0.04 is of no practical importance.

2.2 Standard error of the estimated survivor function

An essential aid to the interpretation of an estimate of any quantity is the
precision of the estimate, which is reflected in the standard error of the esti-
mate. This is defined to be the square root of the estimated variance of the
estimate, and is used in the construction of an interval estimate for a quan-
tity of interest. In this section, the standard error of estimates of the survivor
function are given.

Because the Kaplan-Meier estimate is the most important and widely used
estimate of the survivor function, the derivation of the standard error of S(t)
will be presented in detail in this section. The details of this derivation can
be omitted on a first reading.

2.2.1* Standard error of the Kaplan-Meier estimate

The Kaplan-Meier estimate of the survivor function for any value of ¢ in the
interval from () to t(x4+1) can be written as

k
S(t) = Hﬁj,

for k=1,2,...,r, where p; = (n;—d;)/n; is the estimated probability that an
individual survives through the time interval that begins at ¢(;),j = 1,2,...,r.
Taking logarithms,

k
log S(t) = Z log p;,
j=1
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and so the variance of log S(t) is given by

var {logS } Z var {logp;}. (2.7)

Now, the number of individuals who survive through the interval beginning
at t(;) can be assumed to have a binomial distribution with parameters n;
and p;, where p; is the true probability of survival through that interval. The
observed number who survive is n; — d;, and using the result that the variance
of a binomial random variable with parameters n, p is np(1 — p), the variance
of n; —d; is given by

var (n; — d;) = n;p;(1 — p;).
Since p; = (n; — d;)/n;, the variance of p; is var (n; — dj)/n?, that is, p; (1 —
p;)/nj. The variance of p; may then be estimated by
B (1 = p5)/ny. (2.8)

In order to obtain the variance of logp;, we make use of a general result
for the approximate variance of a function of a random variable. According to
this result, the variance of a function g(X) of the random variable X is given

by
v (g0} ~ { 40 var 0) 29)

This is known as the Taylor series approzimation to the variance of a function
of a random varla,ble Using equation (2.9), the approximate variance of log p D
is var (p,)/p? P, and using expression (2.8), the approximate estimated variance
of logp; is (1 — p;)/(n;p;), which on substitution for p;, reduces to

(2.10)

From equation (2.7),

var {IOgS } in (2.11)

j=1 il

and a further application of the result in equation (2.9) gives

var {log S'(t)} S [SA(lt)]z var {S’(t)},
so that
var {5(1)} ~ ($())? i nj_(mﬁ@ (2.12)

Finally, the standard error of the Kaplan-Meier estimate of the survivor func-
tion, defined to be the square root of the estimated variance of the estimate,
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is given by
k d 5
se {S(¢ } ~ St S E— , 2.13
{50} =~50 > ) (2.13)

for t(ry <t < t(gs1). This result is known as Greenwood’s formula.
If there are no censored survival times, n; —d; = n;+1, and expression (2.10)
becomes (n; — njy1)/njn 1. Now,

k k
ng =Myl ( 1 1 ) N Mgyl
§ : - E - ] — B
-1 \" j N1Mg+1

= Wi+l — j+1 T

which can be written as .
1-5(t)
s S(t) ’

since S'(t) = npp1/m for toy <t <tgar), E=1,2,...,
of censoring. Hence, from equation (2.12), the estimated variance of S(t) is
S()[1 — S(t)]/n1. This is an estimate of the variance of the empirical sur-
vivor function, given in equation (2.1), on the assumption that the number
of individuals at risk at time t has a binomial distribution with parameters

nl,S(t)

7 — 1, in the absence

2.2.2* Standard error of the life-table and Nelson-Aalen estimates

The life-table estimate of the survivor function is similar in form to the
Kaplan-Meier estimate, and so the standard error of this estimator is ob-
tained in & similar manner. The standard error of the life-table estimate is
given by

k 2
d.
* ~ §* S A 2.14
s (SO}~ S" O D i =gy ( (2.14)
j=1 7 J
in the notation of Section 2.1.1.
The standard error of the Nelson-Aalen estimator is

Se{g } i_g : (2.15)

although other expressions have been proposed.

2.2.8 Confidence intervals for values of the survivor function

Once the standard error of an estimate of the survivor function has been
calculated, a confidence interval for the corresponding value of the survivor
function, at a given time %, can be found. A confidence interval is an interval
estimate of the survivor function, and is the interval which is such that there is
a prescribed probability that the value of the true survivor function is included
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within it. The intervals constructed in this manner are sometimes referred to
as pointwise confidence intervals, since they apply to a specific survival time.

A confidence interval for the true value of the survivor function at a given
time ¢ is obtained by assuming that the estimated value of the survivor func-
tion at ¢ is normally distributed with mean S(¢) and estimated variance
given by equation (2.12). The interval is computed from percentage points
of the standard normal distribution. Thus, if 7 is a random variable that
has a standard normal distribution, the upper (one-sided) a/2-point, or the
two-sided a-point, of this distribution is that value z,/o which is such that
P(Z > z,;2) = a/2. This probability is the area under the standard normal
curve to the right of z,/s, as illustrated in Figure 2.5. For example, the two-
sided 5% and 1% points of the standard normal distribution, zg.go5 and zg.gos,
are 1.96 and 2.58, respectively.

al2 a2

“Zaj2 0 Zq/2
Value of z

Figure 2.5 Upper and lower a/2-points of the standard normal distribution.

A 100(1 — «)% confidence interval for S(t), for a given value of ¢, is the
interval from S(t) — Zo )2 S€ {S(t)} to S(t) + 242 s€ {8()}, where se {S(t)} is
found from equation (2.13). These intervals for S(¢) can be superimposed on
a graph of the estimated survivor function, as shown in Example 2.5.

One difficulty with this procedure arises from the fact that the confidence
intervals are symmetric. When the estimated survivor function is close to
zero or unity, symmetric intervals are inappropriate, since they can lead to
confidence limits for the survivor function that lie outside the interval (0,1).
A pragmatic solution to this problem is to replace any limit that is greater
than unity by 1.0, and any limit that is less than zero by 0.0.

An alternative procedure is to transform S(¢) to a value in the range
(~00,00), and obtain a confidence interval for the transformed value. The
resulting confidence limits are then back-transformed to give a confidence
interval for S(t) itself. Possible transformations are the logistic transforma-
tion, log[S(t)/{1 — S(¢)}], and the complementary log-log transformation,
log{—1log S(t)}. Note that from equation (1.7), the latter quantity is the
logarithm of the cumulative hazard function. In either case, the standard
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error of the transformed value of § (t) can be found using the approximation
in equation (2.9).

For example, the variance of log{— log S ()} is obtained from the expression
for var {log S(t)} in equation (2.11). Using the general result in equation (2.9),

var {log(—X)} = % var (X),

and setting X = log S(t) gives

var |log{—log S*(t)}} ~ {logé(t)}Q :

k
Jj=

d;
< nj(n; —d;)

The standard error of log{— log S (t)} is the square root of this quantity. This
leads to 100(1 — )% limits of the form

3 (t)explEza/2 se{log~log SN,

where z, /7 is the upper « /2-point of the standard normal distribution.

A further problem is that in the tails of the distribution of the survival
times, that is, when § (t) is close to zero or unity, the variance of S(t) obtained
using Greenwood’s formula can underestimate the actual variance. In these
circumstances, an alternative expression for the standard error of S (t) may
be used. Peto et al. (1977) propose that the standard error of S(¢) should be
obtained from the equation

se (314} = SIS0

for t(py <t <tpyr), k=1,2,...,7, where S‘(t) is the Kaplan-Meier estimate
of S(t) and ny, is the number of individuals at risk at ¢(zy, the start of the kth
constructed time interval. .

This expression for the standard error of S(t) is conservative, in the sense
that the standard errors obtained will tend to be larger than they ought to
be. For this reason, the Greenwood estimate is recommended for general use.

Example 2.5 Time to discontinuation of the use of an IUD

The standard error of the estimated survivor function, and 95% confidence
limits for the corresponding true value of the function, for the data from
Example 1.1 on the times to discontinuation of use of an IUD, are given in
Table 2.4. In this table, confidence limits outside the range (0,1) have been
replaced by zero or unity.

From this table we see that in general the standard error of the estimated
survivor function increases with the discontinuation time. The reason for this
is that estimates of the survivor function at later times are based on fewer in-
dividuals. A graph of the estimated survivor function, with the 95% confidence
limits shown as dashed lines, is given in Figure 2.6.

It is important to observe that the confidence limits plotted on such a
graph are only valid for any given time. Different methods are needed to
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Table 2.4 Standard error of S(t) and confidence intervals for S(t)
for the data from Ezample 1.1.

Time interval  S(2) se{5(t)} 95% confidence interval
0- 1.0000 0.0000
10- 0.9444 0.0540 (0.839, 1.000)
19- 0.8815 0.0790 (0.727, 1.000)
30~ 08137  0.0978 (0.622, 1.000)
36— 0.7459 0.1107 (0.529, 0.963)
59— 0.6526  0.1303 (0.397, 0.908)
75— 0.5594 0.1412 (0.283, 0.836)
93— 0.4662 0.1452 (0.182, 0.751)
97— 0.3729 0.1430 (0.093, 0.653)
107 02486  0.1392 (0.000, 0.522)

Estimated survivor function

0.2

0.0 -J

T T T T T

0 20 40 60 80 100 120

Discontinuation time

Figure 2.6 Estimated survivor function and 95% confidence limits for S(t).

produce confidence bands that are such that there is a given probability, such
as 0.95, that the survivor function is contained in the band for all values of .
These bands will tend to be wider than the band formed from the pointwise
confidence limits. Details will not be included, but references to these methods
are given in the final section of this chapter. Notice also that the width of these
intervals is very much greater than the difference between the Kaplan-Meier
and Nelson-Aalen estimates of the survivor function, shown in Tables 2.9
and 2.3. Similar calculations lead to confidence limits based on life-table and
Nelson-Aalen estimates of the survivor function.
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2.3 Estimating the hazard function

A single sample of survival data may also be summarised through the hazard
function, which shows the dependence of the instantaneous risk of death on
time. There are a number of ways of estimating this function, two of which
are described in this section.

2.8.1 Life-table estimate of the hazard function

Suppose that the observed survival times have been grouped into a series of
m intervals, as in the construction of the life-table estimate of the survivor
function. An appropriate estimate of the average hazard of death per unit
time over each interval is the observed number of deaths in that interval,
divided by the average time survived in that interval. This latter quantity is
the average number of persons at risk in the interval, multiplied by the length
of the interval. Let the number of deaths in the jth time interval be d;, j =
1,2,...,m, and suppose that n; is the average number of individuals at risk
of death in that interval, where n; is given by equation (2.2). Assuming that
the death rate is constant during the jth interval, the average time survived
in that interval is (n} —d;/2)7;, where 7; is the length of the jth time interval.
The life-table estimate of the hazard function in the jth time interval is then
given by

d;
(n; —d;/2)7;’
for ¢ <t <ti.y,j=12,...,m, so that h” (t) is a step-function.
The asymptotic standard error of this estimate has been shown by Gehan
(1969) to be given by

R*(t) =

s ) = VO

and confidence intervals for the corresponding true hazard over each of the m
time intervals can be obtained in the manner described in Section 2.2.3.

Ezample 2.6 Survival of multiple myeloma patients

The life-table estimate of the survivor function for the data from Example 1.3
on the survival times of 48 multiple myeloma patients was given in Table 2.1.
Using the same time intervals as were used in Example 2.2, calculations leading
to the life-table estimate of the hazard function are given in Table 2.5.

The estimated hazard function is plotted as a step-function in Figure 2.7.
The general pattern is for the hazard to remain roughly constant over the
first two years from diagnosis, after which time it declines and then increases
gradually. However, some caution is needed in interpreting this estimate, as
there are few deaths two years after diagnosis.
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Table 2.5 Life-table estimate of the haz-
ard function for the data from Ezrample
1.3.

Time period 7, d; nj h*(t)

0- 1216 46.0 0.0351
12— 12 10 26.0 0.0397
24~ 12 1 14.0 0.0062
36— 12 3 125 0.0227
48— 12 2 8.0 0.0238
60— 36 4 4.5 0.0444
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f‘iégure 2.7 Life-table estimate of the hazard function for the data from Ezample

2.3.2 Kaplan-Meier type estimate

A natural way of estimating the hazard function for unground survival data
18 to take -the ratio of the number of deaths at a given death time to the
ilglrélber of individuals at risk at that time. If the hazard function is assumed
- fsui(:initant betweejn.SL.lccessive defmth times, the hazard per unit time can
ot .thydfurthel.r dividing by the time interval. Thus if there are d; deaths
hazard]fu .eath tlme,. tG), 7 = 1,2,...,r, and n, at risk at time ¢(;), the
nction in the interval from ¢(;) to t(j+1) can be estimated by

ht) = % (2.16)

2
n;Ty

ESTIMATING THE HAZARD FUNCTION 31

for t(;) <t <t(41), where 7; = t(;41) — t(;). Notice that it is not possible to
use equation (2.16) to estimate the hazard in the interval that begins at the
final death time, since this interval is open-ended.

The estimate in equation (2.16) is referred to as a Kaplan-Meier type esti-
mate, because the estimated survivor function derived from it is the Kaplan-
Meier estimate. To show this, note that since fz(t), tg) <t < tGtn, is an
estimate of the risk of death per unit time in the jth interval, the probabil-
ity of death in that interval is A(t)r;, that is, d;/n;. Hence an estimate of
the corresponding survival probability in that interval is 1 — (d;/n;), and the
estimated survivor function is as given by equation (2.4).

The approximate standard error of fz(t) can be found from the variance of d;,
which, following Section 2.2.1, may be assumed to have a binomial distribution
with parameters n; and p;, where p; is the probability of death in the interval
of length 7. Consequently, var (d;) = n;p;(1—p;), and estimating p; by d;/n;
gives

? ; nj —d;
se {h(t)} = h(t)\/< ned; ) .
However, when d; is small, confidence intervals constructed using this stan-
dard error will be too wide to be of practical use.

Ezxample 2.7 Time to discontinuation of the use of an IUD

Consider again the data on the time to discontinuation of the use of an TUD
for 18 women, given in Example 1.1. The Kaplan-Meier estimate of the sur-
vivor function for these data was given in Table 2.2, and Table 2.6 gives the
corresponding Kaplan-Meier type estimate of the hazard function, computed
from equation (2.16). The approximate standard errors of A(t) are also given.

Table 2.6 Kaplan-Meier type estimate of the hazard
function for the data from Example 1.1.

Time interval 75 n; d;  h(t) se {h(t)}

0- 10 18 0 0.0000 -
10— 9 18 1 0.0062 0.0060
19— 11 15 1 0.0061 0.0059
30~ 6 13 1 0.0128 0.0123
36— 23 12 1 0.0036 0.0035
59— 16 8 1 0.0078 0.0073
75— 18 7 1 0.0079 0.0073
93— 4 6 1 0.0417 0.0380
97— 10 5 1 0.0200 0.0179

Figure 2.8 shows a plot of the estimated hazard function. From this figure,
there is some evidence that the longer the IUD is used, the greater is the risk of -
discontinuation, but the picture is not very clear. The approximate standard
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Figure 2.8 Kaplan-Meier type estimate of the hazard function for the data from
Ezample 1.1.

errors of the estimated hazard function at different times are of little help in
interpreting this plot.

In practice, estimates of the hazard function obtained in this way will often
tend to be rather irregular. For this reason, plots of the hazard function may be
“smoothed”, so that any pattern can be seen more clearly. There are a number
of ways of smoothing the hazard function, that lead to a weighted average of
values of the estimated hazard h(t) at death times in the neighbourhood of
t. For example, a kernel smoothed estimate of the hazard function, based on
the r ordered death times, ¢(1),%(2),---,%(r), With d; deaths and n; at risk at
time £(;), can be found from

r t—tin\°| 4
Tpy — p—1 _ () J
h'(t) =b }:1 0.75 {1 ( 5 ) } n;’

where the value of b needs to be chosen. The function h'(t) is defined for
all values of ¢ in the interval from b to f¢.y — b, where f(,y is the greatest
death time. For any value of ¢ in this interval, the death times in the interval
(t—b,t+b) will contribute to the weighted average. The parameter b is known
as the bandwidth and its value controls the shape of the plot; the larger the
value of b, the greater the degree of smoothing. There are formulae that lead to
“optimal” values of b, but these tend to be rather cumbersome. Fuller details
can be found in the references provided in the final section of this chapter.
In this book, the use of a modelling approach to the analysis of survival data
is advocated, and so model-based estimates of the hazard function will be
considered in subsequent chapters.
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2.8.8 Estimating the cumulative hazard function

The cumulative hazard function is important in the identification of models
for survival data, as will be seen later in Sections 4.4 and 5.2. In addition,
since the derivative of the cumulative hazard function is the hazard function
itself, the slope of the cumulative hazard function provides information about
the shape of the underlying hazard function. In particular, a linear cumulative
hazard function over some time interval suggests that the hazard is constant
over this interval. Accordingly, methods that can be used to estimate this
function will now be described.

The cumulative hazard at time ¢, H(t), was defined in equation (1.6) to
be the integral of the hazard function, but is more conveniently found using
equation (1.7). According to this result, H(t) = —log S(t), and so if S(t) is
the Kaplan-Meier estimate of the survivor function, H(t) = —log S(¢) is an
appropriate estimate of the cumulative hazard to time t.

Now, using equation (2.4),

k
- n; — d;
A0 = - >0 (M%),
7=1 ’

for t) <t < tayr), k= 1,2,...,7, and (1), 82),...,t() are the r ordered
death times, with ¢, ) = oo.

If the Nelson-Aalen estimate of the survivor function is used, the estimated
cumulative hazard function, H(t) = —log S(t), is given by

This is the cumulative sum of the estimated probabilities of death from the
first to the kth time interval, k¥ = 1,2,...,7. This quantity therefore has
immediate intuitive appeal as an estimate of the cumulative hazard.

An estimate of the cumulative hazard function also leads to an estimate
of the corresponding hazard function, since the differences between adjacent
values of the estimated cumulative hazard function provide estimates of the
underlying hazard, after dividing by the time interval. In particular, differ-
ences in adjacent values of the Nelson-Aalen estimate of the cumulative hazard
lead directly to the hazard function estimate in Section 2.3.2.

2.4 Estimating the median and percentiles of survival times

Since the distribution of survival times tends to be positively skew, the median
is the preferred summary measure of the location of the distribution. Once
the survivor function has been estimated, it is straightforward to obtain an
estimate of the median survival time. This is the time beyond which 50% of
the individuals in the population under study are expected to survive, and is
given by that value #(50) which is such that S{¢(50)} = 0.5.

Because the non-parametric estimates of S(¢) are step-functions, it will
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not usually be possible to realise an estimated survival time that makes the
survivor function exactly equal to 0.5. Instead, the estimated median survival
time, £(50), is defined to be the smallest observed survival time for which the
value of the estimated survivor function is less than 0.5.

In mathematical terms,

£(50) = min{t; | S(t;) < 0.5},

where ¢; is the observed survival time for the ith individual, 2 = 1,2,...,n.
Since the estimated survivor function only changes at a death time, this is
equivalent to the definition

£(50) = min{t;) | S(t() < 0.5},

where ¢(;y is the jth ordered death time, 7 =1,2,...,7.

In the particular case where the estimated survivor function is exactly equal
to 0.5 for values of ¢ in the interval from ¢y to ¢(; 11y, the median is taken to
be the half-way point in this interval, that is (¢¢;) +t(11))/2.

In the situation where there are no censored survival times, the estimated
median survival time will be the smallest time beyond which 50% of the
individuals in the sample survive.

Ezxzample 2.8 Time to discontinuation of the use of an IUD

The Kaplan-Meier estimate of the survivor function for the data from Ex-
ample 1.1 on the time to discontinuation of the use of an IUD was given in
Table 2.2. The estimated survivor function, S (t), for these data was shown in
Figure 2.4. From the estimated survivor function, the smallest discontinuation
time beyond which the estimated probability of discontinuation is less than
0.5 is 93 weeks. This is therefore the estimated median time to discontinuation
of the IUD for this group of women.

A similar procedure to that described above can be used to estimate other
percentiles of the distribution of survival times. The pth percentile of the
distribution of survival times is defined to be the value t(p) which is such
that F'{t(p)} = p/100. In terms of the survivor function, t(p) is such that
S{t(p)} =1 — (p/100), so that for example the 10th and 90th percentiles are
given by

S{H10)} = 0.9, S{t(90)} = 0.1,

respectively. Using the estimated survivor function, the estimated pth per-
centile is the smallest observed survival time, (p), for which S{{(p)} < 1 —
(p/100).

It sometimes happens that the estimated survivor function is greater than
0.5 for all values of t. In such cases, the median survival time cannot be
estimated. It would then be natural to summarise the data in terms of other
percentiles of the distribution of survival times, or the estimated survival
probabilities at particular time points.

Estimates of the dispersion of a sample of survival data are not widely used,
but should such an estimate be required, the semi-interquartile range (SIQR)
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can be calculated. This is defined to be half the difference between the 75th
and 25th percentiles of the distribution of survival times. Hence,

SIQR = ; {£(75) — 1(25)}

where £(25) and #(75) are the 25th and 75th percentiles of the survival time
distribution. These two percentiles are also known as the first and third quar-
tiles, respectively. The corresponding sample-based estimate of the SIQR is
{#(75) — £(25)}/2. Like the variance, the larger the value of the SIQR, the
more dispersed is the survival time distribution.

Example 2.9 Time to discontinuation of the use of an IUD

From the Kaplan-Meier estimate of the survivor function for the data from
Example 1.1, given in Table 2.2, the 25th and 75th percentiles of the distribu-
tion of discontinuation times are 36 and 107 weeks, respectively. Hence, the
SIQR of the distribution is estimated to be 35.5 weeks.

2.5* Confidence intervals for the median and percentiles

Approximate confidence intervals for the median and other percentiles of a
distribution of survival times can be found once the variance of the estimated
percentile has been obtained. An expression for the approximate variance of
a percentile can be derived from a direct application of the general result for
the variance of a function of a random variable in equation (2.9). Using this
result,

dt(p)

where #(p) is the pth percentile of the distribution and ${¢(p)} is the Kaplan-
Meier estimate of the survivor function at ¢(p). Now,

dS{tp)} _ ¢
—ZUMIT = fp)),
) Ht)}
an estimate of the probability density function of the survival times at ¢(p),

and on rearranging equation (2.17), we get

N 2
var [${1(p)}] = (M) var {#(p)}, (2.17)

2
1 .
var {t = | - var [S .
ar {t(p)} (f{t(p)}) ar [S{t(p)}]
The standard error of #(p), the estimated pth percentile, is therefore given by
X 1 A a
se{t(p)} = e se [S{t(p)}]- (2.18)

The standard error of S {t(p)} is found using Greenwood’s formula for the
standard error of the Kaplan-Meier estimate of the survivor function, given in
equation (2.13), while an estimate of the probability density function at #(p)
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is

i = 5 A(p))} - 5{iw)

o) —ap)
where
W(p) = max {t | S(tn) >1— 2
{ G 1 S(Ey)) 100 +€}»
and
l(p) = min {%’) | S(t) <1- 1%0 - 6},
for 7 =1,2,...,r, and small values of ¢. In many cases, taking € = 0.05 will

be satisfactory, but a larger value of € will be needed if 7(p) and f(p) turn
out Fo be equal. In particular, from equation (2.18), the standard error of the
median survival time is given by

R 1 A A
se{t(80)} = ————se
{£(50)} TG0 [5{t(50)}], (2.19)

where f{#(50)} can be found from

Flis0)y = 21800} = S{IE0)} (2.20)
1(50) — 4(50)
In this expression, %(50) is the largest survival time for which the Kaplan-
Meier estimate of the survivor function exceeds 0.55, and [ (50) is the smallest
survival time for which the survivor function is less than or equal to 0.45.
Once the standard error of the estimated pth percentile has been found, a
100(1 — )% confidence interval for ¢(p) has limits of 7

t(p) £ za/2 s {t(p)},

where 2,/ is the upper (one-sided) «/2-point of the standard normal distri-
bution.

This interval estimate is only approximate, in the sense that the probability
that the interval includes the true percentile will not be exactly 1 — a. A
number of methods have been proposed for constructing confidence intervals
for the median with superior properties, although these alternatives are more
difficult to compute than the interval estimate derived in this section.

Ezxample 2.10 Time to discontinuation of the use of an IUD
The data on the discontinuation times for users of an IUD, given in Exam-
ple 1.1, is now used to illustrate the calculation of a confidence interval for
the median discontinuation time. From Example 2.8, the estimated median
discontinuation time for this group of women is given by #(50) = 93 weeks.
Also, from Table 2.4, the standard error of the Kaplan-Meier estimate of the
survivor function at this time is given by se [5’{5(50)}] = (0.1452.

To obtain the standard error of #(50) using equation (2.19), we need an
estimate of the density function at the estimated median discontinuation time.
This is obtained from equation (2.20). The quantities ©#(50) and [(50) needed
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in this equation are such that
4(50) = max{t(;, | S(t¢;y) = 0.55},

and R i
1(50) = min{t(;) | S(t(y) < 045},
where t(;) is the jth ordered discontinuation time, j = 1,2,...,9. Using Ta-
ble 2.4, 4(50) = 75 and {(50) = 97, and so
‘s S(75) — S(97) _ 0.5594 — 0.3729
HHB0)} = 97 -7 22

Then, the standard error of the median is given by

= 0.0085.

se {t(50)} = x 0.1452 = 17.13.

0.0085
A 95% confidence interval for the median discontinuation time has limits of

93 + 1.96 x 17.13,

and so the required interval estimate for the median ranges from 59 to 127

days.

2.6 Comparison of two groups of survival data

The simplest way of comparing the survival times obtained from two groups of
individuals is to plot the corresponding estimates of the two survivor functions
on the same axes. The resulting plot can be quite informative, as the following

example illustrates.

Ezample 2.11 Prognosis for women with breast cancer

Data on the survival times of women with breast cancer, grouped according to
whether or not sections of a tumour were positively stained with HPA, were
given in Example 1.2. The Kaplan-Meier estimate of the survivor function, for
each of the two groups of survival times, is plotted in Figure 2.9. Notice that
in this figure, the Kaplan-Meier estimates extend to the time of the largest
censored observation in each group.

This figure shows that the estimated survivor function for those women
with negatively stained tumours is always greater than that for women with
positively stained tumours. This means that at any time t, the estimated
probability of survival beyond ¢t is greater for women with negative staining,
suggesting that the result of the HPA staining procedure might be a useful
prognostic indicator. In particular, those women whose tumours are positively
stained appear to have a poorer prognosis than those with negatively stained
tumours. :

There are two possible explanations for an observed difference between two
estimated survivor functions, such as those in Example 2.11. One explanation
is that there is a real difference between the survival times of the two groups
of individuals, so that those in one group have a different survival experience
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Figure 2.9 Kaplan-Meier estimate of the survivor functions for women with tu-
mours that were positively stained (—) and negatively stained (- ).

from those in the other. An alternative explanation is that there are no real
differences between the survival times in each group, and that the difference
that has been observed is merely the result of chance variation. To help dis-
tinguish between these two possible explanations, we use a procedure known
as the hypothesis test. Because the concept of the hypothesis test has a central
role in the analysis of survival data, the underlying basis for this procedure is
described in detail in the following section.

2.6.1 Hypothesis testing

The hypothesis test is a procedure that enables us to assess the extent to which
an observed set of data are consistent with a particular hypothesis, known as
the working or null hypothesis. A null hypothesis generally represents a sim-
plified view of the data-generating process, and is typified by hypotheses that
specify that there is no difference between two groups of survival data, or that
there is no relationship between survival time and explanatory variables such
as age or serum cholesterol level. The null hypothesis is then the hypothesis
that will be adopted, and subsequently acted upon, unless the data indicate
that it is untenable.

The next step is to formulate a test statistic that measures the extent to
which the observed data depart from the null hypothesis. In general, the test
statistic is so constructed that the larger the value of the statistic, the greater
the departure from the null hypothesis. Hence, if the null hypothesis is that
there is no difference between two groups, relatively large values of the test
statistic will be interpreted as evidence against this null hypothesis.
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Once the value of the test statistic has been obtained from the observed
data, we calculate the probability of obtaining a value as extreme or more
extreme than the observed value, when the null hypothesis is true. This quan-
tity summarises the strength of the evidence in the sample data against the
null hypothesis, and is known as the probability value, or P-value for short.
If the P-value is large, we would conclude that it is quite likely that the ob-
served data would have been obtained when the null hypothesis was true, and
that there is no evidence to reject the null hypothesis. On the other hand, if
the P-value is small, this would be interpreted as evidence against the null
hypothesis; the smaller the P-value, the stronger the evidence.

In order to obtain the P-value for a hypothesis test, the test statistic must
have a probability distribution that is known, or at least approximately known,
when the null hypothesis is true. This probability distribution is referred to
as the null distribution of the test statistic. More specifically, consider a test
statistic, W, which is such that the larger the observed value of the test
statistic, w, the greater the deviation of the observed data from that expected
under the null hypothesis. If W has a continuous probability distribution,
the P-value is then P(W > w) = 1 — F(w), where F(w) is the distribution
function of W, under the null hypothesis, evaluated at w.

In some applications, the most natural test statistic is one for which large
positive values correspond to departures from the null hypothesis in one di-
rection, while large negative values correspond to departures in the opposite
direction. For example, suppose that patients suffering from a particular ill-
ness have been randomised to receive either a standard treatment or a new
treatment, and their survival times are recorded. In this situation, a null hy-
pothesis of interest will be that there is no difference in the survival experience
of the patients in the two treatment groups. The extent to which the data are
consistent with this null hypothesis might then be summarised by a test statis-
tic for which positive values indicate that the new treatment is superior to
the standard, while negative values indicate that the standard treatment is
superior. When departures from the null hypothesis in either direction are
equally important, the null hypothesis is said to have a two-sided alternative,
and the hypothesis test itself is referred to as a two-sided test.

If W is a test statistic for which large positive or large negative observed
values lead to rejection of the null hypothesis, a new test statistic, such as |W/|
or W2, can be defined, so that only large positive values of the new statistic
indicate that there is evidence against the null hypothesis. For example, sup-
pose that W is a test statistic that under the null hypothesis has a standard
normal distribution. If w is the observed value of W, the appropriate P-value
isP(W < —|w|)+P(W = |wl|), which in view of the symmetry of the standard
normal distribution, is 2P(W = |w]|). Alternatively, we can make use of the
result that if W has a standard normal distribution, W2 has a chi-squared
distribution on one degree of freedom, written x?. Thus a P-value for the
two-sided hypothesis test based on the statistic W is the probability that a
Xx? random variable exceeds w?. The required P-value can therefore be found
using tables of the standard normal or chi-squared distribution functions.
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When interest centres on departures in a particular direction, the hypothesis
test is said to be one-sided. For example, in comparing the survival times of
two groups of patients where one group receives a standard treatment and
the other group a new treatment, it might be argued that the new treatment
cannot possibly be inferior to the standard. Then, the only relevant alternative
to the null hypothesis of no treatment difference is that the new treatment is
superior. If positive values of the test statistic W reflect the superiority of the
new treatment, the P-value is then P(W > w). If W has a standard normal
distribution, this P-value is half of that which would have been obtained for
the corresponding two-sided alternative hypothesis.

A one-sided hypothesis test can only be appropriate when there is no inter-
est whatsoever in departures from the null hypothesis in the opposite direction
to that specified in the one-sided alternative. For example, consider again the
comparison of a new treatment with a standard treatment, and suppose that
the observed value of the test statistic is either positive or negative, depend-
ing on whether the new treatment is superior or inferior to the standard. If
the alternative to the null hypothesis of no treatment difference is that the
new treatment is superior, a large negative value of the test statistic would
not be regarded as evidence against the null hypothesis. Instead, it would be
assumed that this large negative value is simply the result of chance varia-
tion. Generally speaking, the use of one-sided tests can rarely be justified in
medical research, and so two-sided tests will be used throughout this book.

If a P-value is smaller than some value «, we say that the hypothesis is
rejected at the 100a% level of significance. The observed value of the test
statistic is then said to be significant at this level. But how do we decide on
the basis of the P-value whether or not a null hypothesis should actually be
rejected? Traditionally, P-values of 0.05 or 0.01 have been used in reaching a
decision about whether or not a null hypothesis should be rejected, so that if
P < 0.05, for example, the null hypothesis is rejected at the 5% significance
level. Guidelines such as these are not hard-and-fast rules and should not be
interpreted rigidly. For example, there is no practical difference between a
P-value of 0.046 and 0.056, even though only the former indicates that the
observed value of the test statistic is significant at the 5% level.

Instead of reporting that a null hypothesis is rejected or not rejected at some
specified significance level, a more satisfactory policy is to report the actual
P-value. This P-value can then be interpreted as a measure of the strength
of evidence against the null hypothesis, using a vocabulary that depends on
the range within which the P-value lies. Thus, if P > 0.1, there is said to
be no evidence to reject the null hypothesis; if 0.05 < P < 0.1, there is slight
evidence against the null hypothesis; if 0.01 < P < 0.05, there is moderate
evidence against the null hypothesis; if 0.001 < P < 0.01, there is strong
cvidence against the null hypothesis, and if P < 0.001, the evidence against
the null hypothesis is overwhelming.

An alternative to quoting the exact P-value associated with a hypothesis
test, is to compare the observed value of the test statistic with those values
that would correspond to particular P-values, when the null hypothesis is
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true. Values of the test statistic that lead to rejection of the null hypothesis
at particular levels of significance can be found from tables of the percentage
points of the null distribution of that statistic. In particular, if W is a test
statistic that has a standard normal distribution, for a two-sided test, the
upper «/2-point of the distribution, depicted in Figure 2.5, is the value of
the test statistic for which the P-value is o. For example, values of the test
statistic of 1.96, 2.58 and 3.29 correspond to P-values of 0.05, 0.01 and 0.001.
Thus, if the observed value of W were between 1.96 and 2.58, we would declare
that 0.01 < P < 0.05. On the other hand, if the null distribution of W is chi-
squared on one degree of freedom, the upper a-point of the distribution is the
value of the test statistic which would give a P-value of . Then, values of
the test statistic of 3.84, 6.64 and 10.83 correspond to P-values of 0.05, 0.01
and 0.001, respectively. Notice that these values are simply the squares of
those for the standard normal distribution, which they must be in view of the
fact that the square of a standard normal random variable has a chi-squared
distribution on one degree of freedom.

For commonly encountered probability distributions, such as the normal
and chi-squared, percentage points are tabulated in many introductory text
books on statistics, or in statistical tables such as those of Lindley and Scott
(1984). Statistical software packages used in computer-based statistical analy-
ses of survival data usually provide the exact P-values associated with hypoth-
esis tests as a matter of course. Note that when these are rounded off to, say,
three decimal places, a P-value of 0.000 should be interpreted as P < 0.001.

In deciding on a course of action, such as whether or not to reject the hy-
pothesis that there is no difference between two treatments, the statistical
evidence summarised in the P-value for the hypothesis test will be just one
ingredient of the decision-making process. In addition to the statistical evi-
dence, there will also be scientific evidence to consider. This may, for example,
concern whether the size of the treatment effect is clinically important. In par-
ticular, in a large trial, a difference between two treatments that is significant
at, say, the 5% level may be found when the magnitude of the treatment effect
is so small that it does not indicate a major scientific breakthrough. On the
other hand, a new formulation of a treatment may prolong life by a factor of
two, and yet, because of small sample sizes used in the study, may not appear
to be significantly different from the standard.

Rather than report findings in terms of the results of a hypothesis testing
procedure, it is more informative to provide an estimate of the size of any
treatment difference, supported by a confidence interval for this difference.
Unfortunately, the non-parametric approaches to the analysis of survival data
being considered in this chapter do not lend themselves to this approach. We
will therefore return to this theme in subsequent chapters when we consider
models for survival data.

In the comparison of two groups of survival data, there are a number of
methods that can be used to quantify the extent of between-group differences.
Two non-parametric procedures will now be considered, namely the log-rank
test and the Wilcoxon test.



42 SOME NON-PARAMETRIC PROCEDURES
2.6.2 The log-rank test

In order to construct the log-rank test, we begin by considering separately
each death time in two groups of survival data. These groups will be labelled
Group I and Group II. Suppose that there are r distinct death times, ty <
tzy < -+ <, across the two groups, and that at time t(5), d1j individuals
in Group I and dy; individuals in Group II die, for § = 1,2,...,r. Unless two
or more individuals in a group have the same recorded death time, the values
of di; and dy; will either be zero or unity. Suppose further that there are n1;
individuals at risk of death in the first group just before time t(j), and that
there are ng; at risk in the second group. Consequently, at time £(;), there are
d; = di; + dg; deaths in total out of n; = ny; + ng; individuals at risk. The
situation is summarised in Table 2.7.

Table 2.7 Number of deaths at the jth death time in each of two
groups of individuals.

Group Number of Number surviving Number at risk
deaths at 2(; beyond ;) just before ¢
I dlj nlj — d1j TLlj
11 d2j na; — da; n2;
Total dj ng — dj Tj

Now consider the null hypothesis that there is no difference in the survival
experiences of the individuals in the two groups. One way of assessing the
validity of this hypothesis is to consider the extent of the difference between
the observed number of individuals in the two groups who die at each of the
death times, and the numbers expected under the null hypothesis. Information
about the extent of these differences can then be combined over each of the
death times.

If the marginal totals in Table 2.7 are regarded as fixed, and the null hy-
pothesis that survival is independent of group is true, the four entries in this
table are solely determined by the value of dy;, the number of deaths at #(;
in Group I. We can therefore regard dy; as a random variable, which can take
any value in the range from 0 to the minimum of d; and n,;. In fact, di; has a
distribution known as the hypergeometric distribution, according to which the
probability that the random variable associated with the number of deaths in
the first group takes the value dy; is

() (i)

hy ) \mi =i/ (2.21)
TI,j ’
TL1j
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(&)

represents the number of different ways in which d;; times can be chosen from
d; times and is read as “di; C d;”. It is given by

(2)-aritan
dij ) dygl(dy — dyj)t

where d;!, read as “d; factorial”, is such that

dj!zde(djwl)X-“XQXl.

In this formula, the expression

The other two terms in expression (2.21) are interpreted in a similar manner.
The mean of the hypergeometric random variable d;; is given by

e1j = ni;d;/nj, (2.22)

so that ep; is the expected number of individuals who die at time %(;) in
Group 1. This value is intuitively appealing, since under the null hypothesis
that the probability of death at time t(;) does not depend on the group that
an individual is in, the probability of death at t(;) is d;/n;. Multiplying this
by n1;, gives e1; as the expected number of deaths in Group I at £(;.

The next step is to combine the information from the individual 2 x 2
tables for each death time to give an overall measure of the deviation of the
observed values of d; from their expected values. The most straightforward
way of doing this is to sum the differences dy; — e1; over the total number of
death times, r, in the two groups. The resulting statistic is given by

r

U = Z(dlj - 81j>. (2.23)

Jj=1

Notice that this is Y di; — > e1;, which is the difference between the total
observed and expected numbers of deaths in Group I. This statistic will have
zero mean, since E (dy;) = e1j. Moreover, since the death times are indepen-
dent of one another, the variance of Uy, is simply the sum of the variances of
the dy;. Now, since dy; has a hypergeometric distribution, the variance of dy;
is given by

nljnzjdj(nj - dJ)

S VA hat Al M A 2.24
TR R 220

so that the variance of Uy, is

var (Ur,) = ZUU =V, (2.25)

=1

say. Furthermore, it can be shown that Uy has an approximate normal dis-
tribution, when the number of death times is not too small. It then follows
that Up//Vy has a normal distribution with zero mean and unit variance,
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denoted N (0,1). We therefore write

Ur
VvV

where the symbol “~” is read as “is distributed as”. The square of a stan-
dard normal random variable has a chi-squared distribution on one degree of
freedom, denoted x?%, and so we have that

~ N(0,1),

Ui
v XTI 2.26
Vi X1 ( )

This method of combining information over a number of 2 x 2 tables was
proposed by Mantel and Haenszel (1959), and is known as the Mantel-Haenszel
procedure. In fact, the test based on this statistic has various names, including
Mantel-Cox and Peto-Mantel-Haenszel, but it is probably best known as the
log-rank test. The reason for this name is that the test statistic can be derived
from the ranks of the survival times in the two groups, and the resulting rank
test statistic is based on the logarithm of the Nelson-Aalen estimate of the
survivor function.

The statistic W, = UE /V1 summarises the extent to which the observed
survival times in the two groups of data deviate from those expected under
the null hypothesis of no group differences. The larger the value of this statis-
tic, the greater the evidence against the null hypothesis. Because the null
distribution of W is approximately chi-squared with one degree of freedom,
the P-value associated with the test statistic can be obtained from the distri-
bution function of a chi-squared random variable. Alternatively, percentage
points of the chi-squared distribution can be used to identify a range within

which the P-value lies. An illustration of the log-rank test is presented below
in Example 2.12.

Ezample 2.12 Prognosis for women with breast cancer
In this example, we return to the data on the survival times of women with
breast cancer, grouped according to whether a section of the tumour was
positively or negatively stained. In particular the null hypothesis that there
is no difference in the survival experience of the two groups will be examined
using the log-rank test. The required calculations are laid out in Table 2.8,
We begin by ordering the observed death times across the two groups of
women; these times are given in column 1 of Table 2.8. The numbers of women
in each group who die at each death time and the numbers who are at risk
at each time are then calculated. These values are dij, n1j, do; and ng; given
in columns 2 to 5 of the table. Columns 6 and 7 contain the total num-
bers of deaths and the total numbers of women at risk over the two groups,
at each death time. The final two columns give the values of ei; and V14,
computed from equations (2.22) and (2.24) respectively. Summing the entries
in columns 2 and 8 gives >_di; and Y ey, from which the log-rank statis-
tic can be calculated from U; — Sodij — > e;. The value of Vi, = Zvlj
can be obtained by summing the entries in the final column. We find that

COMPARISON OF TWO GROUPS OF SURVIVAL DATA 45

Table 2.8 Calculation of the log-rank statistic for the data from

Ezample 1.2.

Death time d1j 1 dzj ng;j dj nj e1j V14
5 0 13 1 32 1 45 0.2889 0.2054
8 0 13 1 31 1 44 0.2955 0.2082
10 0 13 1 30 1 43 0.3023 0.2109
13 0 13 1 29 1 42 0.3095 0.2137
18 0 13 1 28 1 41  0.3171  0.2165
23 1 13 0 27 1 40 0.3250 0.2194
24 0 12 1 27 1 39 0.3077 0.2130
26 0 12 2 26 2 38 0.6316 0.4205
31 0 12 1 24 1 36 0.3333 0.2222
35 0 12 1 23 1 35  0.3429 0.2253
40 0 12 1 22 1 34 0.3529 0.2284
41 0 12 1 21 1 33  0.3636 0.2314
47 1 12 0 20 1 32 0.3750 0.2344
48 0 11 1 20 1 31  0.3548 0.2289
50 0 11 1 19 1 30 0.3667 0.2322
59 0 11 1 18 1 29 0.3793 0.23b4
61 0 11 1 17 1 28 0.3929 0.2385
68 0 11 1 16 1 27  0.4074 0.2414
69 1 11 0 15 1 26  0.4231 0.2441
71 0 9 1 15 1 24 0.3750 0.2344
113 0 6 1 10 1 16 0.3750 0.2344
118 0 6 1 8 1 14 0.4286 0.2449
143 0 6 1 7 1 13 0.4615 0.2485
148 1 6 0 6 1 12 0.5000 0.2500
181 1 5 0 4 1 9 0.5556 0.2469
Total 5 9.5652  5.9289

UL =5— 9.565 = —4.565 and V;, = 5.929, and so the value of the log-rank

istic is Wy, = (—4.565)?/5.929 = 3.515. . ‘
tes;‘izazf:;:spondgng (P—value)is/ calculated from the probability that g gil;—
squared variate on one degree of freedom is grea.ter thzn} or equal to 3. ,
and is 0.061, written P = 0.061. This P-value is sufficiently small to -cast
doubt on the null hypothesis that there is no difference between jche survivor
functions for the two groups of women. In fact, the evidence against the null
hypothesis is nearly significant at the 6% level. We therefore conclude ‘chat‘th?G
data do provide some evidence that the prognosis of a breast cancer patien
is dependent on the result of the staining procedure.

2.6.3 The Wilcoxzon test

The Wilcoxon test, sometimes known as the Breslow test, is also used to test
the null hypothesis that there is no difference in the survivor functions for two
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groups of survival data. The Wilcoxon test is based on the statistic
T
Uw =Y nj(dy; — ery),
j=1

where, as in the previous section, dy; is the number of deaths at time iy in
the first group and e;; is as defined in equation (2.22). The difference between
Uw and Uy, is that in the Wilcoxon test, each difference dy; — ey, is weighted
by n;, the total number of individuals at risk at time t(;). The effect of this
is to give less weight to differences between di; and ey; at those times when
the total number of individuals who are still alive is small, that is, at the
longest survival times. This statistic is therefore less sensitive than the log-
rank statistic to deviations of dy; from e1; in the tail of the distribution of
survival times.

The variance of the Wilcoxon statistic Uyy is given by

T
_ § : 2
VW = njvlj7
j=1

where vy; is given in equation (2.24), and so the Wilcoxon test statistic is
Ww = Us [V, (2.27)

which has a chi-squared distribution on one degree of freedom when the null
hypothesis is true. The Wilcoxon test is therefore conducted in the same
manner as the log-rank test.

Ezample 2.18 Prognosis for women with breast cancer

For the data on the survival times of women with tumours that were positively
or negatively stained, the value of the Wilcoxon statistic is Uw = —159, and
the variance of the statistic is Viy = 6048.136. The value of the chi-squared
statistic, U3, /Viy, is 4.180, and the corresponding P-value is 0.041. This is
slightly smaller than the P-value for the log-rank test, and on the basis of

this result, we would declare that the difference between the two groups is
significant at the 5% level.

2.6.4 Comparison of the log-rank and Wilcozon tests

Of the two tests, the log-rank test is the more suitable when the alternative
to the null hypothesis of no difference between two groups of survival times
is that the hazard of death at any given time for an individual in one group
is proportional to the hazard at that time for a similar individual in the
other group. This is the assumption of proportional hazards, which underlies
a number of methods for analysing survival data. For other types of departure
from the null hypothesis, the Wilcoxon test is more appropriate than the log-
rank test for comparing the two survivor functions.

In order to help decide which test is the more suitable in any given situa-
tion, we make use of the result that if the hazard functions are Proportional,
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the survivor functions for the two groups of survival data do not cross ofne
another. To show this, suppose that hi(t) is the hazard of dea‘d% at tflme t for
an individual in Group 1, and ho (t) is the hazard at tl.lat same time for an 1{;
dividual in Group II. If these two hazards are proportional, then }fvetf:an \tm ;n—
hi(t) = ¥ha(t), where ¥ is a constant that c'!oes.not depend (zln the lﬁiia’tin

tegrating both sides of this expression, multiplying by —1 and expone g

exp {— /Ot ha(u) du} — exp {— /Ot Dha(u) du}. (2.28)

Now, from equation (1.5),

S(t) = exp {- /O "hw du},

and so if S1(t) and Sy(t) are the survivor functions for the two groups of
survival data, from equation (2.28),

Si(8) = {Sa()}”

Since the survivor function takes values between zero an.d unity, l;shlz rez}ui
shows that Sy(t) is greater than or less than S; (t)'., according tovvat et Erzard
less than or greater than unity, at any time ¢. Thl.S means that i WS[. h‘a o
functions are proportional, the true survivor functhns do not cg(?ss. is
necessary, but not a sufficient condition for plroportlonal hazar 'b. L .
An informal assessment of the likely validlty_ of the proport}ona .azarf i
assumption can be made from a plot of the estgnat?d survwo;fft;lnczmnse Stoi_
two groups of survival data, such as that shown 1n.F1gure 2.9. ‘t el Xo o
mated survivor functions do not cross, the assumptlon of proportliona | agafed
may be justified, and the log-rank test is appropriate. Of course, tsam;()i - a;s !
estimates of survivor functions may cross even though the COrTespon ling tru
hazard functions are proportional, and so some care is needed in the 1nFerptr§-
tation of such graphs. A more satisfactory gre_mphlf:al method ff)r gssegsmgzl h <13
validity of the proportional hazards assumption is described in Section 4.4.
er 4. ‘
i I(l’jlh;?;mary, unless a plot of the estimated survival function§, or prevmgs
data, indicate that there is good reason to doubt the proportlgnal hazallj S
assumption, the log-rank test should be used to test the hypothesis of equality
of two survivor functions.

gives

rognosis for women with breast cancer
gf:r;n I‘Zileegg.j:pg ofg the tV\J:o estimated survivor functions in Figure 2.~9)‘WZ see
that the survivor function for the negatively stained women always lies a OV(;
that for the positively stained women. This suggests that th? proportiona
hazards assumption is appropriate, and that the log-rank test is more aplprtl)—
priate than the Wilcoxon test. However, in this e).cample, there is very little
difference between the results of the two hypothesis tests.



48 SOME NON-PARAMETRIC PROCEDURES

2.7 Comparison of three or more groups of survival data

Both the log-rank and the Wilcoxon tests can be extended to enable three
or more groups of survival data to be compared. Suppose that the survival
distributions of g groups of survival data are to be compared, for g > 2. We
then define analogues of the U-statistics for comparing the observed numbers
of deaths in groups 1,2,...,g — 1 with their expected values. In an obvious
extension of the notation used in Section 2.6, we obtain

- Mo
Uk = Z dij — )

i=1 K
. Nk, d;
UWk:Z’ij <dkj* kg J),
: Uz
j=1 J
for k = 1,2,...,g — 1. These quantities are then expressed in the form of a

vector with (g — 1) components, which we denote by U, and Uyy.

We also need expressions for the variances of the Uy, and Uy, and for the
covariance between pairs of values. In particular, the covariance between Uy,
and Ury is given by

r

= i —1) n

for k, k' =1,2,...,9 — 1, where &y is such that

5o [1itk=F,
kE" =% 0 otherwise.

These terms are then assembled in the form of a variance-covariance matriz,
V1, which is a symmetric matrix that has the variances of the Urr down
the diagonal, and covariance terms in the off-diagonals. For example, in the
comparison of three groups of survival data, this matrix would be given by

Vi Vi
V=
L (Vle Vias )7

where Vi1 and Vigo are the variances of Uy and Upg, respectively, and V1o
is their covariance.

Similarly, the variance-covariance matrix for the Wilcoxon statistic is the
matrix Vyy, whose (k, k')th element is

-
Vivkw = ) _nj Phids 0y —dy) <5kk/ - nk/j) ,

=7 ni(n - 1) n;

for k,k'=1,2,...,9 — 1.

Finally, in order to test the null hypothesis of no group differences, we make
use of the result that the test statistic U’LVglUL7 or U/W Vﬁxl Uw, has a chi-
squared distribution on (g — 1) degrees of freedom, when the null hypothesis
is true.
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A number of well-known statistical packages for the analysis of survival
data incorporate this methodology. Furthermore, because the interpretation
of the resulting chi-squared statistic is straightforward, an example will not
be given here.

2.8 Stratified tests

In many circumstances, there is a need to compare two or more sets of survival
data, after taking account of additional variables recorded on each individual.
As an illustration, consider a multicentred clinical trial in which two forms
of chemotherapy are to be compared in terms of their effect on the survival
times of lung cancer patients. Information on the survival times of patients in
each treatment group will be available from each centre. The resulting data
are then said to be stratified by centre.

Individual log-rank or Wilcoxon tests based on the data from each centre
will be informative, but a test that combines information about the treat-
ment difference in each centre would provide a more precise summary of the
treatment effect. A similar situation would arise in attempting to test for
treatment differences when patients are stratified according to variables such
as age group, sex, performance status and other potential risk factors for the
disease under study.

In situations such as those described above, a stratified version of the log-
rank or Wilcoxon test may be employed. Essentially, this involves calculating
the values of the U- and V-statistics for each stratum, and then combining
these values over the strata. In this section, the stratified log-rank test will
be described, but a stratified version of the Wilcoxon test can be obtained in
a similar manner. An equivalent analysis, based on a model for the survival
times, is described in Section 11.1.1 of Chapter 11.

Let Urj be the value of the log-rank statistic for comparing two treatment
groups, computed from the kth of s strata using equation (2.23). Also, denote
the variance of the statistic for the kth stratum by Vi, where Vi, would be
computed for each stratum using equation (2.24). The stratified log-rank test
is then based on the statistic

S, 2
We = _____(ijl V“f) , (2.29)
Zk:l Lk

which has a chi-squared distribution on one degree of freedom (1 d.f.) un-
der the null hypothesis that there is no treatment difference. Comparing the
observed value of this statistic with percentage points of the chi-squared distri-
bution enables the hypothesis of no overall treatment difference to be tested.

Ezample 2.15 Survival times of melanoma patients

The aim of a study carried out by the University of Oklahoma Health Sci-
ences Center was to compare two immunotherapy treatments for their ability
to prolong the life of patients suffering from melanoma, a highly malignant
tumour occurring in the skin. For each patient, the tumour was surgically
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removed before allocation to Bacillus Calmette-Guérin (BCG) vaccine or to
a vaccine based on the bacterium Corynebacterium parvum (C. parvum).

The survival times of the patients in each treatment group were further
c%assiﬁed according to the age group of the patient. The data, which were
given in Lee and Wang (2003), are shown in Table 2.9. An asterisk against a
survival time indicates that the observation is censored.

Tablle, 2.9 Survival times of melanoma patients in two treatment groups,
stratified by age group.

21-40 41-60 61—
BCG C. parvum BCG  C. parvum BCG (. parvum
19 27* 34%* 8 10 25%
24* 21* 4 11% 5 8

8 18* 17* 23%* 11*
17%* 16%* 12%
17* 7 15%
34% 12% 8*
24 8%
8
]

'ljhese data are analysed by first computing the log-rank statistics for com-
paring the survival times of patients in the two treatment groups, separately
foF each age group. The resulting values of the U-, V- and W-statistics, found
using equations (2.23), (2.25) and (2.26), are summarised in Table 2.16.

Table 2.10 Values of the log-rank statistic
for each age group.

Age group UL Vi Wy,
21-40 —0.2571 1.1921 0.055
41-60 0.4778 0.3828 0.596
61— 1.0167 0.6497 1.591
Total 1.2374 2.2246

The Yalues of the Wp-statistic are quite similar for the three age groups,
suggesting that the treatment effect is consistent over these groups. Moreover,
none of them are significantly large at the 10% level.

To ca'rry out a stratified log-rank test on these data, we calculate the
Wg-statistic defined in equation (2.29). Using the results in Table 2.10,

_1.23747

57 22246

The observed value of Wy is not significant when compared with percentage

= 0.688.
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points of the chi-squared distribution on 1 d.f. We therefore conclude that
after allowing for the different age groups, there is no significant difference
between the survival times of patients treated with the BCG vaccine and
those treated with C. parvum.

For comparison, when the division of the patients into the different age
groups is ignored, the log-rank test for comparing the two groups of patients
leads to Wy, = 0.756. The fact that this is so similar to the value that allows for
age group differences suggests that it is not necessary to stratify the patients

by age.

The stratified log-rank test can be extended to compare more than two
treatment groups The resulting formulae render it unsuitable for hand cal-
culation, but the methodology can be implemented using computer software
for survival analysis. However, this method of taking account of additional
variables is not as flexible as that based on a modelling approach, introduced
in the next chapter.

2.9 Log-rank test for trend

In many applications where three or more groups of survival data are to be
compared, these groups are ordered in some way. For example, the groups
may correspond to increasing doses of a treatment, the stage of a disease, or
the age group of an individual. In comparing these groups using the log-rank
test described in previous sections, it can happen that the analysis does not
lead to a significant difference between the groups, even though the hazard
of death increases or decreases across the groups. Indeed, a test that uses
information about the ordering of the groups is more likely to lead to a trend
being identified as significant than a standard log-rank test.

The log-rank test for trend across g ordered groups is based on the statistic

g

Ur = wil(de. —ex.), (2.30)
k=1

where wy, is a code assigned to the kth group, £ =1,2,...,9, and

Tk "k
dk. = E dkj) €. = E €kj»
j=1 j=1

are the observed and expected numbers of deaths in the kth group, where
the summation is over the ry death times in that group. Note that the dot
subscript in the notation di. and e, stands for summation over the subscript
that the dot replaces. The codes are often taken to be equally spaced to
correspond to a linear trend across the groups. For example, if there are three
groups, the codes might be taken to be 1, 2 and 3, although the equivalent
choice of —1, 0 and 1 does simplify the calculations somewhat. The variance
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of Ur is given by
g
Ve =) (wy, — )%, (2.31)
k=1

where 10 is a weighted sum of the quantities wy, in which the expected numbers
of deaths, ey , are the weights, that is,

Zi:l WL,

W =
g
k=1 Ck.

The statistic Wr = U7 /Vr then has a chi-squared distribution on 1 d.f. under
the hypothesis of no trend across the g groups.

Ezample 2.16 Survival times of melanoma patients

The log-rank test for trend will be illustrated using the data from Example
2.15 on the survival times of patients suffering from melanoma. For the pur-
pose of this illustration, only the data from those patients allocated to the
BCG vaccine will be used. The log-rank statistic for comparing the survival
times of the patients in the three age groups turns out to be 3.739. When
compared to percentage points of the chi-squared distribution on 2 d.f., this
is not significant (P = 0.154).

We now use the log-rank test for trend to examine whether there is a linear
trend over age. For this, we will take the codes, wy, to be equally spaced, with
values —1, 0 and 1. Some of the calculations required for the log-rank test for
trend are summarised in Table 2.11.

Table 2.11 Values of wr and the
observed and expected numbers of
deaths in the three age groups.

Age group  wy  dg. €k.

21-40 -1 2 31871
41-60 0 1 1.1949
61— 1 2 06179

The log-rank test for trend is based on the statistic in equation (2.30), the
value of which is

UT = (dg, - 63_) ha (d1 - 61,) = 2.5692.
Using the values of the expected numbers of deaths in each group, given in
Table 2.11, the weighted mean of the w;’s is given by
o= _ 05138
€1, + €3,

The three values of (wy, —w)? are 0.2364, 0.2640 and 2.2917, and, from equa-
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tion (2.31), Vp = 2.4849. Finally, the test statistic is

_ Ut
=V

which is just about significant at the 10% level (P = 0.103) when judged
against a chi-squared distribution on 1 d.f. We therefore conclude that there
is slight evidence of a linear trend across the age groups.

Wy = 2.656,

An alternative method of examining whether there is a trend across the
levels of an ordered categorical variable, based on a modelling :%pproach to
the analysis of survival data, is described and illustrated in Section 3.6.2 of
the next chapter.

2.10 Further reading

The life-table, which underpins the calculation of the life-table estimate of 'the
survivor function, is widely used in the analysis of data from epidemiological
studies. Fuller details of this application can be found in Armitage. et al.
(2001), and books on statistical methods in demography and epidemiology,
such as Pollard et al. (1990) and Woodward (1999). ' .

The product-limit estimate of the survivor function has beenlln use since the
early 1900s. Kaplan and Meier (1958) derived the estimate using the' method
of maximum likelihood, which is why the estimate now bears their name.
The properties of the Kaplan-Meier estimate of the survivor function have
been further explored by Breslow and Crowley (1974) and Meier (1975). The
Nelson-Aalen estimate is due to Altshuler (1970), Nelson (1972) and Aalen
(1978), and the estimator is considered in a counting process framework by
Therneau and Grambsch (2000). .

The expression for the standard error of the Kaplan-Meier estimate was first
given by Greenwood (1926), but an alternative expression is given by Aalen
and Johansen (1978). Alternative expressions for the variance of the Nelson-
Aalen estimate of the cumulative hazard function are compared by Klein
(1991). Although Section 2.2.1 shows how a confidence interval for the value
of the survivor function at particular times can be found using Greenwood’s
formula, alternative procedures are needed for the construction of confidence
bands for the complete survivor function. Hall and Wellner (1980) and Efron
(1981) have shown how such bands can be computed, and these procedures
are also described by Harris and Albert (1991).

Methods for constructing confidence intervals for the median survival time
are described by Brookmeyer and Crowley (1982), Emerson (1982), Nair
(1984), Simon and Lee (1982) and Slud et al. (1984). Simon (1986) emphasises
the importance of confidence intervals in reporting the results of clinical trials,
and includes an illustration of a method described in Slud et al. (1984). Klein
and Moeschberger (1997) include a comprehensive review of kernel-smoothed
estimates of the hazard function.

The formulation of the hypothesis testing procedure in the frequentist ap-



54 SOME NON-PARAMETRIC PROCEDURES

proach to inference is covered in many statistical texts. See, for example,
Altman (1991) and Armitage et al. (2001) for non-technical presentations of
the ideas in a medical context.

The log-rank test results from the work of Mantel and Haenszel (1959),
Mantel (1966) and Peto and Peto (1972). See Lawless (2002) for details of the
rank test formulation. A thorough review of the hypergeometric distribution,
used in the derivation of the log-rank test in Section 2.6.2, is included in
Johnson and Kotz (1969).

The log-rank test for trend is derived from the test for trend in a 2 xk
contingency table, given in Armitage et al. (2001). The test is also described
by Altman (1991). Peto et al. (1976, 1977) give a non-mathematical account
of the log-rank test and its extensions.

CHAPTER 3

Modelling survival data

The non-parametric methods described in Chapter 2 can be useful in the
analysis of a single sample of survival data, or in the comparison of two or
more groups of survival times. However, in most medical studies that give
rise to survival data, supplementary information will also be recorded on each
individual. A typical example would be a clinical trial to compare the survival
times of patients who receive one or other of two treatments. In such a study,
demographic variables such as the age and sex of the patient, the values of
physiological variables such as serum haemoglobin level and heart rate, and
factors that are associated with the lifestyle of the patient, such as smoking
history and dietary habits, may all have an impact on the time that the
patient survives. Accordingly, the values of these variables, which are referred
to as explanatory variables, would be recorded at the outset of the study.
The resulting data set would then be more complex than those considered
in Chapter 2, and the methods described in that chapter would generally be
unsuitable.

In order to explore the relationship between the survival experience of a
patient and explanatory variables, an approach based on statistical modelling
can be used. Indeed, the particular model that is developed in this chapter
both unifies and extends the non-parametric procedures of Chapter 2.

3.1 Modelling the hazard function

Through a modelling approach to the analysis of survival data, we can explore
how the survival experience of a group of patients depends on the values of
one or more explanatory variables, whose values have been recorded for each
patient at the time origin. For example, in the study on multiple myeloma,
given as Example 1.3, the aim is to determine which of seven explanatory
variables have an impact on the survival time of the patients. In Example 1.4
on the survival times of patients in a clinical trial involving two treatments
for prostatic cancer, the primary aim is to identify whether patients in the
two treatment groups have a different survival experience. Because additional
variables such as the age of the patient and the size of their tumour are likely to
influence survival time, it will be important to take account of these variables
when assessing the extent of any treatment difference.

In the analysis of survival data, interest centres on the risk or hazard of
death at any time after the time origin of the study. As a consequence, the
hazard function is modelled directly in survival analysis. The resulting models
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are somewhat different in form from linear models encountered in regression
analysis and in the analysis of data from designed experiments, where the de-
pendence of the mean response, or some function of it, on certain explanatory
variables is modelled. However, many of the principles and procedures used
in linear modelling carry over to the modelling of survival data.

There are two broad reasons for modelling survival data. One objective of
the modelling process is to determine which combination of potential explana-
tory variables affect the form of the hazard function. In particular, the effect
that the treatment has on the hazard of death can be studied, as can the ex-
tent to which other explanatory variables affect the hazard function. Another
reason for modelling the hazard function is to obtain an estimate of the haz-
ard function itself for an individual. This may be of interest in its own right,
but in addition, from the relationship between the survivor function and haz-
ard function described by equation (1.5), an estimate of the survivor function
can be found. This will in turn lead to an estimate of quantities such as the
median survival time, which will be a function of the explanatory variables in
the model. The median survival time could then be estimated for current or
future patients with particular values of these explanatory variables. The re-
sulting estimate could be particularly useful in devising a treatment regimen,
or in counselling the patient about their prognosis.

The basic model for survival data to be considered in this chapter is the
proportional hazards model. This model was proposed by Cox (1972) and has
also come to be known as the Cox regression model. Although the model is
based on the assumption of proportional hazards, introduced in Section 2.6.4,
no particular form of probability distribution is assumed for the survival times.
The model is therefore referred to as a semi-parametric model. We now go on
to develop the model for the comparison of the hazard functions for individuals
in two groups.

3.1.1 A model for the comparison of two groups

Suppose that patients are randomised to receive either a standard treatment
or a new treatment, and let hg(t) and hy(t) be the hazards of death at time
t for patients on the standard treatment and new treatment, respectively. Ac-
cording to a simple model for the survival times of the two groups of patients,
the hazard at time ¢ for a patient on the new treatment is proportional to
the hazard at that same time for a patient on the standard treatment. This
proportional hazards model can be expressed in the form

hn(t) = vhs(t), (3.1)

for any non-negative value of ¢, where 1 is a constant. An implication of this
assumption is that the corresponding true survivor functions for individuals
on the new and standard treatments do not cross, as previously shown in
Section 2.6.4.

The value of 1 is the ratio of the hazards of death at any time for an
individual on the new treatment relative to an individual on the standard
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treatment, and so ¢ is known as the relative hazard or hazard ratio. If +) < 1,
the hazard of death at t is smaller for an individual on the new drug, relative
to an individual on the standard. The new treatment is then an improvement
on the standard. On the other hand, if ¢ > 1, the hazard of death at ¢ is
greater for an individual on the new drug, and the standard treatment ig
superior.

An alternative way of expressing the model in equation (3.1) leads to a
model that can more easily be generalised. Suppose that survival data are
available on n individuals and denote the hazard function for the ith of these
by hi(t), i = 1,2,...,n. Also, write ho(¢) for the hazard function for an
individual on the standard treatment. The hazard function for an individual
on the new treatment is then ¥ho(¢). The relative hazard 4 cannot be negative,
and so it is convenient to set 1 = exp(f). The parameter 3 is then the
logarithm of the hazard ratio, that is, 8 = log+, and any value of £ in the
range (—00,00) will lead to a positive value of 1. Note that positive values of
B are obtained when the hazard ratio, ¢, is greater than unity, that is, when
the new treatment is inferior to the standard.

Now let X be an indicator variable, which takes the value zero if an indi-
vidual is on the standard drug, and unity if an individual is on the new drug.
If z; is the value of X for the ith individual in the study, ¢ = 1,2,...,n, the
hazard function for this individual can be written as

hi(t) = "o (t), (3.2)

where x; = 1 if the ¢th individual is on the new treatment and z; = 0 oth-
erwise. This is the proportional hazards model for the comparison of two
treatment groups.

8.1.2 The general proportional hazards model

The model of the previous section is now generalised to the situation where
the hazard of death at a particular time depends on the values 1, z2, . . ., Zp of
p explanatory variables, X1, Xo, ..., X,. The values of these variables will be
assumed to have been recorded at the time origin of the study. An extension
of the model to cover the situation where the values of one or more of the
explanatory variables change over time will be considered in Chapter 8.

The set of values of the explanatory variables in the proportional hazards
model will be represented by the vector @, so that = = (x1, 2, - - ,xp)'. Let
ho(t) be the hazard function for an individual for whom the values of all the
explanatory variables that make up the vector x are zero. The function ho(t) is
called the baseline hazard function. The hazard function for the ith individual
can then be written as

ha(t) = p(@:)ho(t),
where (x;) is a function of the values of the vector of explanatory variables
for the jth individual. The function 1(-) can be interpreted as the hazard at
time ¢ for an individual whose vector of explanatory variables is x;, relative
to the hazard for an individual for whom = = 0.




58 MODELLING SURVIVAL DATA

Again, since the relative hazard, ¥(x;), cannot be negative, it is convenient

to write this as exp(r;), where #; is a linear combination of the p explanatory
variables in @;. Therefore,

N = 121 + BoZai + -+ + By,

so that n; = 25:1 Bjzji. In matrix notation, 1, = @'x;, where 3 is the
vector of coefficients of the explanatory variables Z1,%3,...,Tp in the model.
The quantity 7; is called the linear component of the model, but it is also
known as the risk score or prognostic indez for the th individual. The general
proportional hazards model then becomes

hi(t) = exp(Brz1i + Bozai + -+ + Bypapi)ho(t). (3.3)

Since this model can be re-expressed in the form

I

the proportional hazards model may also be regarded as a linear model for
the logarithm of the hazard ratio. There are other possible forms for ¢(x;),
but the choice ¥(z;) = exp(8'x;) leads to the most commonly used model for
survival data.

Notice that there is no constant term in the linear component of the propor-
tional hazards model. If a constant term fy, say, were included, the baseline
hazard function could simply be rescaled by dividing ho(t) by exp(fo), and
the constant term would cancel out. Moreover, we have made no assumptions
concerning the actual form of the baseline hazard function ho(t). Indeed, we
will see later that the S-coeflicients in this proportional hazards model can be
estimated without making any such assumptions. Of course, we will often need
to estimate ho(t) itself, and we will see how this can be done in Section 3.8.

3.2 The linear component of the proportional hazards model

There are two types of variable on which a hazard function may depend,
namely variates and factors. A variate is a variable that takes numerical val-
ues that are often on a continuous scale of measurement, such as age or systolic
blood pressure. A factor is a variable that takes a limited set of values, which
are known as the levels of the factor. For example, sex is a factor with two lev-
els, and type of tumour might be a factor whose levels correspond to different
histologies, such as squamous, adeno or small cell.

We now consider how variates, factors, and terms that combine factors

and variates, can be incorporated in the linear component of a proportional
hazards model.

8.2.1 Including a variate

Variates, either alone or in combination, are readily incorporated in a propor-
tional hazards model. Each variate appears in the model with a corresponding
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B-coefficient. As an illustration, consider a situation in which the kilazard func-
tion depends on two variates X; and X;. The value of these Va_rlates for tl;e
jth individual will be z1; and z;, respectively, and the proportional hazards
model for the ith of n individuals is written as

hi(t) = exp(Bim1; + Pazai)ho(t)-

In models such as this, the baseline hazard function., ho(t), i§ the hazard
function for an individual for whom all the variates included in the model

take the value zero.

3.2.2 Including a factor

Suppose that the dependence of the hazard function on a-si.ngle factor, A, 1st }tlo
be modelled, where A has a levels. The model for an 1nd1v1dpal for whom he
level of A is j will then need to incorporate the term o which represents the
effect due to the jth level of the factor. The terms o, Qaz,..., 0 are knowx(li als
the main effects of the factor A. According to the proportlona?l.hazards model,
the hazard function for an individual with factor A at level j is exp(ey;)ho(t).
Now, the baseline hazard function ho(t) has been. defined to be the hazard
for an individual with values of all explanatory variables equal to zero. To be
consistent with this definition, one of the «; rm.lst be taken to be 2. Oﬁe
possibility is to adopt the constraint a; = 0, which corresponds Fo taking ﬁt e
baseline hazard to be the hazard for an individual for whom A is at the first
level. This is the constraint that will be used in the sequel.

Models that contain terms corresponding to factors can be expressed as
linear combinations of explanatory variables by defining md@catgr or dummy
variables for each factor. This procedure will be required when using corpputer
software for survival analysis that does not allow factors to be ﬁt'ted directly.
If the constraint c; = 0 is adopted, the term a; can be included in the model
by defining a — 1 indicator variables, X9, X3,...,X,, that take the values

shown in the table below.

Levelof A X2 X3 Coe Xa
1 0 0 0
2 1 0 0
3 0 1 0
a0 0 1

The term «; can then be incorporated in the linear par‘t of the prOpOrthI;?l
hazards model by including the a — 1 explanatory variables ‘X2,X3, e ,l a
with coefficients ag, @3, - .., g. In other words, th(? term o in the mc%de lrsl
replaced by aaa + @3%3 + * ° + Qs where z; is the value of X; or_a1
individual for whom A is at level j, j = 2,3,... a. There are then a
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parameters associated with the main effect of the factor A4, and A is said to
have a — 1 degrees of freedom.

8.2.3 Including an interaction

When terms corresponding to more than one factor are to be included in the
model, sets of indicator variables can be defined for each factor in a manner
similar to that shown above. In this situation, it may also be appropriate to
include a term in the model that corresponds to individual effects for each
combination of levels of two or more factors. Such effects are known as inter
actions.

For example, suppose that the two factors are the sex of a patient and grade
of tumour. If the effect of grade of tumour on the hazard of death is different
in patients of each sex, we would say that there is an interaction between these
two factors. The hazard function would then depend on the combination of
levels of these two factors.

In general, if A and B are two factors, and the hazard of death depends
on the combination of levels of A and B, then A and B are said to interact.
If A and B have g and b levels, respectively, the term that represents an
interaction between these two factors is denoted by (af)jk, for j=1,2,...,a
and k=1,2,...,b.

In statistical modelling, the effect of an interaction can only be investigated
by adding the interaction term to a model that already contains the corre-
sponding main effects. If either a; or 3 are excluded from the model, the
term (af3);r represents the effect of one factor nested within the other. For
example, if «; is included in the model, but not 8, then (aB)jk is the ef-
fect of B nested within A. If both a; and f; are excluded, the term (af3),y
represents the effect of the combination of level i of 4 and level j of B on
the response variable. This means that (aB)jx can only be interpreted as an
interaction effect when included in a model that contains both a; and Sy,
which correspond to the main effects of A and B. We will return to this point
when we consider model-building strategy in Section 3.5.

In order to include the term (aB);k in the model, products of indicator
variables associated with the main effects are calculated. For example, if 4
and B have 2 and 3 levels respectively, indicator variables U; and V5, V3 are
defined as in the following tables.

Levelof A U, Levelof B Vo V3

1 0 1 0 0
2 1 2 1 0
3 0 1

Let u; and vg be the values of U; and V}, for a given individual, for j = 2,
k = 2,3. The term («f3);x is then fitted by including variates formed from the
products of U; and Vi in the model. The corresponding value of the product
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for a given individual is u;vy,. The coefficient of this product is denoted (a/3) x,
and so the term (af);x is fitted as

(af)22uv2 + (B)23u2vs.

There are therefore two parameters associated with the int'eraction between A
and B. In general, if A and B have a and b levels, respect‘lvﬂy, .the two-factor
interaction AB has (a—1)(b—1) parameters associated with it, in other worqs
AB has (a — 1)(b — 1) degrees of freedom. Furthermore, the t‘:erm (aﬁ)'j]il is
equal to zero whenever either A or B are at the first level, that is, when either

j=1lork=1

3.2.4 Including a mized term

Another type of term that might be needed in a model is a mixed term formed
from a factor and a variate. Terms of this type Wou.ld be used when the
coefficient of a variate in a model was likely to be. d1f_ferent‘ for eac}} level
of a factor. For example, consider a contraceptive trial in which the time to
the onset of a period of amenorrhoea, the prolonged absence of menstrual
bleeding, is being modelled. The hazard of an ameno.rrhoea may be related' to
the weight of a woman, but the coefficient of this variate may differ accordlpg
to the level of a factor associated with the number of previous pregnancies
that the woman has experienced.

The dependence of the coefficient of a variate, X, on the level of a factor, A,
would be depicted by including the term «jz in the linear cor.Ilponfent' o‘f the1
proportional hazards model, where z is the value of X for a given individua
for whom the factor A is at the jth level, j = 1,2,...,a. To include such a
term, indicator variables U;, say, are defined for the factor A, an.d each of
these is multiplied by the value of X for each individual. rP.hc resulting Yalues
of the products U; X are u;z, and the coefficient of u;z in the model is oy,
where j indexes the level of the factor A. . .

If the same definition of indicator variables in the previous discussion were
used, o, the coefficient of X for individuals at the first level of A, would be
zero. It is then essential to include the variate X in the model as well as the
products, for otherwise the dependence on X for individuals at the first level
of A would not be modelled. An illustration should make this clearer.

Suppose that there are nine individuals in a study, on each of whom the
value of a variate, X, and the level of a factor, A, have been recorded. We
will take A to have three levels, where A is at the first level for the first three
individuals, at the second level for the next three, and at the third level for‘the
final three.71n order to model the dependence of the coefficient of the vgnate
X on the level of A, two indicator variables, Us; and Us are defined as in the

following table.
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Individual Level of A X Us Us; Uy X UsX
1 1 z1 0 0 0 0
2 1 z2 0 0 0 0
3 1 T3 0 0 0 0
4 2 T4 1 0 T4 0
5 2 Ts 1 0 s 0
6 2 Te 1 0 T 0
7 3 Z7 0 1 0 z7
8 3 8 0 1 0 xs
9 3 Zg 0 1 0 Tg

Explanatory variables formed as the products Uy X and U- 53X, given in the last
two columns of this table, would then be included in the linear component of
the model, together with the variate X. Let the coefficients of the values of
the products Up X and UsX be o and o}, respectively, and let the coefficient
of the value of the variate X in the model be B. Then, the model contains the
terms Sz + o5 (uaz) + a5 (uaz). From the above table, ug = 0 and uz = 0 for
individuals at level 1 of A, and so the coefficient of z for these individuals is
Just 3. For those at level 2 of A, uy = 1 and ug = 0, and the coefficient of z
is 0 + . Similarly, at level 3 of A, ug = 0 and u3z = 1, and the coefficient of
T is § -+ af.

Notice that if the term Bz is omitted from the model, the coefficient of z
for individuals 1,2 and 3 would be zero. There would then be no information

about the relationship between the hazard function and the variate X for
individuals at the first level of the factor A.

The manipulation described in the preceding paragraphs can be avoided by
defining the indicator variables in a different way. If a factor A has a levels, and
it is desired to include the term a;z in a model, without necessarily including
the term Sz, a indicator variables Z1, Zs, . . . » Zq can be defined for A, where
Zj =1 at level j of A and zero otherwise. The corresponding values of these
products for an individual, 21z, 252, . . ., z,2, are included in the model with
coefficients vy, avg, ..., ay. These are the coefficients of 2 for each level of A.

Now, if the variate X is included in the model, along with the a products
of the form Z,;X, there will be a + 1 terms corresponding to the a coeffi-
cients. It will not then be possible to obtain unique estimates of each of these
a-coefficients, and the model is said to be overparameterised. This overpa-
rameterisation can be dealt with by forcing one of the a 4 1 coefficients to be
zero. In particular, taking a; = 0 would be equivalent to a redefinition of the
indicator variables, in which Z; is taken to be zero. This then leads to the
same formulation of the model that has already been discussed.

The application of these ideas in the analysis of actual data sets will be

illustrated in Section 3.4, after we have seen how the proportional hagards
model can be fitted.
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3.3 Fitting the proportional hazards model

Fitting the proportional hazards model given in equation (3.3) to an observed
et of survival data entails estimating the unknown coefficients of the ex-
planatory variables, Xi, Xs, ... , Xp, in the linear component of the mode'l7
B1, B2, - - 0p- The baseline hazard function, ho(t), may also need to 1?6 estz
mated. It turns out that these two components of the.model can be estimate
separately. The 3’s are estimated first and these e§t1mate§ are the%n used to
construct an estimate of the baseline hazard function. This is an important
result, since it means that in order to make inferepces about the effects of p
explanatory variables, X1, Xs,..., Xy, on the relative bazard, hi(t')/hg (t), we
do not need an estimate of ho(t). Methods for estimating ho(t) will therefore
red until Section 3.8.

be’lfllfierﬁ—(iefﬁcients in the proportional hazards mc?del, which are the un-
known parameters in the model, can be estimated using the meth.od of mazi-
mum likelihood. To operate this method, we first obtain the likelihood of the
sample data. This is the joint probability of the observed data, regarded as a
function of the unknown parameters in the assumed mode%, F0r~ the propor-
tional hazards model, this is a function of the observed survival t1me§ and the
unknown [-parameters in the linear component'of the model. Estlma’ces of
the ’s are then those values that are the most likely on the basis of the ob-
served data. These mazimum likelihood estimates are therefore tl}e VE?,III.GS that
maximise the likelihood function. From a computational viexypomt, it is more
convenient to maximise the logarithm of the likelihood funct.lon. Furthermore,
approximations to the variance of maximum likel}hood estml.ates can jbe ob—
tained from the second derivatives of the log-likelihood function. Details will
not be given here, but Appendix A contains a summary of relevant results
from the theory of maximum likelihood estimation.

Suppose that data are available for n individuals, amgng whom t}}ere are r
distinet death times and n — r right-censored survival times. We will for the
moment assume that only one individual dies at each death time, so that there
are no ties in the data. The treatment of ties will be discussed in Section 3.3.2.
The r ordered death times will be denoted by #(1) < tiy < <l 50 that
t(;) is the jth ordered death time. The set of 1nd1Y1duals who are 8?1:- r}zk it
time t(;) will be denoted by R(t;)), so that R(.t(j)) is the group of individuals
who are alive and uncensored at a time just prior to t(;). The quantity R(t(;)
is called the risk set. . )

Cox (1972) showed that the relevant likelihood function for the proportional
hazards model in equation (3.3) is given by

. eXp(IB/T»(j))

- ) 3.4)
He JI;Il 2ieRity) exp(B8'z) (

in which @ ;) is the vector of covariates for the indiVid}l&l who digs a‘t the Jth
ordered death time, #(;). The summation in the denomlnator' of this likelihood
function is the sum of the values of exp(8'z) over all indiV}d.uals who are at
risk at time ;. Notice that the product is taken over the individuals for whom
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death times have been recorded. Individuals for whom the survival times are
censored do not contribute to the numerator of the log-likelihood function,
but they do enter into the summation over the risk sets at death times that
occur before a censored time. Moreover, the likelihood function depends only
on the ranking of the death times, since this determines the risk set at each
death time. Consequently, inferences about the effect of explanatory variables
on the hazard function depend only on the rank order of the survival times.

Now suppose that the data consist of n observed survival times, denoted by
t1,t9,...,t,, and that §; is an event indicator, which is zero if the ith survival
time ¢;, 4 = 1,2,...,n, is right-censored, and unity otherwise. The likelihood
function in equation (3.4) can then be expressed in the form

5
- exp(B'x;)
g { e R exp(B'zr) } ’

where R(t;) is the risk set at time #;. The corresponding log-likelihood function
is given by

logL(ﬁ):Zéi B'xz; —log Z exp(B'z;) p . (3.5)
i=1

lER(ti)

The maximum likelihood estimates of the §-parameters in the proportional
hazards model can be found by maximising this log-likelihood function using
numerical methods. This maximisation is generally accomplished using the
Newton-Raphson procedure described below in Section 3.3.3.

Fortunately, most of the major statistical packages have facilities which en-
able the proportional hazards model to be fitted. Such software also gives the
standard errors of the parameter estimates in the fitted model. The calcula-
tions in this book have been carried out using the package SAS, with the SAS
procedure proc phreg being used to fit the proportional hazards model of
equation (3.3).

The justification for using equation (3.4) as a likelihood function, and fur-
ther details on the structure of the likelihood function, are given in Sec-
tion 3.3.1. The treatment of tied survival times is then discussed in Sec-
tion 3.3.2 and the Newton-Raphson procedure is outlined in Section 3.3.3.
These three sections can be omitted without loss of continuity.

3.83.1* Likelihood function for the model

The basis of the argument used in the construction of a likelihood function
for the proportional hazards model is that intervals between successive death
times convey no information about the effect of explanatory variables on the
hazard of death. This is because the baseline hazard function has an arbitrary
form, and so it is conceivable that ho(#), and hence h{t), is zero in those time
intervals in which there are no deaths. This in turn means that these intervals
give no information about the values of the S-parameters. We therefore con-
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sider the probability that the ith individual dies at some time #;), conditional
on t(;, being one of the observed set of r death times t(1),%(2),...,t(). If the
vector of explanatory variables for the individual who dies at ;) is denoted
by x(;), this probability is

P(individual with variables ;) dies at t(;y | one death at #(;)). (3.6)

Next, from the result that the probability of an event A, given that an event
B has occurred, is given by

P(A|B) =P(A and B)/P(B),
the probability in expression (3.6) becomes

P(individual with variables ;) dies at t;))

(3.7)
P(one death at t;))

Since the death times are assumed to be independent of one another, the
denominator of this expression is the sum of the probabilities of death at
time ¢(;) over all individuals who are at risk of death at that time. If these
individuals are indexed by [, with R(t(;)) denoting the set of individuals who
are at risk at time t(;y, expression (3.7) becomes

P(individual with variables @ ;) dies at t(;))

3.8
ZleR(t(j)) P(individual [ dies at t;y) (3:8)

The probabilities of death at time ¢;), in expression (3.8), are now replaced
by probabilities of death in the interval (t;), t(;) + 0t), and dividing both the
numerator and denominator of expression (3.8) by dt, we get

P{individual with variables ;) dies in (t(;),t(;) + 0t)}/6t
ZleR(t<j)) P{individual [ dies in (¢(;y,t¢;) + dt)}/dt

The limiting value of this expression as §t — 0 is then the ratio of the proba-
bilities in expression (3.8). But from equation (1.2), this limit is also the ratio
of the corresponding hazards of death at time #;), that is,

Hazard of death at time £ for individual with variables @j
Y len(,,,) {Hazard of death at time t(;) for individual 1}
J

If it is the sth individual who dies at £(;), the hazard function in the numerator
of this expression can be written h;(t(;)). Similarly, the denominator is the
sum of the hazards of death at time ¢(;) over all individuals who are at risk of
death at this time. This is the sum of the values h;(t(;)) over those individuals
in the risk set at time t¢;y, R(t(;)). Consequently, the conditional probability
in expression (3.6) becomes

hi(t))
2ien,) Mty)

On using equation (3.3), the baseline hazard function in the numerator and
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denominator cancels out, and we are left with

exp(ﬁ/m(j))
ZLGR(L(j)) exp(8'a;)

Finally, taking the product of these conditional probabilities over the r death
times gives the likelihood function in equation (3.4).

The likelihood function that has been obtained is not a true likelihood, since
it does not make direct use of the actual censored and uncensored survival
times. For this reason it is referred to as a partial likelihood function.

In order to throw more light on the structure of the partial likelihood,
consider a sample of survival data from five individuals, numbered from 1 to
5. The survival data are illustrated in Figure 3.1.
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Figure 3.1 Survival times of five individuals.

The observed survival times of individuals 2 and 5 will be taken to be right-
censored, and the three ordered death times are denoted ¢(1) < () < t(a).
Then, t(1) is the death time of individual 3, #(3) is that of individual 1, and
t(3) that of individual 4.

The risk set at each of the three ordered death times consists of the indi-
viduals who are alive and uncensored just prior to each death time. Hence,
the risk set R(t(1)) consists of all five individuals, risk set R(t()) consists of
individuals 1, 2 and 4, while risk set R(t3)) only includes individual 4. Now
write (i) = exp(B8'x;), i = 1,2,...,5, for the risk score for the ith individ-
ual, where x; is the vector of explanatory variables for that individual. The
numerators of the partial likelihood function for times (1), f(2y and t(3), re-
spectively, are 9(3), (1) and 1(4), since individuals 3, 1 and 4, respectively,
die at the three ordered death times. The partial likelihood function over the
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three death times is then

#(3) ¥(1) P(4)

X

D 92 1 9B) T U@ 1 906) P+ 0@2) +v@  B@)

It turns out that standard results used in maximum likelihood estimation
carry over without modification to maximum partial likelihood estimation. In
particular, the results given in Appendix A for the variance-covariance matrix
of the estimates of the 8’s can be used, as can distributional results associated
with likelihood ratio testing, to be discussed in Section 3.4.

3.8.2* Treatment of ties

The proportional hazards model for survival data assumes that the hazard
function is continuous, and under this assumption, tied survival times are
not possible. Of course, survival times are usually recorded to the nearest
day, month or year, and so tied survival times can arise as a result of this
rounding process. Indeed, Examples 1.2, 1.3 and 1.4 in Chapter 1 all contain
tied observations.

In addition to the possibility of more than one death at a given time, there
might also be one or more censored observations at a death time. When there
are both censored survival times and deaths at a given time, the censoring is
assumed to occur after all the deaths. Potential ambiguity concerning which
individuals should be included in the risk set at that death time is then re-
solved and tied censored observations present no further difficulties in the
computation of the likelihood function using equation (3.4). Accordingly, we
only need consider how tied survival times can be handled in fitting the pro-
portional hazards model.

In order to accommodate tied observations, the likelihood function in equa~
tion (3.4) has to be modified in some way. The appropriate likelihood function
in the presence of tied observations has been given by Kalbfleisch and Prentice
(2002). However, this likelihood has a very complicated form, and will not be
reproduced here. In addition, the computation of this likelihood function can
be very time consuming, particularly when there are a relatively large number
of ties at one or more death times. Fortunately, there are a number of approx-
imations to the likelihood function that have computational advantages over
the exact method. But before these are given, some additional notation needs
to be developed.

Let s; be the vector of sums of each of the p covariates for those individuals
who die at the jth death time, ¢¢;), 7 = 1,2,..., r. If there are d; deaths at

t(;), the hth element of s; is sp; = 37,7 @k, where xp;; is the value of
the hth explanatory variable, h = 1,2,... p, for the kth of d; individuals,
k=1,2,...,d;, who die at the jth death time, j =1,2,...,7.

The simplest approximation to the likelihood function is that due to Breslow
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(1974), who proposed the approximate likelihood

T

H eXp(ﬁlsj)
=1 {ZZGR(t(j)) eXP(ﬁlwl)}

In this approximation, the d; deaths at time t(;) are considered to be dis-
tinct and to occur sequentially. The probabilities of all possible sequences of
deaths are then summed to give the likelihood in equation (3.9). Apart from a
constant of proportionality, this is also the approximation suggested by Peto
(1972). This likelihood is quite straightforward to compute, and is an ade-
quate approximation when the number of tied observations at any one death
time is not too large. For these reasons, this method is usually the default
procedure for handling ties in statistical software for survival analysis, and
will be used in the examples given in this book.
Efron (1977) proposed

(3.9)

ds; ’

ﬁ exp(B's;)

d; _
e [EieR(t(]-)) exp(B'a;) — (k- 1)dj ' ZleD(t(j)) exp(ﬁlwl)}
as an approximate likelihood function for the proportional hazards model,
where D((;)) is the set of all individuals who die at time ¢(;). This is a
closer approximation to the appropriate likelihood function than that due to

Breslow, although in practice, both approximations often give similar results.
Cox (1972) suggested the approximation

exp(8's;)
=1 ZleR(t(j);dj) exp(f's1)

(3.10)

(3.11)

where the notation R(f(;);d;) denotes a set of d; individuals drawn from
R(t(;)), the risk set at t(;. The summation in the denominator is the sum
over all possible sets of d; individuals sampled from the risk set without
replacement. The approximation in expression (3.11) is based on a model for
the situation where the time-scale is discrete, so that under this model, tied
observations are permissible. Now, the hazard function for an individual with
vector of explanatory variables x;, h;(t), is the probability of death in the unit
time interval (¢,¢+ 1), conditional on survival to time ¢. A discrete version of
the proportional hazards model of equation (3.3) is the model

hi(t) oy ho(t)
1—hi(t) exp(B'@:) 1— ho(t)’

for which the likelihood function is that given in equation (3.11). In fact, in
the limit as the width of the discrete time intervals becomes zero, this model
tends to the proportional hazards model of equation (3.3).

When there are no ties, that is, when d; = 1 for each death time, the ap-
proximations in equations (3.9), (3.10), and (3.11) all reduce to the likelihood
function in equation (3.4).
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3.8.3% The Newton-Raphson procedure

Models for censored survival data are usually fitted by using the Newton-
Raphson procedure to maximise the partial likelihood function, and so the
procedure is outlined in this section.

Let u(3) be the px 1 vector of first derivatives of the log-likelihood function
in equation (3.5) with respect to the S-parameters. This quantity is known as
the vector of efficient scores. Also, let I(3) be the p x p matrix of negative
second derivatives of the log-likelihood, so that the (j, k)th element of T (8) is

_Slog L(B)
08,00k

The matrix I(8)is known as the observed information matriz.
According to the Newton-Raphson procedure, an estimate ofAthe vector of
B-parameters at the (s + 1)th cycle of the iterative procedure, 3,,,, is

BS-H - Bs + Iﬁl(Bs)u(Bs%

for s =0,1,2,..., where u(Bé) is the vector of efficient scores and 1*1(33) is
the inverse of the information matrix, both evaluated at BS. The procedure
can be started by taking BO = 0. The process is terminated when the change
in the log-likelihood function is sufficiently small, or when the largest of the
relative changes in the values of the parameter estimates is sufficiently small.

When the iterative procedure has converged, the variance-covariance ma-
trix of the parameter estimates can be approximated by the inverse of the
information matrix, evaluated at B, that is, I"'(3). The square root of the
diagonal elements of this matrix are then the standard errors of the estimated

values of 31, Ba, ..., Bp.

3.4 Confidence intervals and hypothesis tests for the §’s

When a statistical package is used to fit a proportional ha?ards moc}eL the
parameter estimates that are provided are usually accompanied b3" their stan-
dard errors. These standard errors can be used to obtain approximate Conf:'
dence intervals for the unknown S-parameters. In particular, a 100(1 — )%

confidence interval for a parameter 3 is the interval with limits B4 24 /2 s€ B,

where B is the estimate of 3, and 2,/ is the upper o /2-point of the standard
normal distribution. o this is

If a 100(1 — a)% confidence interval for 3 does not include zero, 1
evidence that the value of 3 is non-zero. More specifically, the‘ null hYPPt’heii
that 8 = 0 can be tested by calculating the value of the statistic 5 / se (B). The
observed value of this statistic is then compared to percentage points of the
standard normal distribution in order to obtain the corresponding P-value.
Equivalently, the square of this statistic can be compared with percentage
points of a chi-squared distribution on one degree of freedom. This procedure
is sometimes called a Wald test. Indeed, the P-values for this test are often
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given alongside parameter estimates and their standard errors in computer
output.

When attempting to interpret the P-value for a given parameter, [;, say,
it is important to recognise that the hypothesis that is being tested is that
B; = 0 in the presence of all other terms that are in the model. For example,
suppose that a model contains the three explanatory variables X1, Xo, X,
and that their coefficients are 31, 82, 35. The test statistic ﬁg/se (/6’2) is then
used to test the null hypothesis that S, = 0 in the presence of 51 and 3. If
there was no evidence to reject this hypothesis, we would conclude that Xo
was not needed in the model in the presence of X; and X;.

In general, the individual estimates of the 3’s in a proportional hazards
model are not all independent of one another. This means that the results of
testing separate hypotheses about the S-parameters in a model may not be
easy to interpret. For example, consider again the situation where there are
three explanatory variables, X1, Xy, X5. If 3; and B, were not found to be
significantly different from zero, when compared with their standard errors,
we could not conclude that only X3 need be included in the model. This
is because the coeflicient of X, for example, could well change when X, is
excluded from the model, and vice versa. This would certainly happen if X3
and Xy were correlated.

Because of the difficulty in interpreting the results of tests concerning the
coefficients of the explanatory variables in a model, alternative methods for
comparing different proportional hazards models are required. It turns out
that the methods to be described in Section 3.5 are much more satisfactory
than the Wald tests. Little attention should therefore be paid to the results
of these tests given in computer-based analyses of survival data.

3.4.1 Standard errors and confidence intervals for hazard ratios

We have seen that in situations where there are two groups of survival data,
the parameter (3 is the logarithm of the ratio of the hazard of death at time ¢ for
individuals in one group relative to those in the other. Hence the hazard ratio
itself is 1 = €f. The cor responding estimate of the hazard ratio is ) = exp(ﬁ)
and the standard error of 1/1 can be obtained from the standard error of ﬂ
using the result given as equatlon (2.9) in Chapter 2. From this result, the
approximate variance of 1/), a function of ﬁ, is

~ 2 ~
{exp(B)} var (5),
that is, ¥2 var (B), and so the standard error of ¢ is given by
se (1) = Pse (B). (3.12)

Generally speaking, a confidence interval for the true hazard ratio will be
more informative than the standard error of the estimated hazard ratio. A
100(1 ~ )% confidence interval for the true hazard ratio, ¥, can be found
simply by exponentiating the confidence limits for (. An interval estimate
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obtained in this way is preferable to one found using ¥ = 2z, s28e(¢). This is
because the distribution of the logarithm of the estimated hazard ratio will be
more closely approximated by a normal distribution than that of the hazard
ratio itself.

The construction of a confidence interval for a hazard ratio is illustrated in
Example 3.1 below. Fuller details on the interpretation of the parameters in
the linear component of a proportional hazards model are given in Section 3.7.

3.4.2 Two examples

In this section, the results of fitting a proportional hazards model to data
from two of the examples introduced in Chapter 1 are given.

Ezample 8.1 Prognosis for women with breast cancer

Data on the survival times of breast cancer patients, classified according to
whether or not sections of their tumours were positively stained, were first
given in Example 1.2. The variable that indexes the result of the staining
process can be regarded as a factor with two levels. From the argurr}en’cs
given in Section 3.2.1, this factor can be fitted by using an indicator Var}aple
X to denote the staining result, where X = 0 corresponds to negative staining
and X = 1 to positive staining. Under the proportional hazards model, the
hazard of death at time ¢t for the ith woman, for whom the value of the
indicator variable is z;, is

hi(t) = eP% ho(t),

where z; is zero or unity. The baseline hazard function hg(t) is then the hazard
function for a women with a negatively stained tumour. This is essentially the
model considered in Section 3.1.1, and given in equation (3.2).

In the group of women whose tumours were positively stained, there are two
who die at 26 months. To cope with this tie, the Breslow approximation to the
likelihood function will be used. This model is fitted by finding that value of 3,
/3’, which maximises the likelihood function in equation (3.9). The maximum
likelihood estimate of 3 is 3 = 0.908. The standard error of this estimate is
also obtained from statistical packages for fitting the Cox regression model,
and turns out to be given by se (3) = 0.501.

The quantity e? is the ratio of the hazard function for a woman with X =1
to that for a woman with X = 0, so that 8 is the logarithm of the ratio
of the hazard of death at time t for positively stained relative to negatively
stained women. The estimated value of this hazard ratio is €%-9%® = 2.48. Since
this is greater than unity, we conclude that a woman who has a positively
stained tumour will have a greater risk of death at any given time than a
comparable women whose tumour was negatively stained. Positive staining
therefore indicates a poorer progunosis for a breast cancer patient.

The standard error of the hazard ratio can be found from the standard error

of 3, using the result in equation (3.12). Since the estimated relative hazard is
b= exp([j’) — 2.480, and the standard error of 3 is 0.501, the standard error
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of ¢ is given by

se (1) = 2.480 x 0.501 = 1.242.

We can go further and construct a confidence interval for this hazard ratio.
The first step is to obtain a confidence interval for the logarithm of the hazard
ratio, §. For example, a 95% confidence interval for 3 is the interval from
3 —1.96se (B) to 3+ 1.96se (3), that is, the interval from —0.074 to 1.890.
Exponentiating these confidence limits gives (0.93,6.62) as a 95% confidence
interval for the hazard ratio itself. Notice that this interval barely includes

unity, suggesting that there is evidence that the two groups of women have a
different survival experience.

Ezample 3.2 Survival of multiple myeloma patients

Data on the survival times of 48 patients suffering from multiple myeloma
were given in Example 1.3. The data base also contains the values of seven
other variables that were recorded for each patient. For convenience, the values
of the variable that describes the sex of a patient have been redefined to be

zero and unity for males and females respectively. The variables are then as
follows:

Age: Age of the patient,
Sex:  Sex of the patient (0 = male, 1 = female),
Bun:  Blood urea nitrogen,
Ca:  Serum calcium,
Hb:  Serum haemoglobin,
Pcells:  Percentage of plasma cells,
Protein:  Bence-Jones protein (0 = absent, 1 = present).

The sex of the patient and the variable associated with the occurrence of
Bence-Jones protein are factors with two levels. These terms are fitted using

the indicator variables Sex and Protein. The proportional hazards model for
the ith individual is then

hi(t) = exp(ﬂl Agei + (o Sex; + B3 Bun; + B4 Cay + Bs Hb;
+ B¢ Pcells; + ﬁ7P7‘Ot6i’ni)hQ(ﬁ),

where the subscript 7 on an explanatory variable denotes the value of that
variable for the ith individual. The baseline hazard function is the hazard
function for an individual for whom the values of all seven of these variables
are zero. This function therefore corresponds to a male aged zero, who has
zero values of Bun, Ca, Hb and Pcells, and no Bence-Jones protein. In view of
the obvious difficulty in interpreting this function, it might be more sensible to
redefine the variables Age, Bun, Ca, Hb and Pcells by subtracting values for an
average patient. For example, if we took Age — 60 in place of Age, the baseline
hazard would correspond to a male aged 60 years. This procedure also avoids
the introduction of a function that describes the hazard of individuals whoge
ages are rather different from the age range of patients in the study. Although
this leads to a baseline hazard function that has a more natural interpretation,

73
COMPARING ALTERNATIVE MODELS

it will not affect inference about the influence of the explan?utory va.ria,bles 015
hazard of death. For this reason, the untransformed variables v'vﬂl be use

Jiﬁr}llihis example. On fitting the model, the estimates of the coefﬁzifznts o}fotvlvlz

explanatory variables and their standard errors are found to be those s

in Table 3.1.

Table 3.1 Estimated values of
the coefficients of the explanatory
variables on fitting a proportional
hazards model to the data from

Ezample 1.3.
Variable B se (0)
Age ~0.019  0.028
Sex —0.251 0.402
Bun 0.021 0.006
Ca 0.013 0.132
Hb —0.135 0.069
Pecells —0.002 0.007
Protein —0.640 0.427

We see from Table 3.1 that some of the estimates are close to zgro.tlnclfe;a}(lié
if individual 95% confidence intervals are calculated for the cqefﬁmen sto e
seven variables, only those for Bun and Hb exclude zero. This sugg};s S
the hazard function does not depend on all seven explanatory varls esievabnt

However, we cannot deduce from this ‘Fhat Bun and Hb arel t ejC r: ot
variables, since the estimates of the coefficients of the seven exr})l anato yS o
ables in the fitted model are not independent of one another. This mea(;ll ot
if one of the seven explanatory variables were excluded from thfa rrr}o b(; ,3 !
coefficients of the remaining six might be different ‘from those in Table n
For example, if Bun is omitted, the est}lr?a‘fsd choefﬁ;lejr;‘;i 7joefi ;hi ji(l roelrlrzaé;ubi;

iables, Age, Sex, Ca, Hb, Pcelis an . :
?{(ﬁt)a(;;%tirg?:(l)ﬁr,la—bo.OéG,g—b.léLO, —0.001, and —0.420, respec‘glvely. Compﬁ;
son with the values shown in Table 3.1 shows that there are dl}cferer.lces in o
estimated coefficients of each of these six variables, although in this case the

iffer very great. A
dlfjlfrellegr;;eesrsll:etzo(geterznigne on which of the seven explagatory varliblzst tt}(lie
hazard function depends, a number of different models will need t<.) e de1 ,

and the results compared. Methods for comparing the fit of alternat{ve mof te;l s,
and strategies for model building are considered in subsequent sections oI this

chapter.

3.5 Comparing alternative models

In a modelling approach to the analysis of survival data, a model is develope.c'l
f(I‘)l the dependence of the hazard function on one or more explanatory vari-
T
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ables. In this development process, proportional hazards models with linear
components that contain different sets of terms are fitted, and comparisons
made between them.

As a specific example, consider the situation where there are two groups of
survival times, corresponding to individuals who receive either a new treat-
ment or a standard. The common hazard function under the model for no
treatment difference can be taken to be hg(¢). This model is a special case of
the general proportional hazards model in equation (3.3), in which there are
no explanatory variables in the linear component of the model. This model is
therefore referred to as the null model.

Now let X be an indicator variable that takes the value zero for individuals
receiving the standard treatment and unity otherwise. Under a proportional
hazards model, the hazard function for an individual for whom X takes the
value z is e#®hg(t). The hazard functions for individuals on the standard and
new treatments are then ho(t) and e”ho(t), respectively. The difference be-
tween this model and the null model is that the linear component of the latter
contains the additional term Sz. Since 8 = 0 corresponds to no treatment ef-
fect, the extent of any treatment difference can be investigated by comparing
these two proportional hazards models for the observed survival data.

More generally, suppose that two models are contemplated for a particular
data set, Model (1) and Model (2), say, where Model (1) contains a sub-
set of the terms in Model (2). Model (1) is then said to be parametrically
nested within Model (2). Specifically, suppose that the p explanatory vari-
ables, X1, Xs,...,X,, are fitted in Model (1), so that the hazard function
under this model can be written as

exp{fiz1 + Bowa + - + Bpaptho(t).

Also suppose that the p + ¢ explanatory variables X1, X, ... s Xy Xpt1s 0y
Xp+q are fitted in Model (2), so that the hazard function under this model is

eXp{ﬁ1$1 4+t 6pxp + 6p+lxp+l +- ﬁp+qu+q}h0(t).

Model (2) then contains the ¢ additional explanatory variables Xpr1, Xpro,
..., Xpyq- Because Model (2) has a larger number of terms than Model (1),
Model (2) must be a better fit to the observed data. The statistical problem
is then to determine whether the additional ¢ terms in Model (2) significantly
improve the explanatory power of the model. If not, they might be omitted,
and Model (1) would be deemed to be adequate.

In the discussion of Example 3.2, we saw that when there are a number of
explanatory variables of possible relevance, the effect of each term cannot be
studied independently of the others. The effect of any given term therefore
depends on the other terms currently included in the model. For example,
in Model (1), the effect of any of the p explanatory variables on the hazard
function depends on the p — 1 variables that have already been fitted, and so
the effect of X, is said to be adjusted for the remaining p — 1 variables. In
particular, the effect of X, is adjusted for X, X5, ..., Xp—1, but we also speak
of the effect of X,, eliminating or allowing for X1, X2, -, Xp-1. Similarly,
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when the ¢ variables Xp11, Xpy2,. .., Xpiq are added to Moqel (1), the effect
of these variables on the hazard function is said to be adjusted for the p
variables that have already been fitted, X1, Xs, ... , Xp-

3.5.1 The statistic —2 log L

In order to compare alternative models fitted to an observed set of survival
data, a statistic that measures the extent to which the.data are ﬁi';ted by
a particular model is required. Since the likelihood function Summ.anses'the
information that the data contain about the unknown parameters 1r} a given
model, a suitable summary statistic is the value of the likelihood_ function W.he'n
the parameters are replaced by their maximum likelihood estimates. This is
the maximised likelihood under an assumed model, and can be computefi from
equation (3.4) by replacing the §’s by their maximum likelihood est%mgtes
under the model. For a given set of data, the larger the value of the maximised
likelihood, the better is the agreement between the model and the observed
data. ' .

For reasons given in the sequel, it is more convenient to use mlnus twice
the logarithm of the maximised likelihood in comparing alternative models.
If the maximised likelihood for a given model is denoted by L, the summary
measure of agreement between the model and the data is —2log L. From
Section 3.3.1, L is in fact the product of a series of conditional probabilities,
and so this statistic will be less than unity. In consequence, —2log L will
always be positive, and for a given data set, the smaller the value of —2log L,
the better the model.

The statistic —210gﬁ cannot be used on its own as a measure of model
adequacy. The reason for this is that the value of L, and hence of —.2 log L,
is dependent upon the number of observations in the data set. Thus 1?, after
fitting a model to a set of data, additional data became available to which the
fit, of the model was the same as that to the original data, the value of —2log L
for the enlarged data set would be different from that of the original c.lata‘
Accordingly the value of —2log L is only useful when making comparisons
between models fitted to the same data.

3.5.2 Comparing nested models

Consider again Model (1) and Model (2) defined above, and let the value of
the maximised log-likelihood function for each model be denoted by L(1) and
}3(2), respectively. The two models can then be compared on the basis of the
difference between the values of —2log L for each model. In particular, a large
difference between —2log L(1) and —2log L(2) would lead to the conclusion
that the g variates in Model (2), that are additional to those in Model (1), do
improve the adequacy of the model. Naturally, the amount by which the value
of —2log I changes when terms are added to a model will depend on which
terms have already been iAncluded. In particular, the difference in the values
of —2log L(1) and —2log L(2), that is, —2log L(1) +2log L(2), will reflect the
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combined effect of adding the variables X411, Xpi2,...,Xp44 to a model that
already contains X1, X5, ..., X,,. This is said to be the change in the value of

~2log L due to fitting X1, Xpro, ..., Xp1q, adjusted for X;, X3, ..., X,.
The statistic —2log L(1) 4 2log L(2), can be written as

—2log{L(1)/L(2)},
and this is the log-likelihood ratio statistic for testing the null hypothesis that
the g parameters 3,11, Bps2,.. ., Opt+q in Model (2) are all zero. From results

associated with the theory of likelihood ratio testing (see Appendix A), this
statistic has an asymptotic chi-squared distribution, under the null hypoth-
esis that the coefficients of the additional variables are zero. The number of
degrees of freedom of this chi-squared distribution is equal to the difference
between the number of independent S-parameters being fitted under the two
models. Hence, in order to compare the value of —2log L for Model (1) and
Model (2), we use the fact that the statistic —2log L(1) + 2log L(2) has a
chi-squared distribution on ¢ degrees of freedom, under the null hypothesis
that B,11, Bpt2,-- ., Bprq are all zero. If the observed value of the statistic is
not significantly large, the two models will be adjudged to be equally suitable.
Then, other things being equal, the more simple model, that is, the one with
fewer terms, would be preferred. On the other hand, if the values of —2logf/
for the two models are significantly different, we would argue that the addi-
tional terms are needed and the more complex model would be adopted.

Some texts, and some software packages, ascribe degrees of freedom to the
quantity —2log L. However, the value of —210gﬁ for a particular model does
not have a chi-squared distribution, and so the quantity cannot be considered
to have an associated number of degrees of freedom. Additionally, the quantity
—2log I is sometimes referred to as a deviance. This is also inappropriate,
since unlike the deviance used in the context of generalised linear modelling,
—2log I, does not measure deviation from a model that is a perfect fit to the
data.

Ezrample 8.8 Prognosis for women with breast cancer

Consider again the data from Example 1.2 on the survival times of breast
cancer patients. On fitting a proportional hazards model that contains no
explanatory variables, that is, the null model, the value of —2log L is 173.968.
As in Example 3.1, the indicator variable X, will be used to represent the
result of the staining procedure, so that X is zero for women whose tumours
are negatively stained and unity otherwise. When the variable X is included in
the linear component of the model, the value of —2log L decreases to 170.096.
The values of —2log L for alternative models are conveniently summarised in
tabular form, as illustrated in Table 3.2.

The difference between the values of —2log L for the null model and the
model that contains X can be used to assess the significance of the difference
between the hazard functions for the two groups of women. Since one model
contains one more (-parameter than the other, the difference in the values of
—21log L has a chi-squared distribution on one degree of freedom. The differ-
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Table 3.2 Values of —2log L on
fitting proportional hazards mod-
els to the data from Ezample 1.2.

Variables in model —2log L

none 173.968
X 170.096

ence in the two values of —2log L is 173.968 — 170.096 = 3.872, which is just
significant at the 5% level (P = 0.049). We may therefore con?lude that there
is evidence, significant at the 5% level, that the hazard functions for the two
groups of women are different. ' '

In Example 2.12, the extent of the difference between the survival times (?f
the two groups of women was investigated using the log-rank test: The Ch'l—
squared value for this test was found to be 3.515 (P = 0.06}). This value is
not very different from the figure of 3.872 (P = 0.049) obtained above. T he
similarity of these two P-values means that essentially the same cong:lusmns
are drawn about the extent to which the data provide evidence 'agamst the
null hypothesis of no group difference. From the practical ViEWpOl.nt, the fgct
that one result is just significant at the 5% level, while the other is not quite
significant at that level, is immaterial. . '

Although the model-based approach used in this example is operationally
different from the log-rank test, the two procedures are in fact closely related.
This relationship will be explored in greater detail in Section 3.9.

Example 3.4 Treatment of hypernephroma .

In a study carried out at the University of Oklahoma Health Smences Qenter,
data were obtained on the survival times of 36 patients with a malignant
tumour in the kidney, or hypernephroma. The patients had all been‘ t'reated
with a combination of chemotherapy and immunotherapy, but a@dxtlonally
a nephrectomy, the surgical removal of the kidney, had been car‘rled (?ut on
some of the patients. Of particular interest is whether the survival time of
the patients depends on their age at the time of diagnosis and on whether or
not they had received a nephrectomy. The data obtained in the st.udy were
given in Lee and Wang (2003). In the data set to be used as a basis for this
example, the age of a patient has been classified according to whether .the
patient is less than 60, between 60 and 70 or greater than 70. Table 3.3 gives
the survival times of the patients in months, where an asterisk denotes a
censored observation.

In this example, there is a factor, age group, with three levels (<60, 60-70,
> 70), and a factor associated with whether or not a nephrectomy was per-
formed. There are a number of possible models for these data depending on
whether the hazard function is related to neither, one or both of these factors.
Suppose that the effect due to the jth age group is denoted by «;, j = 1,2,3,
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Tab-le 3.3 Survival times of 36 patients classified ac-
cording to age group and whether or not they have had

a nephrectomy.

MODELLING SURVIVAL DATA

No nephrectomy Nephrectomy
<60 60-70 >70 <60  60-70 >70
9 15 12 104*  108* 10
6 8 9 26 9
21 17 56 14 18
35 115 6
52 52
68 5%
7T* 18
84 36
8 9
38
72
36
48
26
108
5

and that due to nephrectomy status is denoted by v, k= 1,2. The terms a;
and v, may then be included in proportional hazards models for hi(t), the

hazard function for the 7th individual in the study. Five possible models are
as follows:

Model (1):  hy(t) = ho(t);

Model (2):  hy(t) = exp{a; }ho(t);

Model (3):  hy(t) = exp{ug tho(t);

Model (4):  hy(t) = exp{ey; + vi }ho(t);

Model (5):  hi(t) = exp{a; + vi + (av) i tho(t).

Under Model (1), the hazard of death does not depend on either of the two
factors and is the same for all 36 individuals in the study. In Models (2) and
(3), the hazard depends on either the age group or on whether a nephrectomy
was performed, but not on both. In Model (4), the hazard depends on both
factors, where the impact of nephrectomy on the hazard is independent of the
age group of the patient. Model (5) includes an interaction between age group
and nephrectomy, so that under this model the effect of a nephrectomy on the
hazard of death depends on the age group of the patient.
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To fit the term «;, two indicator variables Ap and Aj are defined with values
shown in the following table.

Age group Az  As

<60 0 0
60-70 1 0
>70 0 1

The term v is fitted by defining a variable N which takes the value zero
when no nephrectomy has been performed and unity when it has. With this
choice of indicator variables, the baseline hazard function will correspond to
an individual in the youngest age group who has not had a nephrectomy.
Models that contain the term «; are then fitted by including the variables
As, Az in the model, while the term vy, is fitted by including N. The interaction
is fitted by including the products AgN = Ay x N and A3N = A3 x N in the
model. The explanatory variables fitted, and the values of —2log L for each of
the five models under consideration, are shown in Table 3.4. Some computer
software for modelling survival data enables factors to be included in a model
without the user having to define appropriate indicator variables. The values
of —2log L in Table 3.4 could then have been obtained directly using such

software.

Table 3.4 Values of —2log L on fitting five models to
the data in Table 3.3.

Terms in model ~ Variables in model —~2log L
null model none 177.667
& Az, As 172.172
Vi N 170.247
[e%] + Vi Az, As, N 165.508

a; + v+ (Oél/)jk Ag, Az, N Aa N, AsN  162.479

The first step in comparing these different models is to determine if there is
an interaction between nephrectomy status and age group. To do this, Model
(4) is compared with Model (5). The reduction in the value of —2log L on
including the interaction term in the model that contains the main effects of
age group and nephrectomy status is 165.508 — 162.479 = 3.029 on 2 d.f. This
is not significant (P = 0.220) and so we conclude that there is no interaction
between age group and whether or not a nephrectomy has been performed.

We now determine whether the hazard function is related to neither, one
or both of the factors age group and nephrectomy status. The change in the
value of —2log L, on including the term «; in the model that contains vy
is 170.247 — 165.508 = 4.739 on 2 d.f. This is significant at the 10% level
(P = 0.094) and so there is some evidence that «; is needed in a model
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that contains v4. The change in —2log L when v is added to the model that
contains a; is 172.172 — 165.508 = 6.664 on 1 d.f., which is significant at the
1% level (P = 0.010). Putting these two results together, the term a; may
add something to the model that includes v, and vy, is certainly needed in the
model that contains ;. This means that both terms are required, and that
the hazard function depends on both the patient’s age group and on whether
or not a nephrectomy has been carried out.

Before leaving this example, let us consider other possible results from the
comparison of the five models, and how they would affect the conclusion as
to which model is the most appropriate. If the term corresponding to age
group, ¢, was needed in a model in addition to the term corresponding to
nephrectomy status, v, and yet v was not needed in the presence of o, the
model containing just o, Model (2), is probably the most suitable. To make
sure that a; was needed at all, Model (2) would be further compared with
Model (1), the null model. Similarly, if the term corresponding to nephrectomy
status, vk, was needed in addition to the term corresponding to age group, oy,
but a; was not required in the presence of 1, Model (3) would probably be
satistactory. However, the significance of v would be checked by comparing
Model (3) with Model (1). If neither of the terms corresponding to age group
and nephrectomy status were needed in the presence of the other, a maximum
of one variable would be required. To determine which of the two is necessary,
Model (2) would be compared with Model (1) and Model (3) with Model (1).
If both results were significant, on statistical grounds, the model that leads
to the biggest reduction in the value of —2log L from that for the null model
would be adopted. If neither Model (2) nor Model (3) was superior to Model
(1), we would conclude that neither age group nor nephrectomy status had
an effect on the hazard function.

There are two further steps in the modelling approach to the analysis of
survival data. First, we will need to critically examine the fit of a model
to the observed data in order to ensure that the fitted proportional hazards
model is indeed appropriate. Second, we will need to interpret the model,
in order to quantify the effect that the explanatory variables have on the
hazard function. Interpretation of parameters in a fitted model is considered
in Section 3.7, while methods for assessing the adequacy of a fitted model will
be considered in Chapter 4. But first, some general comments are made on
possible strategies for model selection.

3.6 Strategy for model selection

An initial step in the model selection process is to identify a set of explanatory
variables that have the potential for being included in the linear component
of a proportional hazards model. This set will contain those variates and
factors that have been recorded for each individual, but additionally terms
corresponding to interactions between factors or between variates and factors
may also be required.
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Once a set of potential explanatory variables has been isolated, the 'combl—
nation of variables that are to be used in modelling the hazard functlon.has
to be determined. In practice, a hazard function will not depend on a unique
combination of variables. Instead, there are likely to l?e a numb.er. of equaﬂy
good models, rather than a single “best” model. For this reason, it 1s desirable
to consider a wide range of possible models. ‘

An important principle in statistical modelling is that. when a ‘Ferm cogrel—
sponding to the interaction between two factors is to b.e included in a model,
the corresponding lower-order terms should also be mch.lded. This rule is
known as the hierarchic principle, and means that interactions should not be
fitted unless the corresponding main effects are present. Models that are not

i ic are difficult to interpret.
hle;‘irecﬁlcogel selection strategy depends to some extent on the purpose f)f
the study. In some applications, information on a nu.mber gf variables will
have been obtained, and the aim might be to determine Whld.l of them has
an effect on the hazard function, as in Example 1.3 on mul‘?lple m.yeloma.
In other situations, there may be one or more variables .Of primary 1nter§st,
such as terms corresponding to a treatment effect. The aim of the modeulng
process is then to evaluate the effect of such variables onithe hazard function,

as in Example 1.4 on prostatic cancer. Since the other v§r1ables that have been
recorded might also be expected to influence the magmtude of thg treatment
effect, these variables will need to be taken account of in the modelling process.

3.6.1 Variable selection procedures

We first consider the situation where all explanatory variables are on an equal
footing, and the aim is to identify subsets of variables upon which thfa haz-
ard function depends. When the number of potentl‘al explanatory vgmables,
including interactions, non-linear terms and so on, is nc?t too large, it might
be feasible to fit all possible combinations of terms, paying due regard tg Fhe
hierarchic principle. Alternative nested models can be‘compared by examining
the change in the value of —2log L on adding terms into a model or deleting
terms from a model. .

Comparisons between a number of possible models, Whl?h. need not neces-
sarily be nested, can also be made on the basis of the statistic

AIC = —2log L + ag,

in which ¢ is the number of unknown (-parameters in theA m}odfel and o is
a predetermined constant. This statistic is known as Akatke’s information
criterion: the smaller the value of this statistic, the better the model. The
motivatio’n behind this statistic is that if the only difference between two
models is that one includes unnecessary covariates, the values of AIC for the
two models will not be very different. Indeed, the value of AIC will tend to
increase when unnecessary terms are added to the model.

Values of o between 2 and 6 are generally used in computing tk}e Yalue of
the statistic. The choice a = 3 is roughly equivalent to using a 5% significance
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level in judging the difference between the values of —210gﬁ for two nested
models that differ by between one and three parameters. This value of « is
recommended for general use.

Of course, some terms may be identified as alternatives to those in a par-
ticular model, leading to subsets that are equally suitable. The decision on
which of these subsets is the most appropriate should not then rest on sta-
tistical grounds alone. When there are no subject matter grounds for model
choice, the model chosen for initial consideration from a set of alternatives
might be the one for which the value of —2log L or AIC is a minimum. It
will then be important to confirm that the model does fit the data using the
methods for model checking described in Chapter 4.

In some applications, information might be recorded on a number of vari-
ables, all of which relate to the same general feature. For example, the variables
height, weight, body mass index (weight/height?), head circumference, arm
length, and so on, are all concerned with the size of an individual. In view
of inter-relationships between these variables, a model for the survival times
of these individuals may not need to include each of them. It would then be
appropriate to determine which variables from this group should be included
in the model, although it may not matter exactly which variables are chosen.

When the number of variables is relatively large, it can be computation-
ally expensive to fit all possible models. In particular, if there is a pool of p
potential explanatory variables, there are 2P possible combinations of terms,
so that if p > 10, there are more than a thousand possible combinations of
explanatory variables. In this situation, automatic routines for variable selec-
tion that are available in many software packages might seem an attractive
prospect. These routines are based on forward selection, backward elimination
or a combination of the two known as the stepwise procedure.

In forward selection, variables are added to the model one at a time. At
each stage in the process, the variable added is the one that gives the largest
decrease in the value of —2log L on its inclusion. The process ends when the
next candidate for inclusion in the model does not reduce the value of —2log L
by more than a prespecified amount. This is known as the stopping rule. This
rule is often couched in terms of the significance level of the difference in the
values of —2log L when a variable is added to a model, so that the selection
process ends when the next term for inclusion ceases to be significant at a
pre-assigned level.

In backward elimination, a model that contains the largest number of vari-
ables under consideration is first fitted. Variables are then excluded one at a
time. At each stage, the variable omitted is the one that increases the value
of AZIOgIA/ by the smallest amount on its exclusion. The process ends when
the next candidate for deletion increases the value of —2log L by more than
a prespecified amount.

The stepwise procedure operates in the same way as forward selection.
However, a variable that has been included in the model can be considered
for exclusion at a later stage. Thus after adding a variable to the model, the
procedure then checks whether any previously included variable can now be
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deleted. These decisions are again made on the basis of prespecified stopping
rules.

These automatic routines have a number of disadvantages. Typically, they
lead to the identification of one particular subset, rather than a set of equally
good ones. The subsets found by these routines often depend on the variable
selection process that has been used, that is, whether it is forward selection,
backward elimination or the stepwise procedure, and generally tend not to take
any account of the hierarchic principle. They also depend on the stopping rule
that is used to determine whether a term should be included in or excluded
from a model. For all these reasons, these automatic routines have a limited
role in model selection, and should certainly not be used uncritically.

Instead of using automatic variable selection procedures, the following gen-
eral strategy for model selection is recommended.

1. The first step is to fit models that contain each of the variables one at a
time. The values of —2log I for these models are then compared with that
for the null model to determine which variables on their own significantly
reduce the value of this statistic.

2. The variables that appear to be important from Step 1 are then fit-
ted together. In the presence of certain variables, others may cease to be
important. Consequently, those variables that do not significantly increase
the value of ~2logﬁ when they are omitted from the model can now be
discarded. We therefore compute the change in the value of —2log L when
each variable on its own is omitted from the set. Only those that lead to a
significant increase in the value of —2log L are retained in the model. Once
a variable has been dropped, the effect of omitting each of the remaining
variables in turn should be examined.

3. Variables that were not important on their own, and so were not under
consideration in Step 2, may become important in the presence of others.
These variables are therefore added to the model from Step 2, one at a
time, and any that reduce —2log L significantly are retained in the model.
This process may result in terms in the model determined at Step 2 ceasing
to be significant.

4. A final check is made to ensure that no term in the model can be omitted
without significantly increasing the value of —2log L, and that no term not
included significantly reduces —2log L.

When using this selection procedure, rigid application of a particular signif-
icance level should be avoided. In order to guide decisions on whether to
include or omit a term, the significance level should not be too small; a level
of around 10% is recommended.

In some applications, a small number of interactions and other higher-order
terms, such as powers of certain variates, may need to be considered for inclu-
sion in a model. Such terms would be added to the model identified in Step 3
above, after ensuring that any terms necessitated by the hierarchic principle
have already been included in the model. If any higher-order term leads to a
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significant reduction in the value of —2 log L, that term would be included in
the model.

The procedure outlined above is now illustrated in an example.

Ezample 3.5 Survival of multiple myeloma patients

The analysis of the data on the survival times of multiple myeloma patients
in Example 3.2 suggested that not all of the seven explanatory variables, Age,
Sez, Bun, Ca, Hb, Pcells, and Protein, are needed in a proportional hazards
model. We now determine the most appropriate subsets of these variables.
In this example, transformations of the original variables and interactions
between them will not be considered. We will further assume that there are
no medical grounds for including particular variables in a model. A summary

of the values of —2log L for all models that are to be considered is given in
Table 3.5.

Table 3.5 Values of —2logl for
models fitted to the data from Ezam-

ple 1.3.
Variables in model ~2log I,
none 215.940
Age 215.817
Sex 215.906
Bun 207.453
Ca 215.494
Hb 211.068
Pcells 215.875
Protein 213.890
Hb + Bun 202.938
Hb + Protein 209.829
Bun + Protein 203.641
Bun + Hb + Protein 200.503
Hb + Bun + Age 202.669
Hb + Bun + Sex 202.553
Hb + Bun + Ca 202.937
Hb + Bun + Pcells 202.773

The first step is to fit the null model and models that contain each of the
seven explanatory variables on their own. Of these variables, Bun leads to the
largest reduction in —2log L, reducing the value of the statistic from 215.940
to 207.453. This reduction of 8.487 is significant at the 1% level (P = 0.004)
when compared with percentage points of the chi-squared distribution on 1
d.f. The reduction in —2log L on adding Hb to the null model is 4.872, which
is also significant at the 5% level (P = 0.027). The only other variable thag
on its own has some explanatory power is Protein, which leads to a reduction
in —2log L that is nearly significant at the 15% level (P = 0.152). Although
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this P-value is relatively high, we will for the moment keep Protein under

sideration for inclusion in the model. . " .
COrrlfhe next step is to fit the model that contains Bun, Hb a.nd' Protein, Whlch
leads to a value of —210gf/ of 200.503. The effect of omitting each .of iﬁhe
three variables in turn from this model is shoyvn in Table 5.5. EZ partlc}ztir(i

i i i in —2log L is 9.326, when is omi
hen Bun is omitted, the increase in : / 32¢ : :
rlileeincrease is 3.138, and when Protein is omitted .1t is 2.435. Each 'of th(}se
changes in the value of —2log L can be compared with percentage points 3 3
hi-squared distribution on 1 d.f. Since Protein does I}ot appear to be neede
icn the model, in the presence of Hb and Bun, this variable will not be further

idered for inclusion. ‘
Corllfs 1either Hb or Bun is excluded from the model that contams‘both of thesi
variables, the increase in —21ogi is 4.515 and 8.130, .respectlvely. Both o
these increases are significant at the 5% level, and 50 ne@ler Hb nor Bur; iin
be excluded from the model without significantly increasing the value of the
—21log L statistic.

Fingally, we look to see if any of variables Age, Sex, Ca and Pcells shouldhbe
included in the model that contains Bun and Hb. Table 3.5 Asl%ows that WOeSn
any of these four variables is added, the reduction in —2log L is less tham1 .d,
and so none of them need to be included in the model. We therefore conclude
that the most satisfactory model is that containing Bun and Hb.

We now turn to studies where there are variables of pl‘rimary importance,
such as a treatment effect. Here, we proceed in the following manner.

1. The important prognostic variables are first selected, ignori‘ng the trea}L;c-
ment effect. Models with all possible combinations of the var1able§ can ‘ e
fitted when their number is not too large. Alternatlvelyg the var.lab%e se-
lection process might follow similar lines to those described previously in
Steps 1 to 4.

9. The treatment effect is then included in the model. In this way, any‘
differences between the two groups that arise as a refsult of dlfferencei
between the distributions of the prognostic variables in each treatmen
group, are not attributed to the treatment.

3. If the possibility of interactions between the treatment andpthe; ;X—
planatory variables has not been discounted, these must be considered be-
fore the treatment effect can be interpreted.

It will often be interesting to fit a model that cor'ltains. the treatment (;lf—

fect alone. This enables the effect that the proggostlc variables have on the
i the treatment effect to be evaluated. o

m?inithlf ed(i)sfcussion on strategies for model selection, .the use of §tgtlst(11ca1
criteria to guide the selection process has been empha.s1sed. In addlt‘lon, ue
account must be taken of the application area. In' partlcular,.on :?ubj‘ec;c area
grounds, it may be inappropriate to include partllcular comb%nzhmtlons o v-ggll—
ables. On the other hand, there might be some variables that ltAlS not Seﬁl'SIG fs
to omit from the model, even if they appear not to be needed in modelling a
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particular data set. Indeed, there is always a need for non-statistical consid-
erations in model building.

Ezample 3.6 Comparison of two treatments for prostatic cancer

In the data from Example 1.4 on the survival times of 38 prostatic cancer
patients, there are four prognostic variables that might have an effect on
the survival times. These are the age of the patient in years (Age), serum
haemoglobin level (Shd), tumour size (Size) and Gleason index (Index). All
possible combinations of these variates are fitted in a proportional hazards
model and the values of —2log computed. These values are shown in Ta-

ble 3.6, together with the values of Akaike’s information criterion, computed
with o = 3.

Table 3.6 Values of —2log L and AIC for models
fitted to the data from Ezample 1.4.

Variables in model —2log L AIC
none 36.349 36.349
Age 36.269 39.269
Shb 36.196 39.196
Size 29.042 32.042
Index 29.127 32.127
Age + Shb 36.151 42.151
Age + Size 28.854 34.854
Age + Index 28.760 34.760
Shb + Size 29.019 35.019
Shb + Index 27.981 33.981
Size + Index 23.533 29.533
Age + Shb + Size 28.852 37.852
Age + Shb + Index 27.893 36.893
Age + Size + Index 23.269 32.269
Shb + Size + Index 23.508 32.508

Age 4 Shb + Size + Index 23.231 35.231

The two most important explanatory variables when considered separately
are Size and Indez. From the change in the value of —2 log L on omitting either
of them from a model that contains both, we deduce that both variables are
needed in a proportional hazards model. The value of —2 log L is only reduced
by a very small amount when Age and Shb are added to the model that
contains Size and Indexz. We therefore conclude that only Size and Indez are
important prognostic variables.

From the values of Akaike’s information criterion in Table 3.6, the model
with Size and Indez leads to the smallest value of the statistic, confirming
that this is the most suitable model of those tried. Notice also that there are
no other combinations of explanatory variables that lead to similar valyes of
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the AIC-statistic, which shows that there are no obvious alternatives to using
Size and Indez in the model.

We now consider the treatment effect. Let Treat be a variabl.e that takes
the value zero for individuals allocated to the placebo, and umfcy f01f those
allocated to DES. When Treat is added to the model that cor'lta.lns Size and
Index, the value of A2logfl is reduced to 22.572. This reduct}on of 0.961 on
1 d.f. is not significant (P = 0.327). This indicates that there is no treatment
effect, but first we ought to examine whether the coefficients of 1:,he two ex-
planatory variables in the model depend on treatment. To do this, we form
the products Tsize = Treat x Size and Tindex = Treat X Im?esc, and @dd these
to the model that contains Size, Indez and Treat. When Tsize and de@ are
added to the model, —2 log L is reduced to 20.829 and 20.792, respectively.
On adding both of these mixed terms, —2log L becomes 19.795. ‘The reduc-
tions in —210g]i on adding these terms to the model are not 31gn1ﬁcant, and
so there is no evidence that the treatment effect depends on Size and Indez.
This means that our original interpretation of the size of the treatment effect
is valid, and that on the basis of these data, treatment with DES does not
appear to affect the hazard of death. The estimated size of this treatment
effect will be considered later in Example 3.10. ‘ . '

Before leaving this example, we note that when either Tsize or Tindezx is
added to the model, their estimated coefficient, and that of Treat, become
large. The standard errors of these estimates are also very large. In partlc—
ular, in the model that contains Size, Index, Treat and Tsize, the estimated
coefficient of Treat is —11.28 with a standard error of 18.50. For the mo@el
that contains Size, Index, Treat and Tindex, the coefficients of Treat and Tin-
dex are —161.52 and 14.66, respectively, while the standard errors of‘ these
estimates are 18476 and 1680, respectively! This is evidence of overﬁttmg.

In an overfitted model, the estimated values of some of the (-coefficients
will be highly dependent on the actual data. A very slight change t.o the values
of one of these variables could then have a large impact on the estimate of the
corresponding coefficient. This is the reason for such estimates having large
standard errors. S

An overfitted model is one that is more complicated than is justified by
the data, and does not provide a useful summary of the data. This is another
reason for not including the mixed terms in the model for the hazard of death
from prostatic cancer.

3.6.2 Testing for non-linearity

When the dependence of the hazard function on a variate that takes a Wide
range of values is to be modelled, we should consider whether the variate
should be included as a linear term in the proportional hazards model.

For some variates, transformations of their original values might be used in
place of the original variate. For example, if a variate takes a wide rang.e <.)f
values, that variate might first be transformed by taking logarithms. T}_ns is
particularly appropriate for variates that are strictly positive. The logarithm
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of a variate may also be used when the distribution of the values of the variate
is highly positively skew.

When there are no a prior: reasons for transforming a variate, the assump-
tion of linearity in the variate should at least be critically examined. One
possibility is to add quadratic or even cubic terms to the model, and exam-
ine the consequent reduction in the value of —2log L. If the inclusion of such
terms significantly reduces the value of this statistic, we would conclude that
there is non-linearity, and incorporate the polynomial terms in the model.

In many situations, non-linearity in an explanatory variate cannot be ad-
equately represented by including polynomial terms in a model, or by trans-
forming the original variable. For this reason, the following procedure is rec-
ommended for general use.

The values of the variate are first grouped into four or five categories con-
taining approximately equal numbers of observations. A factor is then defined
whose levels correspond to this grouping. For example, a variate reflecting the
size of a tumour could be fitted as a factor whose levels correspond to very
small, small, medium and large.

More specifically, let A be a factor with m levels formed from a continuous
variate, and let X be a variate that takes the value j when A is at level j,
for j = 1,2,...,m. Linearity in the original variate will then correspond to
there being a linear trend across the levels of A. This linear trend can be
modelled by fitting X alone. Now, fitting the m —1 terms X, X2,..., X™ 1 is
equivalent to fitting A as a factor in the model, using indicator variables as in
Section 3.2.1. Accordingly, the difference between the value of —2log L for the
model that contains X, and that for the model that contains A, is a measure
of non-linearity across the levels of A. If this difference is not significant we
would conclude that there is no non-linearity and the original variate would
be fitted. On the other hand, if there is evidence of non-linearity, the factor
which corresponds to the variate is fitted.

The actual form of the non-linearity can be further studied from the coef-
ficients of the indicator variables corresponding to A. Indeed, a plot of these
coeflicients may help in establishing the nature of any trend across the levels
of the factor A.

Ezxample 3.7 Survival of multiple myeloma patients
In Example 3.5, we found that a proportional hazards model that contained
the explanatory variables Bun and Hb appeared to be appropriate for the data
on the survival times of multiple myeloma patients. We now consider whether
there is any evidence of non-linearity in the values of serum haemoglobin level,
and examine whether a quadratic term is needed in the proportional hazards
model that contains Bun and Hb. When the term Hb? is added to this model,
the value of —2log L is reduced from 202.938 to 202.917. This reduction of
0.021 on 1 d.f. is clearly not significant, which suggests that a linear term in
Hb is sufficient.

An alternative way of examining the extent of non-linearity is to use a
factor to model the effect of serum haemoglobin level on the hazard function.
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Suppose that a factor with four levels is defined, where level 1 corresponds
to values of Hb less than or equal to 7, level 2 to values between 7 and 10,
Jevel 3 to values between 10 and 13 and level 4 to values greater than 13. This
choice of levels corresponds roughly to the quartiles of the distribution of the
values of Hb. This factor can be fitted by defining three indicator variables,
Hb2, Hb3 and Hb4, which take the values shown in the following table.

Level of factor (X) Value of Hb Hbv2 Hb3 Hb4

1 Hb <7 0 0 0
2 7T< Hb<10 1 0 0
3 10 < Hb < 13 0 1 0
4 Hb > 13 0 0 1

When a model containing Bun, Hb2, Hb3 and Hb4 is fitted, the value of
ﬂQlogJi is 200.417. The change in the value of this statistic on adding the
indicator variables Hb2, Hb3 and Hb4 to the model that contains Bun alone
is 7.036 on 3 d.f., which is significant at the 10% level (P = 0.071). However,
it is difficult to identify any pattern across the factor levels.

A linear trend across the levels of the factor corresponding to haemoglo-
bin level can be modelled by fitting the variate X, which takes values 1, 2,
3, 4, according to the factor level. When the model containing Bun and X
is fitted, —2log L is 203.891, and the change in the value of —2log L due to
any non-linearity is 203.891 — 200.417 = 3.474 on 2 d.f. This is not significant
when compared with percentage points of the chi-squared distribution on 2
d.f. (P = 0.176). We therefore conclude that the effect of haemoglobin level
on the hazard of death in this group of patients is adequately modelled by
using the linear term Hb.

3.7 Interpretation of parameter estimates

When the proportional hazards model is used in the analysis of survival data,
the coefficients of the explanatory variables in the model can be interpreted
as logarithms of the ratio of the hazard of death to the baseline hazard.
This means that estimates of this hazard ratio, and corresponding confidence
intervals, can easily be found from the fitted model. The interpretation of pa-
rameters corresponding to different types of term in the proportional hazards
model is described in the following sections.

3.7.1 Models with a variate
Suppose that a proportional hazards model contains a single continuous vari-
able X, so that the hazard function for the ith of n individuals, for whom X

takes the value z;, 18
hi(t) = eP™iho(t).
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The coefficient of z; in this model can then be interpreted as the logarithm of
a hazard ratio. Now consider the ratio of the hazard of death for an individual
for whom the value z +1 is recorded on X, relative to one for whom the value
z is obtained. This is
exp{fz+1)} 3
exp(fz)

?

and so B in the fitted proportional hazards model is the estimated change in
the logarithm of the hazard ratio when the value of X is increased by one
unit.

Using a similar argument, the estimated change in the log-hazard ratio when
the value of the variable X is increased by r units is 7“[3’ , and the corresponding
estimate of the hazard ratio is exp(r,@). The standard error of the estimated
log-hazard ratio will be rse (B), from which confidence intervals for the true
hazard ratio can be derived.

The above argument shows that when a continuous variable X is included
in a proportional hazards model, the hazard ratio when the value of X is
changed by 7 units does not depend on the actual value of X. For example, if
X refers to the age of an individual, the hazard ratio for an individual aged
70, relative to one aged 65, would be the same as that for an individual aged
20, relative to one aged 15. This feature is a direct result of fitting X as a
linear term in the proportional hazards model. If there is doubt about the
assumption of linearity, a factor whose levels correspond to different sets of
values of X can be fitted. The linearity assumption can then be checked using
the procedure described in Section 3.6.2.

3.7.2 Models with a factor

When individuals fall into one of m groups, m > 2, which correspond to cat-
egories of an explanatory variable, the groups can be indexed by the levels
of a factor. Under a proportional hazards model, the hazard function for an
individual in the jth group, j = 1,2,...,m, is given by

h;(t) = exp(v;)ho(t),

where ; is the effect due to the jth level of the factor, and hg(t) is the baseline
hazard function. This model is overparameterised, and so, as in Section 3.2.2,
we take y; = 0. The baseline hazard function then corresponds to the hazard
of death at time ¢ for an individual in the first group. The ratio of the hazards
at time ¢ for an individual in the jth group, j > 2, relative to an individual
in the first group, is then exp(v;). Consequently, the parameter ~y; is the
logarithm of this relative hazard, that is,

v; = log{h;(t)/ho(t)}-

A model that contains the terms Y, § = 1,2,...,m, with v1 = 0, can
be fitted by defining m — 1 indicator variables, X2, X3,..., Xm, as shown in
Section 3.2.2. Fitting this model leads to estimates 42,73, .-, ¥m, and their
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standard errors. The estimated logarithm of the relative hazard for an indi-
vidual in group j, relative to an individual in group 1, is then ¥;.

A 100(1—a)% confidence interval for the true log—haz.ard ratio is the interval
from 4; — Za 2 8¢ (V;) to 4 + 2o 2 8€ (9;), where z,/9 is the upper a/2-point
of the standard normal distribution. A corresponding confidence interval for
the hazard ratio itself is obtained by exponentiating these confidence limits.

Ezample 8.8 Treatment of hypernephroma

Data on the survival times of patients with hypernephroma were given in
Table 3.3. In this example, we will only consider the data from those patients
on whom a nephrectomy has been performed, given in columns 4 to 6 of
Table 3.3. The survival times of this set of patients are classified according
to their age group. If the effect due to the jth age group is denoted by ay,
j = 1,2,3, the proportional hazards model for the hazard at time ¢ for a

patient in the jth age group is such that
hi(t) = exp(oy)ho(t).

This model can be fitted by defining two indicator variables, Az and Az, where
Ay is unity if the patient is aged between 60 and 70, and Aj is unity if the
patient is more than 70 years of age, as in Example 3.4. This corresponds to
taking a3 = 0.

The value of —2log L for the null model is 128.901, and when the term «;
is added, the value of this statistic reduces to 122.501. This reduction of 6.400
on 2 d.f. is significant at the 5% level (P = 0.041), and so we cor.lcl‘ude that
the hazard function does depend on which age group the patient is in.

The coefficients of the indicator variables As and Az are estim'ates of ay
and as, respectively, and are given in Table 3.7. Since the constraint oy = 0
has been used, &; = 0.

Table 3.7 Parameter estimates
and their standard errors on fit-
ting a proportional hazards model
to data from Ezample 3.4.

Parameter Estimate s.e.

Q2 —0.065 0.498
o3 1.824 0.682

The hazard ratio for a patient aged 60-70, relative to one aged less thaél
60, is e~ 0965 = 0.94, while that for a patient whose age is greater than 7 t7
relative to one aged less than 60, is 24 = 6.20. These results suggest tha
the hazard of death at any given time is greatest for patients who are (.)lder‘
than 70, but that there is little difference in the hazard functions for patients

in the other two age groups. "
The standard error of the parameter estimates in Table 3.7 can be used to
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obtain confidence intervals for the true hazard ratios. A 95% confidence inter-
val for the log-hazard ratio for a patient whose age is between 60 and 70, rela-
tive to one aged less than 60, is the interval with limits —0.065+(1.96 x 0.498),
that is, the interval (—1.041,0.912). The corresponding 95% confidence inter-
val for the hazard ratio itself is (0.35, 2.49). This confidence interval includes
unity, which suggests that the hazard function for an individual whose age is
between 60 and 70 is similar to that of a patient aged less than 60. Similarly,
a 95% confidence interval for the hazard for a patient aged greater than 70,
relative to one aged less than 60, is found to be (1.63,23.59). This interval
does not include unity, and so an individual whose age is greater than 70 has

a significantly greater hazard of death, at any given time, than patients aged
less than 60.

In some applications, the hazard ratio relative to the level of a factor other
than the first may be required. In these circumstances, the levels of the factor,
and associated indicator variables, could be redefined so that some other level
of the factor corresponds to the required baseline level, and the model re-
fitted. The required estimates can also be found directly from the estimates
obtained when the first level of the original factor is taken as the baseline,
although this is more difficult.

The hazard functions for individuals at levels J and j' of the factor are
exp(ay)ho(t) and exp(oy)ho(t), respectively, and so the hazard ratio for an
individual at level j, relative to one at level J',is exp(a; — 1), The log-hazard
ratio is then a;; — a;/, which is estimated by Gy — Q.

To obtain the standard error of this estimate, we use the result that the
variance of the difference é; — &y is given by

var (&; — &) = var (&) + var (&) — 2 cov (Gj,a5).

In view of this, an estimate of the covariance between &; and Gy, as well
as estimates of their variance, will be needed to compute se (&; — &yr). The
calculations are illustrated in Example 3.9.

Ezample 8.9 Treatment of hypernephroma

Consider again the subset of the data from Example 3.4, corresponding to
those patients who have had a nephrectomy. Suppose that an estimate of
the hazard ratio for an individual aged greater than 70, relative to one aged
between 60 and 70, is required. Using the estimates in Table 3.7, the estimated
log-hazard ratio is &3 — dy = 1.824 + 0.065 = 1.889, and so the estimated
hazard ratio is €!8%9 = 6.61. This suggests that the hazard of death at any
given time for someone aged greater than 70 is more than six and a half times
that for someone aged between 60 and 70.

The variance of &3 — &5 is

var (&3) + var (&) — 2 cov (dg, da),

and the variance-covariance matrix of the parameter estimates gives the re.
quired variances and covariance. This matrix can be obtained from statistical
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packages used to fit the Cox regression model, and is found to be

Ay (0.2484 0.0832
As \ 0.0832 0.4649 )’
As As

— (0.2484, var (G3) = 0.4649, and cov (G, Gi3) = 0.0832.

from which var (¢) andard errors in

Of course, the variances are simply the squares of the st
Table 3.7. It then follows that

var (& — @) = 0.4649 1 0.2484 — (2 x 0.0832) = 0.5469,

ard error of ds — d is 0.740. Consequently a 95% confidence

and s0 fhe stan t for the hazard ratio

interval for the log-hazard ratio is (0.440,3.338) and tha
itself is (1.55,8.18). .
Itszlilea(sier way (zf obtaining the estimated Yalue of the hzzz;;i V\I;:gt};oég;zg
individual who is aged greater than 70, relatlYe to one age oen 00 o
17% ua/md the standard error of the estimate, is to redefine the leve snoed e
fac7tor associated with age group. Suppose that the data aurfl neoxgoéil;roa lgevel °
that the first level of the factor corresponds to the agei ga,tg o a,g lovel 2

orresponds to patients aged greater than 70 and leve off 5o aged e
fc:han 60. Choosing indicator variables to be such that the eftec v o
first 1evé1 of the redefined factor is set equal to zero leads to the varia 5

and Bs defined in the table below.

Age group B2 Bs

<60 0 1
60-70 0 0
>70 1 0

i i ient of Ba,
The estimated log-hazard ratio is now simply the estimated coefﬁs;ir; Utputg.
and its standard error can be read directly from standard compu

er 1in win e coe c i i va .a )les are l][te rete(l iS
. . o p
th Ci fﬁCl nis Of ndlCa t
. S been uSed for them. [hlS means

fitted using a statistical pqckage
essential to know how indicator

The mann :
crucially dependent upon the coding that 1{1&
that when a proportional hazards model.ls'
that enables factors to be fitted directly, it 1s
variables used within the package have been defined.

indivi i m, groups
As a further illustration, suppose that individuals fall into one of m group

- : ~ - X7Tl7

: — 1 indicator variables, X2, X3, - >
he coding used for the m . 0. The

%md that the of the main effects of A, Z;’;l aj, is equal to zero
is such that the sum tor A, are

lues of the indicator variables corresponding to an m-level fac
valu ,

then as shown in the following table.
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Level of A Xy Xj L. X
1 -1 -1 -1
2 1 0 0
3 0 1 0
m 0 o ... 1‘

With.this §hoice of indicator variables, A proportional hazards model that
contains this factor can be expressed in the form

h;(t) = exp(aaws + aszs + -+ + O T )ho(t),

where z; is the value of X, for an individual for whom the factor A4 is at

the jth level, j = 2.3 m. The hazard of d i i
. . ’ Yy e ey - eath at a glvi t 3
individual at the first level of the factor is given time for on

exp{—(aa + as+ -+ amn)},
while that for an individual at the jth level of the factor is

exp(a;),

for j > 2. The ratio of the hazard for an individual in group 7, j = 2, relative
to that of an individual in the first group, is then ,

exp(ay + o +ag+ -+ apy).

For exgmple, if m =4 and j = 3, the hazard ratio is exp(az + 203 + ay), and
the variance of the corresponding estimated log-hazard ratio is

var (Gz) + 4 var (&3) + var (&y) + 4 cov (aa, Gs)

+ 4 cov (dg, d4) + 2 cov (@2,(5{4).

Eagh of the terms in this expression can be found from the variance-
covariance matrix of the parameter estimates after fitting a proportional haz-
ar(.is.model, and a confidence interval for the hazard ratio obtained. Altllougil
this is reasonably straightforward, this particular coding of the indicator vari-

ables dc')es make it much more complicated to interpret the individual param-
eter estimates in a fitted model.

3.7.3 Models with combinations of terms

In prewous sections, we have only considered the interpretation of parameter
estimates in proportional hazards models that contain a single term. More
gen.erally, a fitted model will contain terms corresponding to a number of
varllates, factors or combinations of the two. With suitable coding of indicator
Varl‘ables corresponding to factors in the model, the parameter estimates can
again be interpreted as logarithms of hazard ratios.

When a model contains more than one variable, the parameter estimate
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associated with a particular effect is said to be adjusted for the other variables
in the model, and so the estimates are log-hazard ratios, adjusted for the other
terms in the model. The proportional hazards model can therefore be used
to estimate hazard ratios, taking account of other variables included in the
model.

When interactions between factors, or mixed terms involving factors and
variates, are fitted, the estimated log-hazard ratios for a particular factor
will differ according to the level of any factor, or the value of any variate
with which it interacts. In this situation, the value of any such factor level or
variate will need to be made clear when the estimated hazard ratios for the
factor of primary interest are presented.

Instead of giving algebraic details on how hazard ratios can be estimated
after fitting models with different combinations of terms, the general approach
will be illustrated in two examples. The first of these involves both factors and
variates, while the second includes an interaction between two factors.

Ezample 3.10 Comparison of two treatments for prostatic cancer

In Example 3.6, the most important prognostic variables in the study on
the survival of prostatic cancer patients were found to be size of tumour
(Size) and the Gleason index of tumour stage (Index). The indicator variable
Treat, which represents the treatment effect, is also included in a proportional
hazards model, since the aim of the study is to quantify the treatment effect.
The model for the ith individual can then be expressed in the form

hl‘(t) = exp{ﬁl Size; + 62 Index; + ﬁg Treati}ho(t),

for i = 1,2,...,38. Estimates of the f-coefficients and their standard errors
on fitting this model are given in Table 3.8.

Table 3.8 Estimated coefficients
of the explanatory variables on fit-
ting a proportional hazards model
to the data from Ezample 1.4.

Variable B se (0)
Size 0.083  0.048
Index 0.710  0.338
Treat ~1.113 1.203

The estimated log-hazard ratio for an individual on the active treatment,
DES, (Treat = 1) relative to an individual on the placebo (7Treat = 0), with
the same values of Size and Index as the individual on DES, is Bs = —1.113.
Consequently the estimated hazard ratio is e~1-11% = 0.329. The value of this
hazard ratio is unaffected by the actual values of Size and Index. However,
since these two explanatory variables were included in the model, the esti-
mated hazard ratio is adjusted for these variables.
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For comparison, if a model that only contains Treat is fitted, the estimated
coeflicient of Treat is —1.978. The estimated hazard ratio for an individual on
DES, relative to one on the placebo, unadjusted for Size and Indez, is now
e1978 = (.14. This shows that unless proper account is taken of the effect of
size of tumour and index of tumour grade, the extent of the treatment effect
is overestimated.

Now consider the hazard ratio for an individual on a particular treatment
with a given value of the variable Indez and s tumour of a given size, relative
to an individual on the same treatment with the same value of Indez, but
whose size of tumour is one unit less. This is %983 — 1.09. Since this is
greater than unity, we conclude that, other things being equal, the greater
the size of the tumour, the greater that hazard of death at any given time.
Similarly, the hazard ratio for an individual on a given treatment with a given
value of Size, relative to one on the same treatment with the same value of
Size, whose value of Inder is one unit less, is %710 = 9.03. This again means
that the greater the value of the Gleason index, the greater is the hazard of
death at any given time. In particular, an increase of one unit in the value of
Index doubles the hazard of death.

Ezample 3.11 Treatment of hypernephroma

Consider again the full set of data on survival times following treatment for
hypernephroma, given in Table 3.3. In Example 3.4, the most appropriate
proportional hazards model was found to contain terms @, 7=1,2,3, corre-
sponding to age group, and terms vy, k = 1,2, corresponding to whether or
not a nephrectomy was performed. For illustrative purposes, in this example
we will consider the model that also contains the interaction between these
two factors, even though it was found not to be significant. Under this model,

the hazard function for an individual in the Jth age group and the kth level
of nephrectomy status is

h(t) = exp{ay + vy + (Oél/)jk}ho(t), (3.13)

where (av);j is the term corresponding to the interaction.

Consider the ratio of the hazard of death at time # for a patient in the
Jth age group, j = 1,2,3, and the kth level of nephrectomy status, k = 1,2,
relative to an individual in the first age group who has not had a nephrectomy,
which is

exp{oy + vk + ()5}

exp{a1 + vy F (OéV)M} '
As in Example 3.4, the model in equation (3.13) is fitted by including the
indicator variables Ay, As, and N in the model, together with the products
AN and AsN. The estimated coefficients of these variables are then &s, &s,
U, (@)22, and (E;) 39, respectively. From the coding of/tEe indicator variables
that has been used, the estimates &y, U1, (E;)M and (av),, are all zero. The
estimated hazard ratio for an individual in the jth age group, j = 1,2, 3, and
the kth level of nephrectomy status, k = 1,2, relative to one in the first age

ESTIMATING THE HAZARD AND SURVIVOR FUNCTIONS

97

group who has not had a nephrectomy, is then just

—

exp{dy + U5 + (av) ;. }-

. . 3

m im fo = 0.005, Gz = 0.065, Iy = —1.943,

I Oon-zero para eter/gstl ates are (o , : ’

(/@)n = —0.051, and (au)32 — 2.003. The estimated hazard ratios are sum
av)og . s

marised in Table 3.9.

Table 3.9 Estimated hazard ratios on fitting a
model that contains an interaction to the data

from Erample 3.4.

Age group  No nephrectomy Nephrectomy

<60 1.000 0.143
60-70 1.005 0.137
>70 1.067 1.133

. . d
Inclusion of the combination of factor levels for Whlch tlllleteiiﬁmi;e;i jz;ze;i !
i i ;s Table 3.9, emphasises tha e
io is 1.00, in tables such as Ta , P e
rzlt;c)ive to those for individuals in the first age group who ha\fe no;1 tj "
, hrectomy. This table shows that individuals aged less than or ;zqu . al.eé
nefo have had a nephrectomy, have a much reduced hazard of death, hco Ctg()) o
K) those in the other age group and those who have not had a nepnrse fouz.d
Confidence intervals for the corresponding true hazard rgﬁloi .Ci'on found
using the method described in Section 3.7.2. As a.furth(?r 21 . u?:i 1:181 Wilo cor-
fidence interval will be obtained for the hazardlra‘mo tfortl}? 1v1;nuthe pho e
i relative to those .
had a nephrectomy in the segc_n\ld age group | the B .
log-hazarpd ratio is now g+ (ar/)yy, and so the estimated hazard ratio is 0.95

The variance of this estimate is given by

I
e

var (Go) + var {(aw),,} + 2 cov {as, (av)gn}-

= Q. (] arameter e 1 na t esS a ‘ter ﬁttiﬂg
i i i g T estll ¥

] fg) = r {(av
s o o (o (o, ) 18 23;’ ‘C,)a:)n{siqu)eft}iy, the variance of
: a 95% confidence intgrval for
0.441. The corresponding con-
This interval includes
ly different from unity
n Table 3.9 can be

covariance term is cov {Gz, (aw)gs} =
the estimated log-hazard ratio is 0.248, and so
the true log-hazard ratio ranges from ~.O.§32 to L 55)
fidence interval for the true hazard ratio is (0.?9,. .55).
unity, and so the hazard ratio of 0.955 is not mgmﬁcan;c' <
at the 5% level. Confidence intervals for the hazard ratio

found in a similar manner.

3.8* Estimating the hazard and survivor functions

considered the estimation of the -

So far in this chapter, we bave only ards model. As we

rameters in the linear component of a proportional haz
pa
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have seen, this is all that is required in order to draw inferences about the effect
of explanatory variables in the model on the hazard function. Once a suitable
model for a set of survival data has been identified, the hazard function, and
the corresponding survivor function, can be estimated. These estimates can
then be used to summarise the survival experience of individuals in the study.

Suppose that the linear component of a proportional hazards model contains
p explanatory variables, X1, X5,...,X,, and that the estimated coefficients of
these variables are ,31,,@2, e ,Bp. The estimated hazard function for the sth
of n individuals in the study is then given by

~ At ~

hi(t) = exp(ﬁ l’i)ho(t), (314)
where x; is the vector of values of the explanatory variables for the 4th indi-
vidual, 2 = 1,2,...,n, B is the vector of estimated coefficients, and hg(t) is the

estimated baseline hazard function. Using this equation, the hazard function
for an individual can be estimated once an estimate of ho(t) has been found.
The relationship between the hazard, cumulative hazard and survivor func-
tions can then be used to give estimates of the cumulative hazard function
and the survivor function.

An estimate of the baseline hazard function was derived by Kalbfleisch
and Prentice (1973) using an approach based on the method of maximum
likelihood. Suppose that there are r distinct death times which, when arranged
in increasing order, are t(1y < t(g) < -+ < t(;), and that there are d; deaths
and n; individuals at risk at time ¢(;). The estimated baseline hazard function
at time (;) is then given by

holty) =1 -6, (3.15)

where fj is the solution of the equation

> _opBa) N exp(Ba), (3.16)
leR(t(5))

lED(t(j)) 1— éj’@(ﬂ Z,)

for j = 1,2,...,r. In equation (3.16), D(t(;) is the set of all d; individuals
who die at the jth ordered death time, #(;), and as in Section 3.3, R(t;))
is the set of all n; individuals at risk at time t;y. The estimates of the s,
which form the vector B, are those which maximise the likelihood function in
equation (3.4). The derivation of this estimate of ho(t) is quite complex, and
so it will not be reproduced here.
In the particular case where there are no tied death times, that is, where
i =1for j=1,2,...,r, the left-hand side of equation (3.16) will be a single
term. This equation can then be solved to give

., exp(~3 T (5))
o exp(8 z(;))

SJ' =11- ~7
ZZGR(i’(j)) e)(I)(l6 (El)
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where ;) is the vector of explanatory variables for the individual who dies
at time ;.

When there are tied observations, that is, when one or more of the d; are
greater than unity, the summation on the left-hand side of equation (3.16) is
the sum of a series of fractions in which &; occurs in the denominators, raised
to different powers. Equation (3.16) cannot then be solved explicitly, and an
iterative scheme is required.

We now make the assumption that the hazard of death is constant be-
tween adjacent death times. An appropriate estimate of the baseline hazard
function in this interval is then obtained by dividing the estimated hazard in
equation (3.15) by the time interval, to give the step function

. 1 &
ho(t) = _1=5 (3.17)
L+ — tG)
for 25 <t <41y j=12,...,7 =1, with ilo(t) = 0 for t < ().
The quantity éj can be regarded as an estimate of the probability that

an individual survives through the interval from t(;y to t(j+1). The baseline
survivor function can then be estimated by

k
So(t) =] &> (3.18)
j=1
for try <t < tryr), b =12,...,7 = 1, and so this estimate is also a step-

function. The estimated value of the baseline survivor function is unity for
t < t(1), and zero for t = t(,), unless there are censoreai survival times greater
than ¢(,. If this is the case, S’O(t) can be taken to be So(t(,)) until the largest
censored time, but the estimated survivor function is undefined beyond that
time.

The baseline cumulative hazard function is, from equation (1.7), given by

Hy(t) = —log So(t), and so an estimate of this function is
k
Ho(t) = —log So(t) = — Zlogfj, (3.19)
j=1

for t(k) <t < t(k+1), k=1,2,...,7r—1, with H()(f) =0 for t < t(l).

The estimates of the baseline hazard, survivor and cumulative hazard func-
tions in equations (3.17), (3.18) and (3.19) can be used to obtain th(.% cor-
responding estimates for an individual with vector of explanatory variables
x;. In particular, from equation (3.14), the hazard function is estimated by

exp(,é’mi)ﬁo (t). Next, integrating both sides of equation (3.14), we get

/t b (u) du = exp(B/:ci) / ho(w) du, (3.20)
0 0

S0 that the estimated cumulative hazard function for the ith individual is
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given by

A ~ ! ~

A(t) = exp(B i) (). (321)
On multiplying each side of equation (3.20) by —1 and exponentiating, and

making use of equation (1.5), we find that the estimated survivor function for
the ith individual is

. . yewBzy

$it) = {So(t)} : (3.22)
for t) <t < tk+1), B = 1,2,...,r — 1. Note that once the estimated sur-
vivor function, S’i(t), has been obtained, an estimate of the cumulative hazard

function is simply — log S;(¢).
3.8.1 The special case of no covariates

When there are no covariates, so that we have just a single sample of survival
times, equation (3.16) becomes

from which

Then, the estimated baseline hazard function at time tjy is 1 — éj, which
is dj/n;. The corresponding estimate of the survivor function from equa-

tion (3.18) is []F_, &, that is,

(25

b

=iy
which is the Kaplan-Meier estimate of the survivor function given earlier in
equation (2.4). This shows that the estimate of the survivor function given in
equation (3.22) generalises the Kaplan-Meier estimate to the case where the
hazard function depends on explanatory variables.

Furthermore, the estimate of the hazard function in equation (3.17) reduces

to dj/{n;(t; 1) — t(;))}, which is the estimate of the hazard function given
in equation (2.16) of Chapter 2.

3.8.2 Some approzimations to estimates of the baseline functions

When there are tied survival times, the estimated baseline hazard can only
be found by using an iterative method to solve equation (3.16). This iterative
process can be avoided by using an approximation to the summation on the
left-hand side of equation (3.16).
The term i
ééxp(ﬁ/wl)

J i
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in the denominator of the left-hand side of equation (3.16), can be written as
M)

and taking the first two terms in the expansion of the exponent gives
exp {6’8 Z logéj} ~ 1+ B log&;.

Writing 1 — £~ . for the estimated baseline hazard at time £(;), oja’tamed using
Y

3 = ”exp(ﬂ ;) . equa-
this approximation, and substituting 1 + B T log ¢; for &; in eq

tion (3.16), we find that £; is such that

— Z 1~ = Z exp(,@,wl).

1Dy 088 1eR(G)

Therefore, . y
= Z exp(3 x1),
10g 5] lER(t(j)) 5
j i t(sy, and SO
since d; is the number of deaths at the jth ordered death time, t(;), &

£ 4 : (3.23)
. = eXp 7
’ S leR(t,,) P8 1)

. . S
From equation (3.18), an estimate of the survivor function, based on the value

of éj, is given by

4 (3.24)

)

k

= =7
Sot) Qexp Sienisy) ©<P(B @)
_r — 1. From this definition, the estimated
iy zero at the longest survival time, When
ation (3.18). The estimate
from So(t) is

for (k) <t < Ht1)s k=12,.. ‘
survivor function is not necessarl ‘ .
that time is uncensored, unlike the estnpate in equ
of the baseline cumulative hazard function derived

k dj .
Ho(t) = —log Solt) = Z o (3.25)

. — 1. This estimate is often referred to as

=1,2,.. _
B S o stimate of the baseline cumulative

the Nelson-Aalen estimate or the Breslow e

hazard function. ' ' -
i sti baseline survivor function
When there are no covariates, the estimated

equation (3.24) becomes

IkI exp(—d;/n;), (3.26)

j=1
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since n; is the number of individuals at risk at time t(j)- This is the Nelson-
Aalen estimate of the survivor function given in equation (2.6) of Chapter 2
ang the corresponding estimate of the baseline cumulative hazard function is,
>_j=14d;/nj, as in Section 2.3.3 of Chapter 2.

A further approximation is found from noting that the expression

—d;
At b
2R, P8 @)
in the exponent of equation (3.23), will tend to be small, unless there are large

numbers of ties at particular death times. Taking the first two terms of the

expansion of this exponent, and denoting this new approximation to &, by &
gives ’ ’

d;
Al -
ZleR(t<j)) exp(B =)

Adapting equation (3.17), the estimated baseline hazard function in the in-
terval from #(;) to ¢(;41) is then given by

& =1-

d;

ho(t) = =
G+ =) ZZER(tm) exp(8 z1)

: (3.27)

fgr gy St < tgyy, J = 1,2,...,7 — 1. Using §; In place of éj in equa-
tion (3.18), the corresponding estimated baseline survivor function is

k
sso =] [1- . ,

~l
=1 2ieR,,) €xXP(8 )
a'nd a further approximate estimate of the baseline cumulative hazard func-
tion is Hg(t) = —log S§(t). Notice that the cumulative hazard function in

equation (3.25) at time ¢ can be expressed in the form

k
Ho(t) = (tgan) — ti)hs(t),

=1

Where h(t) is given in equation (3.27). Consequently, differences in succes-
sive values of the estimated baseline cumulative hazard function in equa-
tion (3.25) provide an approximation to the baseline hazard function, at times
t(1),t@)s - -+, t(r), that can easily be computed.

In the particular case where there are no covariates, the estimates hj(t)
S5 (t) and H{(t) are the same as those given in Section 3.8.1. Equations sin?ila£
to equations (3.21) and (3.22) can be used to estimate the cumulative hazard
fmd survivor functions for an individual whose vector of explanatory variables
IS ;.

In practice, it will often be computationally advantageous to use either Sy (t)
or Sg(t) in place of Sp(t). When the number of tied survival times is small, all
three estimates will tend to be very similar. Moreover, since the estimates,are
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generally used as descriptive summaries of the survival data, small differences
between the estimates are unlikely to be of practical importance.

Once an estimate of the survivor function has been obtained, the median
and other percentiles of the survival time distribution can be found from tab-
ular or graphical displays of the function for individuals with particular values
of explanatory variables. The method used is very similar to that described
in Section 2.4, and is illustrated in the following example.

Ezample 3.12 Treatment of hypernephroma

In Example 3.4, a proportional hazards model was fitted to the data on the
survival times of patients with hypernephroma. The hazard function was found
to depend on the age group of a patient, and whether or not a nephrectomy
had been performed. The estimated hazard function for the 7th patient was

found to be
Ba(t) = exp{0.013 Ag; + 1.342 Az; — 1.412 N; }ho(2),

where As; is unity if the patient is aged between 60 and 70 and zero otherwise,
As; is unity if the patient is aged over 70 and zero otherwise, and V; is unity if
the patient has had a nephrectomy and zero otherwise. The estimated baseline
hazard function is therefore the estimated hazard of death at time ¢, for an
individual whose age is less than 60 and who has not had a nephrectomy.

In Table 3.10, the estimated baseline hazard function, ho(?), cumulative
hazard function, Ho(t), and survivor function, So(t), obtained using equa-
tions (3.15), (3.19) and (3.18), respectively, are tabulated.

From this table, we see that the general trend is for the estimated baseline
hazard function to increase with time. From the manner in which the esti-
mated baseline hazard function has been computed, the estimates only apply
at the death times of the patients in the study. However, if the assumption
of a constant hazard in each time interval is made, by dividing the estimated
hazard by the corresponding time interval, the risk of death per unit time
can be found. This leads to the estimate in equation (3.17). A graph of this
hazard function is shown in Figure 3.2.

This graph shows that the risk of death per unit time is roughly constant
over the duration of the study. Table 3.10, also shows that the values of hq (t)
are very similar to differences in the values of Ho(t) between successive ob-
servations, as would be expected.

We now consider the estimation of the median survival time, which is the
smallest observed survival time for which the estimated survivor function is
less than 0.5. From Table 3.10, the estimated median survival time for patients
aged less than 60 who have not had a nephrectomy is 12 months.

By raising the estimate of the baseline survivor function to a suitable power,
the estimated survivor functions for patients in other age groups, and for pa-
tients who have had a nephrectomy, can be obtained through equation (3.22).
Thus, the estimated survivor function for the ith individual is given by

}exp{04013A2i+1.342A3i~—1‘412N.;}

Si(t) = {So(t)
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Table 3.10 FEstimates of the baseline
hazard and survivor functions for the
data from Ezample 3./.

Time  ho(t)  So(t)  Ho(t)

0 0.000 1.000 0.000
5 0.050 0.950 0.051
6 0.104 0.852 0.161
8 0.113 0.755 0.281
9 0.237 0.576 0.552
10 0.073 0.534 0.628
12 0.090 0.486 0.722
14 0.108 0.433 0.836
15 0.116 0.383 0.960
17 0.132 0.333 1.101
18 0.285 0.238 1.436
21 0.185 0.194 1.641
26 0.382 0.120 2.123
35 0.232 0.092 2.387
36 0.443 0.051 2.972
38 0.279 0.037 3.299
48 0.299 0.026 3.655
52 0.560 0.011 4.476
56 0.382 0.007 4.958
68 0.421 0.004 5.504
72 0.467 0.002 6.134
84 0.599 0.001 7.045
108 0.805 0.000 8.692
115 - 0.000 -

For an individual aged less than 60 who has had a nephrectomy, A, = 0,
A3 =0, and N = 1, so that the estimated survivor function for this individual

1S

{S’ 0 }exp{-1.412}
0 )

This function is plotted in Figure 3.3, together with the estimated baseline
survivor function, which is for an individual in the same age group but who
has not had a nephrectomy.

This figure shows that the probability of surviving beyond any given time is
greater for those who have had a nephrectomy, confirming that a nephrectomy
improves the prognosis for patients with hypernephroma.

Note that because of the assumption of proportional hazards, the two esti-
mated survivor functions in Figure 3.3 cannot cross. Moreover, the estimated
survivor function, for those who have had a nephrectomy, lies above that of
those on whom a nephrectomy has not been performed. This is a direct con-
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Figure 3.2 Estimated baseline hazard function, per unit time, assuming cons

hazard between adjacent death times.

10]
0.8 1
0.6

0.4

Estimated survivor function

0.2 4

80 100 120

0 20 40 60
Survival time

Figure 3.3 Estimated survivor functions for patients aged less than 60, with (—)

and without (---) a nephrectomy.
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sequence of the estimated hazard ratio for those who have had the operation,
relative to those who have not, being less than unity.

An estimate of the median survival time for this type of patient can be
obtained from the tabulated values of the estimated survivor function, or
from the graph in Figure 3.3. We find that the estimated median survival
time for a patient aged less than 60 who has had a nephrectomy is 36 months.
Other percentiles of the distribution of survival times can be estimated using
a similar approach.

In a similar manner, the survivor functions for patients in the different
age groups can be compared, either for those who have had or not had a
nephrectomy. For example, for patients who have had a nephrectomy, the
estimated survivor functions for patients in the three age groups are respec-
tively {S’O(t)}exp{fl.412}, {S’O(t)}exp{fl.412+0‘013} and {S’O(t)}exp{vl.412+1.342}.
These estimated survivor functions are shown in Figure 3.4.

10 {=m
0.8
0.6

0.4

Estimated survivor function

0.2 1

0.0

Survival time

Figure 3.4 Estimated survivor functions for patients aged less than 60 (—), between
60 and 70 (---) and greater than 70 (---), who have had a nephrectomy.

This figure clearly shows that patients aged over 70 have a poorer prognosis
than those in the other two age groups.

3.9" Proportional hazards modelling and the log-rank test

The proportional hazards model can be used to test the null hypothesis that
there is no difference between the hazard functions for two groups of survival
times, as illustrated in Example 3.3. This modelling approach therefore pro-
vides an alternative to the log-rank test in this situation. However, there ig
a close connection between the two procedures, which is explored in greater
detail in this section.
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Following the notation used in Section 2.6.2, and summaris-ed in Table 2.7,
the two groups will be labelled Group I and Group II,.respectlvely. The num-
bers of individuals in the two groups who die at the jth orde'red deth 'tmie,
ten, 3 = 1,2,...,7, will be denoted by dy; and daj, regpectlvely. SlIn'ﬂaI‘ﬁ/,
tﬁgnumbers of individuals at risk in the two groups a%t t%me t(j}, that is, t s
numbers who are alive and uncensored just prior to this time, will be denote

. and no;, respectively. . ' o o
nli\low let JX be an indicator variable that is unity when an 1n(.11v1dua1 is iin
Group I and zero when an individual is in Group IL. The proportional hazards
model for the ith individual can be written as

hi(t) = eﬂxiho(t),
where z; is the value of X for the ith individual, ¢ = 1,2,... 1 Whezll ’;herrei
are no tied observations, that i§, when d; = dyj + dg; ‘: 1}7 this mo e'z CE.L
be fitted by finding that value § which maximises the hkehhoo@ function in
equation (3.4). Denoting the value of X for the individual who dies at t(;) by
z(;), the likelihood function is given by

T explfagy) o5,
2O =11 557 exppmy |

since there are n; = ny; +ng; individuals in the risk set, R(t(j)), at time £(;),
and the corresponding log-likelihood function is

log L(B) = > Bz — ) _log {ZeXp(ﬂxz)} :
j=1 j=1 =1

Since z(;) is zero for individuals in Group II, the ﬁrs't sgmmation in ﬁhls
expression is over the death times in Group I, and so is simply dif3, where
dy = 3"_, dy; is the total number of deaths in Group I. Also,

J=

n;
Zexp(ﬁm) = nyje” + nyj,
I=1
and so i,
log L(B) = d18 — Zlog {nyje” +noy}. (3.29)

J=1 )
The maximum likelihood estimate of 3 can be found ‘byA maximising th}s
expression with respect to 3, for which a non-linear optimisation routine 1s
required. Then, the null hypotheses that § = 0 can be tested.by‘cor.npalr-
ing the value of —2log L(B) with —2log L(0). This latter quantity is simply
253" . logn,;.
%Z)vnipufatjion of 3 can be avoided by using a score test of th§ null.hypothe&s
that 8 = 0. This test procedure, which is outlined in Appendix A, is based on

the test statistic 22(0)

i(0)
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where

a1l
u(g) = 108 L(B)
. 8/6
is the efficient score, and
_ 9%log L(B)
002
is Fisher’s (observed) information function. Under the null hypothesis that

B =0, u*(0)/i(0) has a chi-s istributi
, quared distribution on d
Now, from equation (3.29), e degree of freedorn.

01l T
OgTL(@:ZC,jU__@'eL)’

nije? + ng;

ip) =

=1
and
2 r
9" log f(ﬂ) - (naje” + ngj)nze? — (nyse)?
op = (7167 + ny;)?

ks

_ _ Z nljngjeﬁ
= (n1;€7 + ny;)?

The efficient score and information function, evaluated at /3

given by = 0, are therefore

u(0) = i <dlj - #> ,

nyj + ng;

and

i(0) =y Ut

=1 (mg )

These are simply the expressions for U/ r and Vi, given in equations (2.23) and
(2.25) of Chapter 2, for the special case where there are no ties, tha ’ .
dj =1forj=1,2,... 7. ’
When there are tied observations, the likelihood function in equation (3.28)
has t? be' replaced by one that allows for ties. In particular, if the hkelih.OOd
function in equation (3.11) is used, the efficient score and inf(;rmation functi
are exact‘ly those given in equations (2.23) and (2.25). Hence, when there 1:;;
tied s.urv1va1 times, the log-rank test corresponds to using tl,qe score test f
the discrete proportional hazards model due to Cox (1972). In practice tl(l)r
P—va.lue that results from this score test will not usually differ much from ,th :
ol?tamed frpm comparing the values of the statistic —2log L for the modei‘
Wlth anc.l WlthF)ut a term corresponding to the treatment effect. This wag noted5
in the discussion of Example 3.3. Of course, one advantage of using the CEX

regression model in the analysis of such d . . .
. ata is that it leads d
estimate of the hazard ratio. o rectly to an

t is, where

FURTHER READING 109
3.10 Further reading

Comprehensive introductions to statistical modelling in the context of linear
regression analysis are given by Draper and Smith (1981) and Montgomery et
al. (2001). McCullagh and Nelder (1989) include a chapter on models for sur-
vival data in their encyclopaedic survey of generalised linear modelling. Aitkin
et al. (1989) illustrate the theory and practice of linear modelling through the
statistical package GLIM, and also include a chapter on the analysis of survival
data.

Model formulation and strategies for model selection are discussed in books
on linear regression analysis, and also in Chapter 5 of Chatfield (1995), Chap-
ter 4 of Cox and Snell (1981), and Appendix 2 of Cox and Snell (1989). Miller
(2002) describes a wide range of procedures for identifying suitable subsets of
variables to use in linear regression modelling. What has come to be known as
Akaike’s information criterion was introduced by Akaike (1974). It is widely
used in times series analysis and described in books on this subject, such as
Chatfield (1996) and Janacek (2001). The hierarchic principle is fully discussed
by Nelder (1977), and in Chapter 3 of McCullagh and Nelder (1989). Harrell
(2001) addresses many practical issues in model building and illustrates the
process using two extensive case studies involving survival data.

The proportional hazards model for survival data, in which the baseline
hazard function remains unspecified, was proposed by Cox (1972). This paper
introduced the notion of partial likelihood, which was subsequently considered
in greater detail by Cox (1975). See also the contributions to the discussion
of Cox (1972) by Kalbfleisch and Prentice (1972) and Breslow (1972). A de-
tailed review of the model, and extensions of it, is contained in Therneau and
Grambsch (2000).

Introductions to the proportional hazards model, intended for medical re-
searchers have been given by Christensen (1987), Elashoff (1983) and Tib-
shirani (1982). More recent accounts are given in the textbooks referenced
in Section 1.4 of Chapter 1. In particular, Hosmer and Lemeshow (1999) in-
clude a careful discussion on model development and the interpretation of
model-based parameter estimates.

A detailed treatment of ties in survival data is given in Kalbfleisch and
Prentice (2002) and Lawless (2002); see also Breslow (1972) and Peto (1972).
DeLong et al. (1994) give an equivalent expression for the exact partial likeli-
hood in the presence of ties that has computational advantages. The estimate
of the baseline survivor function, denoted by So(t) in Section 3.8, was intro-
duced by Kalbfleisch and Prentice (1973) and is also described in Kalbfleisch
and Prentice (2002). The estimate S(t) was presented by Breslow (1972,
1974), although it was derived using a different argument from that used in
Section 3.8.2.



CHAPTER 4

Model checking in the Cox regression
model

After a model has been fitted to an observed set of survival data, the ade-
quacy of the fitted model needs to be assessed. Indeed, the use of diagnostic
procedures for model checking is an essential part of the modelling process.

In some situations, careful inspection of an observed set of data may leads to
the identification of certain features, such as individuals with unusually large
or small survival times. However, unless there are only one or two explana-
tory variables, a visual examination of the data may not be very revealing.
The situation is further complicated by censoring, in that the occurrence of
censored survival times make it difficult to judge aspects of model adequacy,
even in the simplest of situations. Visual inspection of the data has therefore
to be supplemented by diagnostic procedures for detecting inadequacies in
a fitted model. Because methods used in assessing the adequacy of survival
models have to cope with the occurrence of censored survival times, they are
a little more complicated than the corresponding methods used in linear re-
gression modelling. However, many of the procedures are easily carried out
using computer software for survival analysis.

Once a model has been fitted, there are a number of aspects of the fit
of a model that need to be studied. For example, the model must include an
appropriate set of explanatory variables from those measured in the study, and
we will need to check that the correct functional form of these variables has
been used. It might be important to identify observed survival times that are
greater than would have been anticipated, or individuals whose explanatory
variables have an undue impact on particular hazard ratios. Also, some means
of checking the assumption of proportional hazards might be required.

Many model-checking procedures are based on quantities known as residu-
als. These are values that can be calculated for each individual in the study,
and have the feature that their behaviour is known, at least approximately,
when the fitted model is satisfactory. A number of residuals have been pro-
posed for use in connection with the Cox regression model, and this chapter
begins with a review of some of these. The use of residuals in assessing specific
aspects of model adequacy is then discussed in subsequent sections.

4.1 Residuals for the Cox regression model

Throughout this section, we will suppose that the survival times of n individ-
uals are available, where r of these are death times and the remaining n — r
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are right-censored. We further suppose that a Cox regression model has been
fitted to the survival times, and that the linear component of the model con-
tains p explanatory variables, X1, Xs,..., X,,. The fitted hazard function for
the 7th individual, i = 1,2, ..., n, is therefore

;Lz(t) = exp(B/xi)ﬁo (t),

where B/wi = Blmli +Bzx2i +--+ Bpa:pi is the value of the fitted component,
or linear predictor, of the model for that individual and hg(t) is the estimated
baseline hazard function.

4.1.1 Cox-Snell residuals

The residual that is most widely used in the analysis of survival data is the
Cox-Snell residual, so called because it is a particular example of the general
definition of residuals given by Cox and Snell (1968).

The Cox-Snell residual for the ith individual, i = 1,2,...,n, is given by

re; = exp(B @) Ho(ty), (4.1)

where Hy (t;) is an estimate of the baseline cumulative hazard function at time
t;, the observed survival time of that individual. In practice, the Nelson-Aalen
estimate given in equation (3.25) is generally used. Note that from equa-
tion (3.21), the Cox-Snell residual, ¢y, is the value of H;(t;) = — log Si(t:),
where H;(t;) and S;(t;) are the estimated values of the cumulative hazard and
survivor functions of the ith individual at ¢;.

This residual can be derived from a general result in mathematical statistics
on the distribution of a function of a random variable. According to this result,
if 7' is the random variable associated with the survival time of an individual,
and S(t) is the corresponding survivor function, then the random variable
Y = —log S(T) has an exponential distribution with unit mean, irrespective of
the form of S(t). The proof of this result is outlined in the following paragraph,
which can be omitted without loss of continuity.

According to a general result, if fx(z) is the probability density function
of the random variable X, the density of the random variable ¥ = g(X) is
given by

Felw) = Fxlo WY/ | 3

where fx{g '(y)} is the density of X expressed in terms of y. Using this
result, the probability density function of the random variable Y = —log S(T)
is given by

b

g, dy
fy(y)=fr{s e}/ ‘a—t ; (4.2)
where fr(t) is the probability density function of 7". Now,

dy  d{—logS(t)} fr®)
dt dt SO
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and when the absolute value of this function is expressed in terms of y, the
derivative becomes

fr {S‘l(e“y)} fr {S‘l(e*y)} '

S T e
Finally, on substituting for the derivative in equation (4.2), we find that
fY (y) = e‘yv

which, from equation (5.6), is the probability density function of an exponen-
tial random variable with unit mean.

The next and crucial step in the argument is as follows. If the model fitted to
the observed data is satisfactory, then a model-based estimate of the survivor
function for the ith individual at ¢;, the survival time of that individual,
will be close to the corresponding true value S;(¢;). This suggests that if the
correct model has been fitted, the values S;(t;) will have properties similar
to those of Si(tz). Then, the negative logarithms of the estimated survivor
functions, —log S;(t;), ¢ = 1,2,...,n, will behave as n observations from a
unit exponential distribution. These estimates are the Cox-Snell residuals.

If the observed survival time for an individual is right-censored, then the
corresponding value of the residual is also right-censored. The residuals will
therefore be a censored sample from the unit exponential distribution, and a
test of this assumption provides a test of model adequacy, to which we return
in Section 4.2.1.

The Cox-Snell residuals, r¢;, have properties that are quite dissimilar to
those of residuals used in linear regression analysis, for example. In particular,
they will not be symmetrically distributed about zero, and in fact they cannot
be negative. Furthermore, since the Cox-Snell residuals are assumed to have
an exponential distribution when an appropriate model has been fitted, they
have a highly skew distribution and the mean and variance of the ith residual
will both be unity.

4.1.2 Modified Cox-Snell residuals

Censored observations lead to residuals that cannot be regarded on the same
footing as residuals derived from uncensored observations. We might therefore
seek to modify the Cox-Snell residuals so that explicit account can be taken
of censoring,.

Suppose that the ith survival time is a censored observation, ¢, and let
ti be the actual, but unknown, survival time, so that ¢; > t¥. The Cox-Snell
residual for this individual, evaluated at the censored survival time, is then
given by

rei = Hy(t)) = —log Si(t}),
where H,;(t;) and S;(t}) are the estimated cumulative hazard and survivor
functions, respectively, for the ith individual at the censored survival time.

If the fitted model is correct, then the values r¢; can be taken to have a unit
exponential distribution. The cumulative hazard function of this distribution
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increases linearly with time, and so the greater the value of the survival time
t; for the ith individual, the greater the value of the Cox-Snell residual for that
individual. Tt then follows that the residual for the ith individual at the actual
(unknown) failure time, H;(t;), will be greater than the residual evaluated at
the observed censored survival time.

To take account of this, Cox-Snell residuals can be modified by the addition
of a positive constant A, which can be called the excess residual. Modified
Cox-Snell residuals are therefore of the form

: roi for uncensored observations,
T = .
Ci ro; + A for censored observations,

where r¢; is the Cox-Snell residual for the ith observation, defined in equa-
tion (4.1). It now remains to identify a suitable value for A. For this, we use
the lack of memory property of the exponential distribution.

To demonstrate this property, suppose that the random variable 1" has an
exponential distribution with mean A~1, and consider the probability that
T exceeds to + t1, t1 > 0, conditional on T being at least equal to to. From
the standard result for conditional probability given in Section 3.3.1, this
probability is

P(T >ty+tiand T > to)
BT > to)

P(T>to+t1 | T >t) =

The numerator of this expression is simply P(T" > to+11), and so the required
probability is the ratio of the probability of survival beyond ¢ +1%1 to the prob-
ability of survival beyond to, that is S(to + t1)/S(to). The survivor function
for the exponential distribution is given by S(t) = e *', as in equation (5.5)
of Chapter 5, and so

_exp{-Alo +t)}

P(T > to+t ITZto)— exp(—)\to) =€ ,

which is the survivor function of an exponential random variable at time ¢;,
that is P(T" > t;). This result means that, conditional on survival to time o,
the excess survival time beyond g also has an exponential distribution with
mean AL, In other words, the probability of survival beyond time %o is not
affected by the knowledge that the individual has already survived to time fo.

From this result, since r¢; has a unit exponential distribution, the excess
residual, A, will also have a unit exponential distribution. The expected value
of A is therefore unity, suggesting that A may be taken to be unity, and this
leads to modified Cox-Snell residuals, given by

/ o for uncensored observations, (43)
Py = / .
ci rc; + 1 for censored observations.

The ith modified Cox-Snell residual can be expressed in an alternative form
by introducing an event indicator, §;, which takes the value zero if the observed
survival time of the ith individual is censored and unity if it is uncensored.
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Then the modified Cox-Snell residual is given by
Ty =1 =6 +7¢s. (4.4)

Note that from the definition of this type of residual, rlcz- must be greater
than /unity for a censored observation. Also, as for the unmodified residuals,
the ro; can take any value between zero and infinity, and they will have a
skew distribution.

On the basis of empirical evidence, Crowley and Hu (1977) found that the
addition of unity to a Cox-Snell residual for a censored observation inflated the
residual to too great an extent. They therefore suggested that the median value
of the excess residual be used rather than the mean. For the unit exponential
distribution, the survivor function is S(t) = e™*, and so the median, #(50), is
such that e7*°% = 0.5, whence £(50) = log 2 = 0.693. Thus a second version
of the modified Cox-Snell residual has

Z { rCi for uncensored observations,

7‘ . =
ci rey 4+ 0.693 for censored observations. (4.5)

However, if the proportion of censored observations is not too great, the set
of residuals obtained from each of these two forms of modification will not
appear too different.

4.1.8 Martingale residuals

The modified residuals 7, defined in equation (4.4) have a mean of unity for
uncensored observa/tions. Accordingly, these residuals might be further refined
by relocating the r., so that they have a mean of zero when an observation is
uncensored. If in addition the resulting values are multiplied by —1, we obtain
the residuals
TMi = &; — TCs- (46)

These residuals are known as martingale residuals, since they can also be de-
rived using what are known as martingale methods. In this derivation, the
rei are based on the Nelson-Aalen estimate of the cumulative hazard func-
tion. Because these methods rely heavily on probability theory and stochastic
processes, this approach will not be discussed in this book. However, a com-
prehensive account of the martingale approach to the analysis of survival data
has b‘een presented by a number of authors, including Andersen et al. (1993),
Fleming and Harrington (1991) and Therneau and Grambsch (2000).

Martingale residuals take values between —oo and unity, with the residuals
for censored observations, where §; = 0, being negative. It can also be shown
that these residuals sum to zero and, in large samples, the martingale resid-
uals are uncorrelated with one another and have an expected value of zero.
In this respect, they have properties similar to those possessed by residuals
encountered in linear regression analysis.

Another way of looking at the martingale residuals is to note that the
quantity rz; in equation (4.6) is the difference hetween the observed number
of deaths for the 4th individual in the interval (0,#;) and the corresponding
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estimated expected number on the basis of the fitted model. To see this,
note that the observed number of deaths is unity if the survival time t; is
uncensored, and zero if censored, that is 6;. The second term in equation (4.6)
is an estimate of H;(t;), the cumulative hazard or cumulative probability of
death for the 4th individual over the interval (0,t;). Since we are dealing with
just one individual, this can be viewed as the expected number of deaths in
that interval. This shows another similarity between the martingale residuals
and residuals from other areas of data analysis.

4.1.4 Deviance residuals

Although martingale residuals share many of the properties possessed by resid-
uals encountered in other situations, such as in linear regression analysis, they
are not symmetrically distributed about zero, even when the fitted model is
correct. This skewness makes plots based on the residuals difficult to interpret.
The deviance residuals, which were introduced by Therneau et al. (1990), are
much more symmetrically distributed about zero. They are defined by

Tpi = sgn(rari) (=2 {ra + 6; log(6; — TMi)H% ) (4.7)

where r)s; is the martingale residual for the ith individual, and the function
sgn(-) is the sign function. This is the function that takes the value +1 if
its argument is positive and —1 if negative. Thus sgn(ry;) ensures that the
deviance residuals have the same sign as the martingale residuals.

The original motivation for these residuals is that they are components of
the deviance. The deviance is a statistic that is used to summarise the extent
to which the fit of a model of current interest deviates from that of a model
which is a perfect fit to the data. This latter model is called the saturated
or full model, and is a model in which the S-coefficients are allowed to be
different for each individual. The statistic is given by

D= _2 {logﬁc - logﬁf} :

where L is the maximised partial likelihood under the current model and
Ly is the maximised partial likelihood under the full model. The smaller the
value of the deviance, the better the model. The deviance can be regarded as a
generalisation of the residual sum of squares used in modelling normal data to
the analysis of non-normal data, and features prominently in generalised linear
modelling. Note that differences in deviance between two alternative models
are the same as differences in the values of the statistic —2log L introduced
in Chapter 3. The deviance residuals are then such that D = >°r,, so that
observations that correspond to relatively large deviance residuals are those
that are not well fitted by the model.

Another way of viewing the deviance residuals is that they are martingale
residuals that have been transformed to produce values that are symmetric
about zero when the fitted model is appropriate. To see this, first recall that
the martingale residuals 7s; can take any value in the interval (—oo, 1). For
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large negative values of rpzq, the term in square brackets.in equation (4.7) 1sf
dominated by 7. Taking the square root of this quantljcy has .the effect (?
bringing the residual closer to zero. Thus martingale.re&duals in the.ran}gle
(—00,0) are shrunk toward zero. Now consider ngartmgale 1jes1duals in the
interval (0,1). The term §; log(d; — rar;) in equation (4.7) will only be non-
sero for uncensored observations, and will then have the value log(1 — 7az:)-
As 7ar; gets closer to unity, 1 — 773 gets closer to zero an.d log(1 - i) takgs
large negative values. The quantity in square brackets in equatlop (4.7) is
then dominated by this logarithmic term, and so the dev1aimce remdu.als. aref
expanded toward +oo as the martingale residual reaches its upper limit o
umOt)r/le final point to note is that although these residuals.can be expected to
be symmetrically distributed about zero when an appropriate model has been
fitted, they do not necessarily sum to zero.

4.1.5* Schoenfeld residuals

Two disadvantages of the residuals described in Sections 4.1.'1 to4.1.4 ~are tha‘;
they depend heavily on the observed survival time and require an estlrnatfe 0
the cumulative hazard function. Both of these disadvantages are overcome in a
residual proposed by Schoenfeld (1982). These residuals were originally termed
partial residuals, for reasons given in the sequel, but are now c'ommon]y kpown
as Schoenfeld residuals. This residual differs from thoge con51de1jed prev1ousl§;
in one other important respect. This is that there is not a single value o
the residual for each individual, but a set of values, one for each explanatory
variable included in the fitted Cox regression model. '

The ith partial or Schoenfeld residual for X, the jth explanatory variable
in the model, is given by

rpji = 6i{Tji — i}y (4.8)

where xj; is the value of the jth explanatory variable, j =1,2,...,p, for the
1th individual in the study,

~l
A Y er(t) Tl exp(8 1)
Qi = A/
! > ie R €xXP(B 1)

and R(t;) is the set of all individuals at risk at time ;.

Note that non-zero values of these residuals only arise for uncensored. ob-
servations. Moreover, if the largest observation in a sample of survival tlmgs
is uncensored, the value of a;; for that observation,.from equation (4A9),. will
be equal to z;; and so rp;; = 0. To distinguish residuals that are genuinely
zero from those obtained from censored observations, the latter are usually

(4.9)

expressed as missing values. . A .
The ith Schoenfeld residual, for the explanatory variable X;, is an est1mafte
of the ith component of the first derivative of the logarithm of the partial
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likelihood function with respect to 3;, which, from equation (3.5), is given by

dlog L(B) &
—3ﬂ_j—_ = ;(Sz {‘Tji 76le’}, (410)
where )
aj; = Zl Zji eXp(ﬁ Ccl) (4.11)

> exp(B'a)

The 7th term in this summation, evaluated at ,3, is then the Schoenfeld residual
for X;, given in equation (4.8). Since the estimates of the #’s are such that

dlog L(B) -0
og; 18 7

the Schoenfeld residuals must sum to zero. These residuals also have the prop-
erty that, in large samples, the expected value of rp;; is zero, and they are
uncorrelated with one another.

It turns out that a scaled version of the Schoenfeld residuals, proposed
by Grambsch and Therneau (1994), is more effective in detecting departures
from the assumed model. Let the vector of Schoenfeld residuals for the ith
individual be denoted 7p; = (Tp14,7P2i, .- -, Tpp;)’. The scaled, or weighted,
Schoenfeld residuals, Thjir AT€ then the components of the vector

Py = rvar (8)7ps,

A

where r is the number of deaths among the n individuals, and var (3) is the
variance-covariance matrix of the parameter estimates in the fitted Cox re-
gression model. These scaled Schoenfeld residuals are therefore quite straight-
forward to compute.

4.1.6* Score residuals

There is one other type of residual that is useful in some aspects of model
checking, and which, like the Schoenfeld residual, is obtained from the first
derivative of the logarithm of the partial likelihood function with respect to
the parameter 3;, j = 1,2,...,p. However, the derivative in equation (4.10)
is now expressed in a quite different form, namely

Olog L(B) _ < ) (ajr —x55)0r
S 8i(xj; — ajs) +exp(Bx;) J A
9B, Z (z; j ( =, Y e r,) exp(8'®)

=1 tr

(4.12)
where zj; is the sth value of the jth explanatory variable, é; is the event
indicator which is zero for censored observations and unity otherwise, a; is
given in equation (4.11), and R(t,) is the risk set at time ;. In this formu-
lation, the contribution of the ith observation to the derivative only depends
on information up to time #;. In other words, if the study was actually con-
cluded at time #;, the ith component of the derivative would be unaffected.

b
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Residuals are then obtained as the estimated value of the n components of
the derivative. From Appendix A, the first derivative of the logarithm of the
partial likelihood function, with respect to 3;, is the efficient score for 3;, and
so these residuals are known as score residuals.

From equation (4.12), the ith score residual, i = 1,2,...,n, for the jth
explanatory variable in the model, X}, is given by

rsji = 0i(js — 45i) + exp(B x;) > (G xﬂ)(fr, .
b < 12 2aleR(t,) SXP(B )

Using equation (4.8), this may be written in the form

(@jr — x;i)0,

At
rsji = Tpji +exp(8 x;) Z ) (4.13)

~ !
b < t; 2uleR(t) SXP(B )

which shows that the score residuals are modifications of the Schoenfeld resid-
uals. As for the Schoenfeld residuals, the score residuals sum to zero, but will
not necessarily be zero when an observation is censored.

In this section, a number of residuals have been defined. We conclude with
an example that illustrates the calculation of these different types of residual
and that shows similarities and differences between them. This example will
be used in many illustrations in this chapter, mainly because the relatively
small number of observations allows the values of the residuals and other
diagnostics to be readily tabulated. However, the methods of this chapter are
generally more informative in larger data sets.

Ezample 4.1 Infection in patients on dialysis
In the treatment of certain disorders of the kidney, dialysis may be used
to remove waste materials from the blood. One problem that can occur in
patients on dialysis is the occurrence of an infection at the site at which
the catheter is inserted. If any such infection occurs, the catheter must be
removed, and the infection cleared up. In a study to investigate the incidence
of infection, the time from insertion of the catheter until infection was recorded
for a group of kidney patients. Sometimes, the catheter has to be removed for
reasons other than infection, giving rise to right-censored observations. The
data in Table 4.1 give the number of days from insertion of the catheter until
its removal following the first occurrence of an infection. The data set includes
the values of a variable that indicates the infection status of an individual,
which takes the value zero if the catheter was removed for a reason other
than the occurrence of an infection, and unity otherwise. Also given is the age
of each patient in years and a variable that denotes the sex of each patient
(1= male, 2 = female). These data are taken from McGilchrist and Aisbett
(1991), and relate to the 13 patients suffering from diseases of the kidney
coded as type 3 in their paper.

When a Cox regression model is fitted these data, the fitted hazard function
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Table 4.1 Times to removal of a
catheter following a kidney infection.

Patient Time Status Age Sex

1 8 1 28 1
2 15 1 44 2
3 22 1 32 1
4 24 1 16 2
5 30 1 10 1
6 54 0 42 2
7 119 1 22 2
8 141 1 34 2
9 185 1 60 2
10 292 1 43 2
11 402 1 30 2
12 447 1 31 2
13 536 1 17 2
for the ith patient, i = 1,2,...,13, is found to be
hi(t) = exp {0.030 Age; — 2.711 Sez; } ho(t), (4.14)

where Age; and Sex; refer to the age and sex of the ith patient.

The variable Sez is certainly important, since when Sez is added to the
model that contains Age alone, the decrease in the value of the statistic
—2log L is 6.445 on 1 d.f. This change is highly significant (P = 0.011).
On the other hand, there is no statistical evidence for including the variable
Age in the model, since the change in the value of the statistic —210gf} on
adding Age to the model that contains Sez is 1.320 on 1 d.f. (P = 0.251).
However, it can be argued that from the clinical viewpoint, the hazard of in-
fection may well depend on age. Consequently, both variables will be retained
in the model.

The values of different types of residual for the model in equation (4.14)
are displayed in Table 4.2. In this table, ¢, 7as; and rp; are the Cox-Snell
residuals, martingale residuals and deviance residuals, respectively. Also rpy;
and rpg; are the values of Schoenfeld residuals for the variables Age and Sexz,
respectively, 75, and 75,,; are the corresponding scaled Schoenfeld residuals,
and rg1;, Tgo; are the score residuals.

The values in this table were computed using the Nelson-Aalen estimate
of the baseline cumulative hazard function given in equation (3.25). Had the
estimate Hy(t), in equation (3.19), been used, different values for all but the
Schoenfeld residuals would be obtained. In addition, because the correspond-
ing estimate of the survivor function is zero at the longest removal time, which
is that for patient number 13, values of the Cox-Snell, martingale and deviance
residuals would not then be defined for this patient, and the martingale resid-
uals would no longer sum to zero.
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Table 4.2 Different types of residual after fitting o Coz regression model.

Patient 7r¢; Tl TDi P13 7P2i Th1i Thos Ts51: 7523
1 0.280 0.720 1.052 -1.085 —0.242 0.033 —3.295 —0.781 —0.174
2 0.072 0.928 1.843 14.493 0.664 0.005 7.069 13.432 0.614
3 1.214 —0.214 —0.200 3.129 —0.306 0.079 —4.958 -0.322 0.058
4 0.084 0.916 1.765 —10.222 0.434 —0.159 8.023 —9.214 0.384
5 1.506 —0.506 —0.439 —16.588 —0.550 —0.042 —5.064 9.833 0.130
6 0.265 —0.265 —0.728 - - - - —3.826 —0.145
7 0.235 0.765 1.168 —17.829 0.000 -0.147 3.083 —15.401 —-0.079
8 0.484 0.516 0.648 -—7.620 0.000 —0.063 1.318 -7.091 —0.114
9 1.438 —0.438 —0.387 17.091 0.000 0.141 —2.955 —15.811 —0.251
10 1.212 —0.212 —0.199 10.239 0.000 0.085 —1.770 1.564 —0.150
11 1.187 —0.187 —0.176 2.857 0.000 0.024 —-0.494 6.575 —0.101
12 1.828 —0.828 —0.670 5.534 0.000 0.046 —0.957 4.797 —0.104
13 2.195 —1.195 —0.904 0.000 0.000 0.000 0.000 16.246 —0.068

In this data set, there is just one censored observation, which is for patient
number 6. Therefore, the modified Cox-Snell residuals will be the same as
the Cox-Snell residuals for all patients except number 6. For this patient, the
values of the two forms of modified residuals are rg = 1.265 and 74 = 0.958.
Also, the Schoenfeld residuals are not defined for the patient with a censored
removal time, and are zero for the patient that has the longest period of time
before removal of the catheter.

The skewness of the Cox-Snell and martingale residuals is clearly shown in
Table 4.2, as is the fact that the Cox-Snell residuals are centred on unity while
the martingale and deviance residuals are centred on zero. Note also that the
martingale, Schoenfeld and score residuals sum to zero, as they should do.
One unusual feature about the residuals in Table 4.2 is the large number
of zeros for the values of the Schoenfeld residual corresponding to Sez. The
reason for this is that for infection times greater than 30 days, the value of
the variable Sez is always equal to 2. This means that the value of the term
a4; for this variable, given in equation (4.9), is equal to 2 for a survival time
greater than 30 days, and so the corresponding Schoenfeld residual defined in
equation (4.8) is zero.

We now consider how residuals obtained after fitting a Cox regression model
can be used to throw light on the extent to which the fitted model provides
an appropriate description of the observed data. We will then be in a position
to study the residuals obtained in Example 4.1 in greater detail.

4.2 Assessment of model fit

A number of plots based on residuals can be used in the graphical assessment
of the adequacy of a fitted model. Unfortunately, many graphical procedures
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that are analogues of residual plots used in linear regression analysis have not
proved to be very helpful. This is because plots of residuals against quantities
such as the observed survival times, or the rank order of these times, often
exhibit a definite pattern, even when the correct model has been fitted. Tra-
ditionally, plots of residuals have been based on the Cox-Snell residuals, or
adjusted versions of them described in Section 4.1.2. The use of these residuals
is therefore reviewed in the next section, and this is followed by a description
of how some other types of residuals may be used in the graphical assessment
of the fit of a model.

4.2.1 Plots based on the Cox-Snell residuals

In Section 4.1.1, the Cox-Snell residuals were shown to have an exponential
distribution with unit mean, if the fitted model is correct. They therefore
have a mean and variance of unity, and are asymmetrically distributed about
the mean. This means that simple plots of the residuals, such as plots of the
residuals against the observation number, known as index plots, will not lead
to a symmetric display. The residuals are also correlated with the survival
times, and so plots of these residuals against quantities such as the observed
survival times, or the rank order of these times are also unhelpful.

One particular plot of these residuals, that can be used to assess the overall
fit of the model, leads to an assessment of whether the residuals are indeed
a plausible sample from a unit exponential distribution. This plot is based
on the fact that if a random variable T has an exponential distribution with
unit mean, then the survivor function of 7' is e~; see Section 5.1.1 of Chap-
ter 5. Accordingly, a plot of the cumulative hazard function H(t) = —log S(t)
against ¢, known as a cumulative hazard plot, will give a straight line through
the origin with unit slope.

This result can be used to examine whether the residuals have a unit expo-
nential distribution. After computing the Cox-Snell residuals, r¢;, the Kaplan-
Meier estimate of the survivor function of these values is found. This estimate
is computed in a similar manner to the Kaplan-Meier estimate of the survivor
function of survival times, except that the data on which the estimate is based
are now the residuals r¢;. Residuals obtained from censored survival times are
themselves taken to be censored. Denoting the estimate by S (rcy), the values
of H(rei) = —logS(re;) are plotted against re;. This gives a cumulative
hazard plot of the residuals. A straight line with unit slope and zero intercept
will then indicate that the fitted survival model is satisfactory. On the other
hand, a plot that displays a systematic departure from a straight line, or yields
a line that does not have approximately unit slope or zero intercept, might
suggest that the model needs to be modified in some way. Equivalently, a
log-cumulative hazard plot of the residuals, that is a plot of log H (r¢;) against
log rc; may be used. This plot is discussed in more detail in Section 4.4.1.

Example 4.2 Infection in patients on dialysis
Consider again the data on the time to the occurrence of an infection in kidney
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patients, described in Example 4.1. In this example, we first examine whether
the Cox-Snell residuals are a plausible sample of observations from a unit
exponential distribution. For this, the Kaplan-Meier estimate of the survivor
function of the Cox-Snell residuals, S (rci), is obtained. The cumulative hazard
function of the residuals, H(r¢;), derived from —log S(rcs), is then plotted
against the corresponding residual to give a cumulative hazard plot of the
residuals. The details of this calculation are summarised in Table 4.3, and
the cumulative hazard plot is shown in Figure 4.1. The residual for patient
pumber 6 is omitted from Table 4.3 because this observation is censored.

Table 4.3 Calculation of the
cumulative hazard function of
the Coz-Snell residuals.

TC S(re:)  H(res)
0.072 0.9231 0.080
0.084 0.8462 0.167
0.235 0.7692 0.262
0.280 0.6838 0.380
0.484 0.5983 0.514
1.187 0.5128 0.668
1.212 0.4274 0.850
1.214 0.3419 1.073
1.438 0.2564 1.361
1.506 0.1709 1.767
1.828 0.0855 2.459
2.195 0.0000 -

The relatively small number of observations in this data set makes it difficult
to interpret plots of residuals. However, the plotted points in Figure 4.1 are
fairly close to a straight line through the origin, which has approximately unit
slope. This could suggest that the model fitted to the data given in Table 4.1
is satisfactory.

On the face of it, this procedure would appear to have some merit, but
cumulative hazard plots of the Cox-Snell residuals have not proved to be
very useful in practice. In an earlier section it was argued that since the val-
ues —log S(¢;) have a unit exponential distribution, the Cox-Snell residuals,
which are estimates of these quantities, should have an approximate unit ex-
bonential distribution when the fitted model is correct. This result is then
used when interpreting a cumulative hazard plot of the residuals. Unfortu-
nately this approximation is not very reliable, particularly in small samples.
This is because estimates of the 3’s, and also of the baseline cumulative hazard
fUnction, Hy(t), are needed in the computation of the r¢;. The substitution
of estimates means that the actual distribution of the residuals is not neces-
sarily unit exponential, but their exact distribution is not known. In fact, the
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Figure 4.1 Cumulative hazard plot of the Coz-Snell residuals.

distribution of Cox-Snell residuals for n = 3 was shown by Lagakos (1981) to
be quite dissimilar to a unit exponential sample.

On other occasions, a straight line plot may be obtained when the model
fitted is known to be incorrect. Indeed, practical experience suggests that a fit-
ted model has to be seriously wrong before anything other than a straight line
of unit slope is seen in the cumulative hazard plot of the Cox-Snell residuals.

In the particular case of the null model, that is, the model that contains no
explanatory variates, the cumulative hazard plot will be a straight line with
unit slope and zero intercept, even if some explanatory variables should actu-
ally be included in the model. The reason for this is that when no covariates are
included, the Cox-Snell residual for the ith individual reduces to —log So(t;).
From equation (3.26) in Chapter 3, in the absence of ties this is approximately

Zle 1/n; at the kth uncensored survival time, k =1,2,...,r — 1, where n;
is the number at risk at time ¢;. This summation is simply 25:1 1/(n—-j+1),
which is the expected value of the kth order statistic in a sample of size n
from a unit exponential distribution.

In view of the limitations of the Cox-Snell residuals in assessing model
adequacy, diagnostic procedures based on other types of residuals, that are of

practical use, are described in the following section.

4.2.2 Plots based on the martingale and deviance residuals

The martingale residuals, introduced in Section 4.1.3, can be interpreted as
the difference between the observed and expected number of deaths in the
time interval (0,%;), for the ith individual. Accordingly, these residuals high-
light individuals who, on the basis of the assumed model, have died too soon
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or lived too long. Large negative residuals will correspond to individuals who
have a long survival time, but covariate values that suggest they should have
died earlier. On the other hand, a residual close to unity, the upper limit
of a martingale residual, will be obtained when an individual has an unex-
pectedly short survival time. An index plot of the martingale residuals will
highlight individuals whose survival time is not well fitted by the model. Such
observations may be termed outliers. The data from individuals for whom the
residual is unusually large in absolute value, will need to be the subject of
further scrutiny. Plots of these residuals against the survival time, the rank
order of the survival times, or explanatory variables, may indicate whether
there are particular times, or values of the explanatory variables, where the
model does not fit well.

Since the deviance residuals are more symmetrically distributed than the
martingale residuals, plots based on these residuals tend to be easier to inter-
pret. Consequently, an index plot of the deviance residuals may also be used
to identify individuals whose survival times are out of line.

In a fitted Cox regression model, the hazard of death for the ith individual at
any time depends on the values of explanatory variables for that individual,

~l
x;, through the function exp(3 ;). This means that individuals for whom
~l
B x; has large negative values have a lower than average risk of death, and
. . . 1
individuals for whom B x; has a large positive value have a higher than average

risk. The quantity [‘3/:131' is the risk score, introduced in Section 3.1 of Chapter
3, and provides information about whether an individual might be expected to
survive for a short or long time. By reconciling information about individuals
whose survival times are out of line, with the values of their risk score, useful
information can be obtained about the characteristics of observations that are
not well fitted by the model. In this context, a plot of the deviance residuals
against the risk score is a particulary helpful diagnostic.

Ezample 4.9 Infection in patients on dialysis

Consider again the data on times to infection in kidney patients. From the
values of the martingale and deviance residuals given in Table 4.2, we see that
patient 2 has the largest positive residual, suggesting that the time to removal
of the catheter is shorter for this patient than might have been expected on the
basis of the fitted model. The table also shows that the two types of residual do
not rank the observations in the same order. For example, the second largest
negative martingale residual is found for patient 12, whereas patient 6 has
the second largest negative deviance residual. However, the observations that
have the most extreme values of the martingale and deviance residuals will
tend to be the same, as in this example. Index plots of the martingale and
deviance residuals are shown in Figure 4.2.

A The plots are quite similar, but the distribution of the deviance residuals
1S seen to be more symmetric. The plots also show that there are no patients
that have residuals that are unusually large in absolute value. Figure 4.3 gives
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Figure 4.2 Indez plots of the martingale and deviance residuals.

a plot of the deviance residuals against the risk scores, that are found from
the values of 0.030 Age; — 2.711 Sez;, for i = 1,2,...,13.
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Figure 4.3 Plot of the deviance residuals against the values of the risk score.

. This figure shows that patients with the largest deviance residuals have low
risk scores. This indicates that these patients are at relatively low risk of an
early catheter removal, and yet their removal time is sooner than expected.
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4.2.8 Checking the functional form of covariates

Although the model-based approach to the analysis of survival data, described
in Chapter 3, identifies a particular set of covariates on which the hazard
function depends, it will be important to check that the correct functional
form has been adopted for these variables. An improvement in the fit of a
model may well be obtained by using some transformation of the values of
o variable instead of the original values. For example, it might the that a
better fitting model is obtained by using a non-linear function of the age
of an individual at baseline, or the logarithm of a biochemical variable such
as serum bilirubin level. Similarly, an explanatory variable such as serum
cholesterol level may only begin to exert an effect on survival when it exceeds
some threshold value, after which time the hazard of death might increase
with increasing values of that variable.

A straightforward means of assessing this aspect of model adequacy is based
on the martingale residuals obtained from fitting the null model, that is, the
model that contains no covariates. These residuals are then plotted against
the values of each covariate in the model. It has been shown by Therneau
et al. (1990) that this plot should display the functional form required for
the covariate. In particular, a straight line plot indicates that a linear term is
needed.

As an extension to this approach, if the functional form of certain covariates
can be assumed to be known, martingale residuals may be calculated from the
fitted Cox regression model that contains these covariates alone. The resulting
martingale residuals are then plotted against the covariates whose functional
form needs to be determined.

The graphs obtained in this way are usually quite “noisy” and their inter-
pretation is much helped by superimposing a smoothed curve that is fitted to
the scatterplot. There are a number of such smoothers that can be obtained,
including smoothing splines, but the one that is most commonly used is the
LOWESS or LOESS smoother, proposed by Cleveland (1979). This algorithm
is implemented in many software packages.

Even with a smoother, it can be difficult to discern a specific functional
form when a non-linear pattern is seen in the plot. If a specific transforma-
tion is suggested, such as the logarithmic transformation, the covariate can
be so transformed, and the martingale residuals for the null model plotted
against the transformed variate. A straight line would then confirm that an
appropriate transformation has been used.

Ezample 4.4 Infection in patients on dialysis
In this example, we illustrate the use of martingale residuals in assessing
whether the age effect is linear in the Cox regression model fitted to the data
of Example 4.1. First, the martingale residuals for the null model are obtained
and these are plotted against the corresponding values of the age of a patient
in Figure 4.4.

There is too little data to say much about this graph, but the smoothed
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Figure 4.4 Plot of the martingale residuals for the null model against Age, with a
smoothed curve superimposed.

curve indicates that there is no need for anything other than a linear term in
Age. In fact, the age effect is not actually significant, and so it is not surprising
that the smoothed curve is roughly horizontal.

We end this section with a further illustrative example.

Ezample 4.5 Survival of multiple myeloma patients

In this example we return to the data on the survival times of 48 patients with
multiple myeloma, described in Example 1.3. In Example 3.5, a Cox regression
model that contained the explanatory variables Hb (serum haemoglobin) and
Bun (blood urea nitrogen) was found to be a suitable model for the hazard
function. We now perform an analysis of the residuals in order to study the
adequacy of this fitted model.

First, a cumulative hazard plot of the Cox-Snell residuals is shown in Fig-
ure 4.5. The line made by the plotted points in Figure 4.5 is reasonably
straight, and has a unit slope and zero intercept. On the basis of this plot,
there is no reason to doubt the adequacy of the fitted model. However, as
pointed out in Section 4.2.1, this plot is not at all sensitive to departures from
the fitted model.

To further assess the fit of the model, the deviance residuals are plotted
against the corresponding risk scores in Figure 4.6. This plot shows that pa-
tients 41 and 38 have the largest values of the deviance residuals, but these
are not much separated from values of the residuals for some of the other
patients. Patients with the three largest risk scores have residuals that are
close to zero, suggesting that these observations are well fitted by the model.
Again, there is no reason to doubt the validity of the fitted model.
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In order to investigate whether the correct functional form for the variates
Hb and Bun has been used, martingale residuals are calculated f01t the null
model and plotted against the values of these variables. The r.esultmg plots,
with a smoothed curve superimposed to aid in their interpretation, are shown

in Figures 4.7 and 4.8.
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Figure 4.7 Plot of the martingale residuals for the null model against the values of
Hb, with a smoothed curve superimposed.
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Figure 4.8 Plot of the martingale residuals for the null model against the values of

Bun, with a smoothed curve superimposed.
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The plots for Hb and Bun confirm that linear terms in each variable are
required in the model. Note that the slope of the plot for Hb in Figure 4.7 is
negative, corresponding to the negative coefficient of Hb in the fitted model,
while the plot for Bun in Figure 4.8 has a positive slope.

In this data set, the values of Bun range from 6 to 172, and the distribution
of their values across the 48 subjects is positively skewed. In order to guard
against the extreme values of this variate having an undue impact on the co-
efficient of Bun, logarithms of this variable might be used in the modelling
process. Although there is no suggestion of this in Figure 4.8, for illustrative
purposes, we will use this type of plot to investigate whether a model contain-
ing log Bun rather than Bun is acceptable. Figure 4.9 shows the martingale
residuals for the null model plotted against the values of log Bun.
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Figure 4.9 Plot of the martingale residuals for the null model against the values of
log Bun, with a smoothed curve superimposed.

The smoothed curve in this figure does suggest that it is not appropriate to
use a linear term in log Bun. Indeed, if it were decided to use log Bun in the
model, Figure 4.9 indicates that a quadratic term in log Bun may be needed.
In fact, adding this quadratic term to a model that includes Hb and log Bun
leads to a significant reduction in the value of —2 log L, but the resulting value
of this statistic, 201.458, is then only slightly less than the corresponding value
for the model containing Hb and Bun, which is 202.938. This analysis confirms
that the model should contain linear terms in the variables Hb and Bun.

4.3 Identification of influential observations

In the assessment of model adequacy, it is important to determine whether
any particular observation has an undue impact on inferences made on the
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basis of a model fitted to an observed set of survival data. Observations that
do have an effect on model-based inferences are said to be influential.

As an example, consider a survival study in which a new treatment is to
be compared with a standard. In such a comparison, it would be important
to determine if the hazard of death on the new treatment, relative to that on
the standard, was substantially affected by any one individual. In particular,
it might be that when the data record for one individual is removed from the
data base, the relative hazard is increased or reduced by a substantial amount.
If this happens, the data from such an individual would need to be subject to
particular scrutiny.

Conclusions from a survival analysis are often framed in terms of estimates
of quantities such as the relative hazard and median survival time, which de-
pend on the estimated values of the -parameters in the fitted Cox regression
model. It is therefore of particular interest to examine the influence of each
observation on these estimates. We can do this by examining the extent to
which the estimated parameters in the fitted model are affected by omitting in
turn the data record for each individual in the study. In some circumstances,
the estimates of a subset of the parameters may be of special importance, such
as parameters associated with treatment effects. The study of influence may
then be limited to just these parameters. On many occasions, the influence
that each observation has on the estimated hazard function will be of inter-
est, and it would then be important to identify observations that influence
the complete set of parameter estimates under the model. These two aspects
of influence are discussed in the following sections.

In contrast to models encountered in the analysis of other types of data,
such as the general linear model, the effect of removing one observation from
a set of survival data is not easy to study. This is mainly because the log-
likelihood function for the Cox regression model cannot be expressed as the
sum of a number of terms, in which each term is the contribution to the log-
likelihood made by each observation. Instead, the removal of one observation
affects the risk sets over which quantities of the form exp(3'z) are summed.
This means that influence diagnostics are quite difficult to derive and so the
following sections of this chapter simply give the relevant results. References
to the articles that contain derivations of the quoted formulae are included in
the final section of this chapter.

4.8.1 Influence of observations on a parameter estimate

Suppose that we wish to determine whether any particular observation has
an untoward effect on ;, the jth parameter estimate, j = 1,2,...,p, in a
fitted Cox regression model. One way of doing this would be to fit the model
to all n observations in the data set, and to then fit the same model to the
sets of m — 1 observations obtained by omitting each of the n observations
in turn. The actual effect that omitting each observation has on the param-
eter estimate could then be determined. This procedure is computationally
expensive, unless the number of observations is not too large, and so we use
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instead an approximation to the amount by which Bj changes when the ith
observation is omitted, for ¢ = 1,2,... n. Suppose that the value of the jth
parameter estimate on omitting the 7th observation is denoted by By Cain

and Lange (1984) showed that an approximation to Bj — B;() is based on the
score residuals, described in Section 4.1.6.

Let rg; denote the vector of values of the score residuals for the ith obser-
vation, so that v, = (514,752, ..., 75pi), Where 755, 7 = 1,2, .. D isA the
ith score residual given in equation (4.13). An approximation to §; — B;(),

the change in Bj on omitting the ith observation, is then the jth component
of the vector

TfS’i var (B)ﬂ
var (B) being the variance-covariance matrix of the vector of parameter esti-
mates in the fitted Cox regression model. The jth element of this vector, which
is called a delta-beta, will be denoted by Aiﬁj, so that Aiﬁj S ,@j — Bj(i). Use
of this approximation means that the values of Aiﬁj can be computed from
quantities available after fitting the model to the full data set.

Observations that influence a particular parameter estimate, the jth say,
will be such that the values of Aiﬁj, the delta-betas for these observations, are
larger in absolute value than for other observations in the data set. Index plots
of the delta-betas for each explanatory variable in the model will then reveal
whether there are observations that have an undue impact on the parameter
estimate for any particular explanatory variable. In addition, a plot of the
values of A;f3; against the rank order of the survival times yields information
about the relation between survival time and influence.

The delta-betas may be standardised by dividing Aiﬁj by the standard er-
ror of f; to give a standardised delta-beta. The standardised delta-beta can be
interpreted as the change in the value of the statistic 3/se (3), on omitting

the ith observation. Since this statistic can be used in assessing whether a par-
ticular parameter has a value significantly different from zero (see Section 3.4
of Chapter 3), the standardised delta-beta can be used to provide information
on how the significance of the parameter estimate is affected by the removal
of the ith observation from the data base. Again, an index plot is the most
useful way of displaying the standardised delta-betas.

The statistic A;3; is an approximation to the actual change in the pa-
rameter estimate when the ith observation is omitted from the fit. The ap-
proximation is generally adequate in the sense that observations that have
an influence on a parameter estimate will be highlighted. However, the ac-
tual effect of omitting any particular observation on model-based inferences
will need to be studied. The agreement between the actual and approximate
delta-betas in a particular situation is illustrated in Example 4.6.

Ezample 4.6 Infection in patients on dialysis

In this example, we return to the data on the times to infection following com-
mencement of dialysis. To investigate the influence that the data from each
of the 13 patients in the study has on the estimated value of the coefficients
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of the variables Age and Sex in the linear component of the fitted Cox regres-
sion model, the approximate unstandardised delta-betas, A;3; and A;(3q, are
obtained. These are given in Table 4.4.

Table 4.4 Appro:m'matAe delta-betas
for Age (1), and Sez (32).

Observation JAY) B 1 A [3’2

1 0.0020 —-0.1977
2 0.0004 0.5433
3 —0.0011 0.0741
4 —0.0119 0.5943
5 0.0049 0.0139
6 —0.0005 —0.1192
7 —0.0095 0.1270
8 —0.0032 -0.0346
9 —-0.0073 —0.0734
10 0.0032 —0.2023
11 0.0060 —0.2158
12 0.0048 -0.1939
13 0.0122  -0.3157

The largest delta-beta for Age occurs for patient number 13, but there are
other delta-betas with similar values. The actual change in the parameter
estimate on omitting the data for this patient is 0.0195, and so omission
of this observation increases the hazard of infection relative to the baseline
hazard. The standard error of the parameter estimate for Age in the full data
set is 0.026, and so the maximum amount by which this estimate is changed
when one observation is deleted is about three-quarters of a standard error.
When the data from patient 13 is omitted, the age effect becomes slightly
more significant, but the difference is unlikely to be of practical importance.

There are two large delta-betas for Sex that are quite close to one an-
other. These correspond to the observations from patients 2 and 4. The actual
change in the parameter estimate when each observation is omitted in turn is
0.820 and 0.818, and so the approximate delta-betas underestimate the actual
change. The standard error of the estimated coefficient of Sex in the full data
set is 1.096, and so again the change in the estimate on deleting an observa-
tion is less than one standard error. The effect of deleting either of these two
observations is to increase the relative hazard, but again this increase is not
great.

To compare the approximate delta-betas with the actual values, a plot of
their values against the rank of the time to infection is given in Figures 4.10
and 4.11. These figures show that the agreement is generally quite good,
although there is a tendency for the actual changes in the parameter estimates
to be underestimated by the approximation. The largest difference between
the actual and approximate value of the delta-beta for Age is 0.010, which
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occurs for patient number 8. That for Sez is 0.276, which occurs for patient
number 2. These differences are about a quarter of the value of the standard
error of each parameter estimate.

4.8.2 Influence of observations on the set of parameter estimates

It may happen that the structure of the fitted model is particularly sensitive
to one or more observations in the data set. Such observations can be detected
using diagnostics that are designed to highlight observations that influence the
complete set of parameter estimates in the linear predictor. These diagnostics
therefore reflect the influence that individual observations have on the risk
score, and give information that is additional to that provided by the delta-
betas. In particular, excluding a given observation from the data set may not
have a great influence on any particular parameter estimate, and so will not
be revealed from a study of the delta-beta statistics. However, the change in
the set of parameter estimates might be such that the form of the estimated
hazard function, or values of summary statistics based on the fitted model,
change markedly when that observation is removed. Statistics for assessing
the influence of observations on the set of parameter estimates also have the
advantage that there is a single value of the diagnostic for each observation.
This makes them easier to use than diagnostics such as the delta-betas.

A number of diagnostics for assessing the influence of each observation on
the set of parameter estimates have been proposed. In this section, two will
be described, but references to others will be given in the concluding section
of this chapter.

One way of assessing the influence of each observation on the overall fit
of the model is to examine the amount by which the value of minus twice
the logarithm of the maximised partial likelihood, —2log L, under a fitted
model, changes when each observation in turn is left out. Write —2log L(3)
for the value of the maximised log-likelihood when the model is fitted to
all n observations, and —2log L(8;) for the value of the maximised log-
likelihood of the n observations when the parameter estimates are computed
after omitting the ith observation from the fit. The diagnostic

2 {1og L(B) —log L(/é(i))}

can then be useful in the study of influence.
Pettitt and Bin Daud (1989) show that an approximation to this lkelihood
displacement is
LD; = 'I“igi var (ﬁ) TS, (415)

where rg; is the p x 1 vector of score residuals, whose jth component is
given in equation (4.13), and var (B) is the variance-covariance matrix of 3,
the vector of parameter estimates. The values of this statistic may therefore
be straightforwardly obtained from terms used in computing the delta-betas
for each explanatory variable in the model. An index plot, or a plot of the
likelihood displacements against the rank order of the survival times, provides

e
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an informative visual summary of the values of the diagnostic. Observations
that have relatively large values of the diagnostic are influential. Plots against
explanatory variables are not recommended, since, as demonstrated by Pettitt
and Bin Daud (1989), these plots can have a deterministic pattern, even when
the fitted model is correct.

Another diagnostic that can be used to assess the impact of each observation
on the set of parameter estimates is based on the n x n symmetric matrix

B =0"var(3)0©,

where ©’ is the n x p matrix formed from the vectors rsi,forv=1,2,...,p. An
argument from linear algebra shows that the absolute values of the elements
of the n x 1 eigenvector associated with the largest eigenvalue of the matrix B,
standardised to have unit length by dividing each component by the square
root of the sum of squares of all the components of the eigenvector, is a
measure of the sensitivity of the fit of the model to each of the n observations
in the data set. Denoting this eigenvector by ln.y, the ith element of I,
is a measure of the influence of the ith observation on the set of parameter
estimates. The sign of this diagnostic is immaterial, and so plots based on
the absolute values, |lmax| are commended for general use. Index plots of
these values, plots against the rank order of the survival times, and against
explanatory variables in the model, can all be useful in the assessment of
influence.

The standardisation to unit length means that the squares of the elements
Of lmax must sum to 1.0. Observations for which the squares of the elements
of the eigenvector account for a substantial proportion of the total sum of
squares of unity will then be those that are most influential. Large elements
of this eigenvector will therefore correspond to observations that have most
effect on the value of the likelihood function. A final point to note is that
unlike other diagnostics, a plot of the elements of .y against explanatory
var.iables will not have a deterministic pattern if the fitted model is correct.
This means that plots of the absolute values of the elements of lmax against
explanatory variables can be useful in assessing whether there are particular
ranges of values of the variates over which the model does not fit well.

Ezample 4.7 Infection in patients on dialysis

T.he data first given in Example 4.1 will again be used to illustrate the use of
diagnostics designed to reveal observations that influence the complete set of
barameter estimates. In Table 4.5, the approximate likelihood displacements
from equation (4.15), and the elements of the vector {max|, are given.

The observations that most affect the value of the maximised log-likelihood
when they are omitted are those corresponding to patients 2 and 4. The value
of the likelihood displacement diagnostic is also quite large for patient number
13. This means that the set of parameter estimates are most affected by the
removal of either of these three patients from the data base.

The fourth element of {max is the largest in absolute value, and indicates
that omitting the data from patient number 4 has the greatest effect on the
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Table 4.5 Values of the approxi-
mate likelihood displacement, LD;,
and the elements of |lmax|.

Observation LD; Himax|
1 0.033 0.161
2 0.339 0.309
3 0.005 0.068
4 0.338 0.621
5 0.050 0.104
6 0.019 0.058
7 0.136 0.291
8 0.027 0.054
9 0.133 0.124

10 0.035 0.193
11 0.061 0.264
12 0.043 0.224
13 0.219 0.464

pair of parameter estimates. The elements corresponding to patients 2 and 13
are also large relative to the other values, suggesting that the data for these
patients are also influential. The sum of the squares of elements 2, 4 and 13
of Iinax is 0.70. The total of the sums of squares of the elements is 1.00, and
so cases 2, 4 and 13 account for nearly three-quarters of the variability in
the elements of I,,x. Note that the analysis of the delta-betas in Example
4.6 showed that the observations from patients 2 and 4 most influence the
parameter estimate for Sex, while the observation for patient 13 has a greater
effect on the estimate for Age.

In summary, the observations from patients 2, 4 and 13 affect the form of
the hazard function to the greatest extent. Omitting each of these in turn
gives the following estimates of the linear component in the hazard functions
for the ith individual:

Omitting patient number 2: 0.031 Age,; — 3.530 Sez;,
Omitting patient number 4: 0.045 Age; — 3.529 Sex;,

Omitting patient number 13: 0.011 Age; — 2.234 Sezx;.

For comparison, the linear component for the full data set is
0.030 Age; — 2.711 Sez;.

To illustrate the magnitude of the change in estimated hazard ratios, consider
the relative hazard of infection at time ¢ for a patient aged 50 years relative
to one aged 40 years. For the full data set, this is €>%°* = 1.355. This value is
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increased to 1.365 and 1.564 when patients 2 and 4, respectively, are omitted,
and decreased to 1.114 when patient 13 is omitted. The effect on the haz-
ard function of removing these patients from the data base is therefore not
particularly marked.

In the same way, the hazard of infection at time ¢ for a male patient (Sez =
1) relative to a female (Sex = 2) is ™!, that is, 5.041 for the full data
set. When observations 2, 4, and 13 are omitted in turn, the hazard for males
relative to females is 4.138, 4.097 and 9.334, respectively. Omission of the data
from patient number 13 appears to have a great effect on the estimated hazard
ratio. However, some caution is needed in interpreting this result. Since there
are very few males in the data set, the estimated hazard ratio is imprecisely
estimated. In fact, a 95% confidence interval for the hazard ratio, when the
data from patient 13 are omitted, ranges from 0.012 to 82.96!

4.3.3 Treatment of influential observations

Once observations have been found to be unduly influential, it is difficult to
offer any firm advice on what should be done about them. So much depends
on the scientific background to the study.

When possible, the origin of influential observations should be checked. Er-
rors in transcribing and recording categorical and numerical data frequently
occur. If any mistakes are found, the data need to be corrected and the anal-
ysis repeated. If the observed value of a survival time, or other explanatory
variables, is impossible, and correction is not possible, the corresponding ob-
servation should be omitted from the data base before repeating the analysis.

In many situations it will not be possible to confirm that the data cor-
responding to an influential observation are valid. Certainly, influential ob-
servations should not then be rejected outright. In these circumstances, the
most appropriate course of action will be to establish the actual effect on the
inferences to be drawn from the analysis. For example, if a relative hazard
or median survival time is being used in quantifying the size of a treatment
effect, the values of these statistics with and without the influential values can
be contrasted. If the difference between the results is so small as to not be of
practical importance, the queried observations can be retained. On the other
hand, if the effect of removing the influential observations is large enough to
be of practical importance, analyses based on both the full and reduced data
sets will need to be reported. The outcome of consultations with the scientists
involved in the study will then be a vital ingredient in the process of deciding
on the course of future action.

Ezample 4.8 Survival of multiple myeloma patients

The effect of individual observations on the estimated values of the parameters
of a Cox regression model fitted to the data from Example 1.3 will now be
investigated. Plots of the approximate unstandardised delta-betas for Hb and
Bun against the rank order of the survival times are shown in Figures 4.12
and 4.13.
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Figure 4.12 Plot of the delta-betas for Hb against rank order of survival time.
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Figure 4.13 Plot of the delta-betas for Bun against rank order of survival time.
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From Figure 4.12, no one observation stands out as having a delta-beta for
Hb that is different from the rest. However, Figure 4.13 shows that the two
observations with the shortest survival times have relatively large positive or
large negative delta-betas for Bun. These correspond to patients 32 and 38 in
the data given in Table 1.3. Patient 32 has a survival time of just one month,
and the second largest value of Bun. Deletion of this observation from the
data base decreases the parameter estimate for Bun. Patient number 38 also
survived for just one month after trial entry, but has a value of Bun that is
rather low for someone surviving for such a short time. If the data from this
patient are omitted, the coefficient of Bun in the model is increased.

To identify observations that influence the set of parameter estimates, a
plot of the absolute values of the elements of the diagnostic I,y against the
rank order of the survival times is shown in Figure 4.14.
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Figure 4.14 Plot of the absolute values of the elements of lmax against rank order
of survival time.

The observation with the largest value of |lyax| corresponds to patient 13.
This patient has an unusually small value of Hb, and a value of Bun that
is a little high, for someone who has survived as long as 65 months. If this
observation is omitted from the data set, the coefficient of Bun remains the
same, but that of Hb is reduced from —0.134 to —0.157. The effect of Hb on
the hazard of death is then a little more significant. In summary, the record
for patient 13 has little effect on the form of the estimated hazard function.

4.4 Testing the assumption of proportional hazards

So far in this chapter we have concentrated on how the adequacy of the
linear component of a survival model can be examined. A crucial assumption
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made when using the Cox regression model is that of proportional hazards.
If hazards are not proportional, this means that the linear component of the
model varies with time in some manner. We must therefore consider how the
validity of this assumption can be examined. In this section, a straightforward
plot that can be used in advance of model fitting is first described, and this is
followed by a description of how diagnostics derived from a fitted model can
be used in examining the proportional hazards assumption.

4.4.1 The log-cumulative hazard plot

According to the Cox regression model, the hazard of death at any time ¢ for
the 7th individual is given by

hi(t) = exp(B'x;)ho(t), (4.16)

where @; is the vector of values of explanatory variables for that individual,
B is the corresponding vector of coefficients, and hg (t) is the baseline hazard
function. Integrating both sides of this equation over ¢ gives

¢ t
/ hi(u)du = exp(ﬂ’wi)/ ho(u)du,
0 0
and so, using equation (1.6),

Hy(t) = exp(B'e;) Ho (1),

where H,(t) and Ho(t) are the cumulative hazard functions. Taking logarithms
of each side of this equation, we get

log Hi(t) = B'x; + log Ho(t),

from which it follows that differences in the log-cumulative hazard functions
do not depend on time. This means that if the log-cumulative hazard functions
for individuals with different values of their explanatory variables are plotted
against time, the curves so formed will be parallel if the proportional hazards
model in equation (4.16) is valid. This provides the basis of a widely used
diagnostic for assessing the validity of the proportional hazards assumption.
It turns out that plotting the log-cumulative hazard functions against the log-
arithm of ¢, rather than ¢ itself, is a useful diagnostic in parametric modelling,
and so this form of plot is generally used; see Section 5.4.1 of Chapter 5 for
further details on the use of this log-cumulative hazard plot.

To use this plot, the survival data are first grouped according to the levels of
one or more factors. If continuous variables are to feature in this analysis, their
values will first need to be grouped in some way to give a categorical variable.
The Kaplan-Meier estimate of the survivor function of the data in each group
is then obtained. A log-cumulative hazard plot, that is, a plot of the logarithm
of the estimated cumulative hazard function against the logarithm of the
survival time, will yield parallel curves if the hazards are proportional across
the different groups. This method is informative, and simple to operate when
there is a small number of factors, and a reasonable number of observations at
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each level. On the other hand, the plot will be based on very few obseryations
at the later survival times, and in more highly structured data sets, a different
approach needs to be taken.

Ezample 4.9 Survival of multiple myeloma patients . . '
We again use the data on the survival times of 48 patients Wlth Inult.lp.lﬁ
myeloma, to illustrate the log-cumulative hazard plot. In partlc}lla_mr we wi
investigate whether the assumption of proportional hazards is valid in respect
of the variable Hb, which is associated with the serum haempglobm level.
Because this is a continuous variable, we first need to categorise the values
of Hb. This will be done in the same manner as in Example 3.7 of Chap-
ter 3, where four groups were defined with values of Hb whlch.are such that
Hb<7,7 < Hb<10, 10 < Hb <13 and Hb > 13. The patlen.ts are then
grouped according to their haemoglobin level, and the Kaplan-Meier estlmat.e
of the survivor function is obtained for each of the four groups. From t'hls
estimate, the estimated log-cumulative hazard is formed using the rela@on
H(t) = —log S(t), from equation (1.7) of Chapter 1, and plotted against

the values of logt. The resulting log-cumulative hazard plot is shown in Fig-
ure 4.15.
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Figure 4.15 Log-cumulative hazard plot for multiple myeloma patients in four
groups defined by Hb <7 (), 7 < Hb <10 (w), 10 < Hb <13 (a) and Hb > 13

(x)-

This figure indicates that the plots for Hb < 7,7 < Hb <.10, a.nd Hb > 13
are roughly parallel. The plot for 10 < Hb < 13 is not in line w1t}q the oth-
ers, although this impression results from relatively large Cumu.latlvg hazard
estimates at the longest survival times experienced by pati.ents in this group.
This plot takes no account of the values of the other variable, Bun, and it
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could be that the survival times of the individuals in the third Hb group have
been affected by their Bun values. Overall, there is little reason to doubt the
proportional hazards assumption.

4.4.2% Use of Schoenfeld residuals

Hazards are said to be proportional if ratios of hazards are independent of
time. If there are one or more explanatory variables in the model whose co-
efficients vary with time, or if there are explanatory variables that are time-
dependent, the proportional hazards assumption will be violated. We there-
fore require a method that can be used to detect whether there is some form
of time dependency in particular covariates, after allowing for the effects of
explanatory variables that are known, or expected to be, independent of time.

The Schoenfeld residuals, defined in Section 4.1.5, are particularly useful in
evaluating the assumption of proportional hazards after fitting a Cox regres-
sion model. Grambsch and Therneau (1994) have shown that the expected
value of the ith scaled Schoenfeld residual, for the jth explanatory variable,
X, in the model, r;;, is given by E (rfpji) ~ G5 (t:) —Bj, where (3;(t) is taken
to be a time-varying coefficient of X;, §;(t;) is the value of the coefficient at
the ith death time, ¢;, and Bj is the estimated value of 3; in the fitted Cox
regression model. Consequently, a plot of the values of Tpsit+ Bj against the
death times should give information about the form of the time-dependent
coefficient of X;, §;(t). In particular, a horizontal line will suggest that the
coefficient of X; is constant, and the proportional hazards assumption is satis-
fied. A smoothed curve can be superimposed on this plot to aid interpretation,
as in the plots of martingale residuals against the values of explanatory vari-
ables in Section 4.2.3. This plot can also be supplemented by fitting a straight
line, and formally testing if the slope of this line is zero. However, this proce-
dure has its limitations, since a slope that is not significantly different from
zero may be found when there is, in fact, a non-linear relationship between
the coeflicient and time.

Example 4.10 Infection in patients on dialysis

The data on catheter removal times for patients on dialysis is now used to illus-
trate the use of the scaled Schoenfeld residuals in assessing non-proportional
hazards. The scaled Schoenfeld residuals for the variables Age and Sex were
given in Table 4.2. Adding the values of the estimated coefficients of these two
variables, that is 0.030 and —2.711, respectively, to these two sets of residuals,
and plotting their values against time, gives the graphs shown in Figures 4.16
and 4.17.

In neither plot is there any suggestion of non-proportional hazards. In fact,
on fitting a straight line relationship between the values of r%,; +3; and time,
using simple linear regression, the P-values for testing whether the estimated
slope is significantly different from zero are 0.391 and 0.694 for Age and Sez,
respectively.
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4.4.3% Adding o time-dependent variable

To examine the assumption of proportional hazards in the Cox regression
model, a time-dependent variable can be added to the model. Fuller details
on the use of time-dependent variables in modelling survival data are given
in Chapter 8, but in this section, the procedure is described in a particular
context.

Consider a survival study in which each patient has been allocated to one
of two groups, corresponding to a standard treatment and a new treatment.
Interest may then centre on whether the ratio of the hazard of death at time ¢
in one treatment group, relative to the other, is independent of survival time.
A proportional hazards model for the hazard function of the ith individual in
the study is then

hi(t) = exp(Biz1:)ho(t), (4.17)

where z1; is the value of an indicator variable X; that is zero for the standard
treatment and unity for the new treatment. The relative hazard of death at
any time for a patient on the new treatment, relative to one on the standard,
is then e, which is independent of the survival time.

Now define a time-dependent explanatory variable Xy, where Xo = X t. If
this variable is added to the model in equation (4.17), the hazard of death at
time ¢ for the ith individual becomes

hi(t) = exp(Brz1i + Powai ) ho(t), (4.18)

where z9; = w15t is the value of Xt for the ith individual. The relative hazard
at time ¢ is now

exp(f1 + Fat), (4.19)

since Xy = ¢ under the new treatment, and zero otherwise. This hazard ratio
depends on ¢, and the model in equation (4.18) is no longer a proportional
hazards model. In particular, if 8y < 0, the relative hazard decreases with
time. This means that the hazard of death on the new treatment, relative to
that on the standard, decreases with time. If #; < 0, the interpretation of this
would be that the superiority of the new treatment becomes more apparent
as time goes on. On the other hand, if G, > 0, the relative hazard of death on
the new treatment increases with time, reflecting an increasing risk of death
on the new treatment relative to the standard. In the particular case where
B2 = 0, the relative hazard is constant at e”'. This means that a test of the
hypothesis that §o = 0 is a test of the assumption of proportional hazards.
The situation is illustrated in Figure 4.18.

In order to aid in both the computation and interpretation of the parameters
in the model of equation (4.18), the variable X3 can be defined in terms of the
deviation from some time, to. The estimated values of 81 and (2 will then tend
to be less highly correlated, and maximisation of the appropriate likelihood
function will be less difficult. If X5 is taken to be such that Xo = X (¢ — ¢,),
the value of X is t — tg for the new treatment and zero for the standard. The
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Figure 4.18 Plot of the relative hazard, exp{f1+p2t}, against t, for different values
of Pa.

relative hazard now becomes

exp{B1 + B2(t —to)}.

In the model of equation (4.18), the quantity e”* is the hazard of death at
time o for an individual on the new treatment relative to one on the standard.
In practical applications, to will generally be chosen to provide a convenient
interpretation for the time at which this relative hazard is applicable. For
example, taking t( to be the mean or median survival time means that exp(f1)
is the estimated relative hazard of death at this time.

A similar model can be used to detect whether the coefficient of a contin-
uous variate has a coeflicient that depends on time. Suppose that X is such
a variate, and we wish to examine whether there is any evidence that the
coefficient of X is linearly dependent on time. To do this, the term X7 is
added to the model that includes X. The hazard of death at time t for the
1th individual is then

hi(t) = exp(Biz; + Bazit)ho(t),

where z; is the value of X for that individual. The hazard of death at time
t for an individual for whom X = x; + 1, relative to an individual for whom
X = z;, is then exp(B1 + Bat), as in equation (4.19).

The time-dependent variables considered in this section are such that their
coefficients are linearly dependent on time. A similar approach can be used
when a coefficient that is a non-linear function of time is anticipated. For ex-
ample, log ¢ might be used in place of ¢ in the definition of the time-dependent
variable X5, used in equation (4.18). In this version of the model, a test of the
hypothesis that B2 = 0 is a test of proportional hazards, where the alternative
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hypothesis is that the hazard ratio is dependent on the logarithm of time.
Using log ¢ in the definition of a time-dependent variable is also helpful when
the numerical values of the survival times are large, such as when survival in a
long-term study is measured in days. There may then be computational prob-
lems associated with calculating the value of exp(fBs2;) in equation (4.18),
which are resolved by using log ¢ in place of ¢ in the definition of X,.

Models that include the time-dependent variable X, cannot be fitted by
treating X5 in the same manner as other explanatory variables in the model.
The reason for this is that this variable will have different values at different
death times, complicating the calculation of the denominator of the partial
likelihood function in equation (3.4). Full details on the fitting process will be
deferred to Chapter 8. However, inferences about the effect of time-dependent
variables on the hazard function can be evaluated as for other variables. In
particular, the change in the value of the —210gf} statistic can be compared
to percentage points of the chi-squared distribution to test the significance of
the variable. This is therefore a formal test of proportional hazards.

Ezample 4.11 Infection in patients on dialysis

An informal assessment of non-proportional hazards in respect of the vari-
ables Age and Sex was given in Example 4.10. We now add variables whose
coefficients are linear functions of time in order to provide a formal test of the
proportional hazards assumption.

We begin by fitting the Cox regression model containing just Age and Sez,
which leads to a value of —2log L of 34.468. We now define terms that are the
products of these variables with time, namely Tage = Age x t and T'sex =
Sex x t. These variables are then added to the model. Note that we cannot
simply form these products from the observed survival times of the patients,
since the model-fitting process requires that these values be computed for
different values of ¢; see Chapter 8 for details on this.

When the variable Tage is added to the model that contains Age and Sexz,
the value of —2log L reduces to 32.006, but this reduction is not significant at
the 5% level (P = 0.117). The reduction in —2log L when Tsez is added to the
model that has Age and Sez is only 0.364 (P = 0.546). This analysis confirms
that there is no reason to doubt the assumption of proportional hazards in
respect of the variables Age and Sex.

4.5 Recommendations

In this chapter, a range of diagnostics have been presented. Which should
be used on a routine basis and which are needed when a more thorough
assessment of model adequacy is required?

In terms of assessing the overall fit of a model, a plot of the deviance
residuals against the risk score gives information on observations that are
not well fitted by the model, and their relation to the set of values of the
explanatory variables. This diagnostic is generally more informative than the
cumulative, or log-cumulative, hazard plot of the Cox-Snell residuals. Plots of
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residuals against the survival times, the rank order of the survival times, or
explanatory variables may also be useful.

Plots of residuals might be supplemented by influence diagnostics. When
the inference to be drawn from a model centres on one or two particular
parameters, the delta-beta statistic for those parameters, will be the most
relevant. Plots of these values against the rank order of survival times will then
be useful. To investigate whether there are observations that have an influence
on the set of parameter estimates, or risk score, the diagnostic based on the
absolute values of the elements of I,,, is probably the most suitable. Plots
of these values against the rank order of survival times will be informative,
but plots against particular explanatory variables might also be revealing. An
initial assessment of the validity of the proportional hazards assumption can
be made from log-cumulative hazard plots. However, plots based on the scaled
Schoenfeld residuals can be more helpful. Formal tests of the assumption of
proportional hazards may be based on time-dependent variables.

4.6 Further reading

General introductions to the ideas of model checking in linear models are
included in Draper and Smith (1998) and Montgomery et al. (2001). Cook
and Weisberg (1982) give a more detailed account of the theory underlying
residuals and influence diagnostics in a number of situations. Atkinson (1985)
describes model checking in linear models from a practical viewpoint, and
McCullagh and Nelder (1989) and Aitkin et al. (1989) discuss this topic in
the context of generalised linear models.

Many textbooks devoted to the analysis of survival data, and particularly
those of Cox and Oakes (1984), Hosmer and Lemeshow (1999), Lawless (2002),
and Kalbfleisch and Prentice (2002), include sections on the use of residuals.
Hinkley et al. (1991) and Hastie and Tibshirani (1990) also include brief dis-
cussions on methods for assessing the adequacy of models fitted to survival
data.

Early articles on the use of residuals in checking the adequacy of survival
models include Kay (1977) and Crowley and Hu (1977). These papers include a
discussion on the Cox-Snell residuals, which are based on the general definition
of residuals given by Cox and Snell (1968). Crowley and Storer (1983) showed
empirically that the cumulative hazard plot of the residuals is not particularly
good at identifying inadequacies in the fitted model. See also Crowley and
Storer ( 1983) for a practical application of the methods. Reviews of diagnostic
Procedures in survival analysis were given in the mid-1980s by Kay (1984) and
Day (1985).

Martingale residuals were proposed by Barlow and Prentice (1988). Essen-
tially the same residuals were proposed by Lagakos (1981) and their use is
discussed by Therneau, Grambsch and Fleming (1990) and Henderson and
Milner (1991). Deviance residuals were also introduced in Therneau, Gramb-
sch and Fleming (1990). The Schoenfeld residuals for the Cox model were
broposed by Schoenfeld (1982). In accounts of survival analysis based on the
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theory of counting processes, Fleming and Harrington (1991) and Therneau
and Grambsch (2000) show how different types of residual can be used, and
give detailed practical examples. Two other types of residual, introduced by
Nardi and Schemper (1999), are particularly suitable for the detection of out-
lying survival times.

Influence diagnostics for the Cox regression model have been considered by
many authors, but the major papers are those of Cain and Lange (1984), Reid
and Crépeau (1985), Storer and Crowley (1985), Pettitt and Bin Daud (1989)
and Weissfeld (1990). Pettitt and Bin Daud (1990) show how time-dependence
in the Cox proportional hazards model can be detected by smoothing the
Schoenfeld residuals. The LOWESS smoother was introduced by Cleveland
(1979), and the algorithm is also presented in Collett (2003).

Some other graphical methods for evaluating survival models, not men-
tioned in this chapter, have been proposed by Cox (1979) and Arjas (1988).
Gray (1990) describes the use of smoothed estimates of cumulative hazard
functions in evaluating the fit of a Cox model.

Most of the diagnostic procedures presented in this chapter rely on an infor-
mal evaluation of tabular or graphical presentations of particular statistics. In
addition to these procedures, a variety of significance tests have been proposed
that can be used to asses the goodness of fit of the model. Examples include
the methods of Schoenfeld (1980), Andersen (1982), Nagelkerke et al. (1984),
Ciampi and Etezadi-Amoli (1985), Moreau et al. (1985), Gill and Schumacher
(1987), O’Quigley and Pessione (1989), Quantin et al. (1996), Grgnnesby and
Borgan (1996), and Verweij et al. (1998). Reviews of some of these goodness of
fit tests for the Cox regression model are included in Lin and Wei (1991) and
Quantin et al. (1996). Many of these test involve statistics that are quite com-
plicated, and the procedures are not widely in computer software for survival
analysis. A more simple procedure for evaluating the overall fit of a model has
been proposed by May and Hosmer (1998).

CHAPTER 5

Parametric proportional hazards
models

When the Cox regression model is used in the analysis .of s.urvi'val data, there
is no need to assume a particular form of probability dlstnbutlon for the spﬁr—
vival times. As a result, the hazard function is not .restrlcted to a specific
functional form, and the model has flexibility and Wldespre‘a‘d ap.phc.ablh'ty,
On the other hand, if the assumption of a particular pro-bablh.ty distribution
for the data is valid, inferences based on such an assurgphon will be more pre-
cise. In particular, estimates of quantities such as relative hazards and mecilla'un
survival times will tend to have smaller standard errors .than the){ would in
the absence of a distributional assumption. Mo@els in which a specific probq—
bility distribution is assumed for the survival Flmes are known as param?érzg
models, and parametric versions of the proportional hazards model, describe

i r 3, are the subject of this chapter. ‘ .

. fS };)?gg‘;bﬂity distributii)n that plays a central role in thg analyms of SU:rvwsl
data is the Weibull distribution, introduced by W. Welbgll in 1951 in the
context of industrial reliability testing. Indeed, this distrlhbut.lon is as Cf:ntr‘al to
the parametric analysis of survival data as the normal dls‘tmbut?on is in linear
modelling. Proportional hazards models based on the Weibull distribution are

therefore considered in some detail.

5.1 Models for the hazard function

Once a distributional model for survival times has been specified in terms FJf a
probability density function, the corresponding survivor and hazard functions
can be obtained from the relations

S(t) =1 7/0 f(w) du, (5.1)

and " .
St 5.2
=22 = -—{logS(t)}, (5.2)
h(t) S0) 3 log S}

where f(t) is the probability density function of the survival ti.mes. Thgse
relationships were derived in Section 1.3. An alternative approac}.l is to Spe(’:lfy
a functional form for the hazard function, from which the survwor‘functlon
and probability density functions can be determined from the equations

S(t) =exp{—H@®)}, (5.3)
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and

£ = h(t)s(6) = -2 (5.4
where

H(t) = /O h(w) du

is the integrated hazard function.

5.1.1 The exponential distribution

The simplest model for the hazard function is to assume that it is constant
over time. The hazard of death at any time after the time origin of the study is
then the same, irrespective of the time elapsed. Under this model, the hazard
function may be written as
h(t) = A,

for 0 <t < o0. The parameter )\ is a positive constant that would be esti-
mated by fitting the model to the observed data. From equation (5.3), the
corresponding survivor function is

S(t) = exp{—/ot)\du},

= e M, (5.5)
and so the implied probability density function of the survival times is
f(t) =xe™™, (5.6)

for 0 < ¢ < oo. This is the probability density function of a random variable
T that has an exzponential distribution with a mean of A~!. It is sometimes
convenient to write 1 = A7!, so that the hazard function is p~!, and the
survival time distribution has a mean of u. However, the former specification
of the hazard function will generally be used in this book.

The median of the exponential distribution, ¢(50), is such that S{¢(50)} =
0.5, that is,

exp{—Xt(50)} = 0.5,
so that "
t(50) = 3 log 2.

More generally, the pth percentile of the survival time distribution is the value
t(p) such that S{¢t(p)} =1 — (p/100), and using equation (5.5), this is

) = 1og (12
PI=3"%\100-p /"

A plot of the hazard function for three values of A, namely 1.0, 0.1 and 0.01,
is given in Figure 5.1, and the corresponding probability density functions are
shown in Figure 5.2. For these values of A, the means of the corresponding
exponential distributions are 1, 10 and 100, and the median survival times are
0.69, 6.93 and 69.31, respectively.
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Figure 5.1 Hazard functions for exponential distributions with X = 1.0, 0.1 and
0.01.
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Figure 5.2 Probability density functions for exponential distributions with A\ = 1.0,
0.1 and 0.01.
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5.1.2 The Weibull distribution

In practice, the assumption of a constant hazard function, or equivalently
of exponentially distributed survival times, is rarely tenable. A more general
form of hazard function is such that

R(t) = Ayt 7L, (5.7)

for 0 <t < oo, a function that depends on two parameters A and ~, which
are both greater than zero. In the particular case where v = 1, the hazard
function takes a constant value A, and the survival times have an exponential
distribution. For other values of v, the hazard function increases or decreases
monotonically, that is, it does not change direction. The shape of the hazard
function depends critically on the value of v, and so -y is known as the shape
parameter, while the parameter A is a scale parameter. The general form of
this hazard function for different values of v is shown in Figure 5.3.

y>2

I
N

Y

Hazard function

7=1
O<y<1

Time

Figure 5.3 The form of the Weibull hazard function, h(t) = MytY "L for different
values of .

For this particular choice of hazard function, the survivor function is given
by

t
S(t) = exp {—/ )«yu“’"l du} = exp(—At7). (5.8)
0
The corresponding probability density function is then
F(8) = M7 exp(~ A7),

for 0 < t < oo, which is the density of a random variable that has a Weibull
distribution with scale parameter A and shape parameter . This distribution
will be denoted W (X, ). The right-hand tail of this distribution is longer than
the left-hand one, and so the distribution is positively skewed.
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The mean, or expected value, of a random variable T that has a W(\, )
distribution can be shown to be given by

E(T) =A"Y"T(y 1 +1),

where I'(z) is the gamma function defined by the integral

F(x):/ u e ™ du.
0

The value of this integral is (z —1)!, and so for integer values of z it can easily
be calculated. For non-integer values of z, tables of the gamma function, such
as those in Abramowitz and Stegun (1972), or suitable computer software,
will be needed to compute the mean. However, since the Weibull distribution
is skewed, a more appropriate, and more tractable, summary of the location
of the distribution is the median survival time. This is the value #(50) such
that S{t(50)} = 0.5, so that

exp {—A[t(50)]"} = 0.5,

1 1/~
t(50) = {Xlog2} .

More generally, the pth percentile of the Weibull distribution, ¢(p), is such

that ,
) = {élog (10%)0819)} g (59)

The median and other percentiles of the Weibull distribution are therefore
much simpler to compute than the mean of the distribution.

The hazard function and corresponding probability density function for
Weibull distributions with a median of 20, and shape parameters v = 0.5, 1.5
and 3.0, are shown in Figures 5.4 and 5.5, respectively. The corresponding
value of the scale parameter, A, for these three Weibull distributions is 0.15,
0.0078 and 0.000087, respectively.

Since the Weibull hazard function can take a variety of forms, depending on
the value of the shape parameter, -y, and appropriate summary statistics can
be easily obtained, this distribution is widely used in the parametric analysis
of survival data.

and

5.2 Assessing the suitability of a parametric model

Prior to fitting a model based on an assumed parametric form for the hazard
function, a preliminary study of the validity of this assumption should be
carried out. One approach would be to estimate the hazard function using
the methods outlined in Section 2.3. If the hazard function were reasonably
constant over time, this would indicate that the exponential distribution might
be a suitable model for the data. On the other hand, if the hazard function
increased or decreased monotonically with increasing survival time, a model
based on the Weibull distribution would be indicated.
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Figure 5.4 Hazard functions for a Weibull distribution with a median of 20 and
v= 0.5 1.5 and 3.0.
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Figure 5.5 Probability density functions for a Weibull distribution with a median
of 20 and v = 0.5, 1.5 and 3.0.
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o]

A more informative way of assessing whether a particular distributiop for
the survival times is plausible is to compare the survivor function for the
data with that of a chosen model. This is greatly helped by transforming
the survivor function to produce a plot that should give a straight line if the
assumed model is appropriate.

Suppose that a single sample of survival data is available, and that a Weibyl]
distribution for the survival times is contemplated. Since the survivor function
for a Weibull distribution, with scale parameter A and shape parameter v, is
given by

S(t) = exp{-At"},

taking the logarithm of S(t), multiplying by —1, and taking logarithms a
second time, gives

log {—1log S(t)} = log A + ylogt. (5.10)

We now substitute the Kaplan-Meier estimate of the survivor function, S(¢ (t),
for S(t) in equation (5.10). If the Weibull assumption is tenable, S(t) will be
“close” to S(t), and a plot of log{—log $(t)} against log¢ would then give an
approximately straight line. From equation (1.7), the cumulative hazard func-
tion, H(t), is —logS(t) and so log{—log S(t)} is the log-cumulative hazard.
A plot of the values of log{—log S(t)} against logt is a log-cumulative hazard
plot, introduced in Section 4.4.1 of Chapter 4.

If the log-cumulative hazard plot gives a straight line, the plot can be used
to provide a rough estimate of the two parameters of the Weibull distribution.
Specifically, from equation (5.10), the intercept and slope of the straight line
will be log A and y, respectively. Thus, the slope of the line in a log-cumulative
hazard plot gives an estimate of the shape parameter, and the exponent of the
intercept provides an estimate of the scale parameter. Note that if the slope
of the log-cumulative hazard plot is close to unity, the survival times could
have an exponential distribution.

Ezample 5.1 Time to discontinuation of the use of an IUD .

In Example 2.3, the Kaplan-Meier estimate of the survivor function, S(t),
for the data on the time to discontinuation of an IUD, was obtained. A log-
cumulative hazard plot for these data, that is, a plot of log{—log S (t)} against
logt, is shown in Figure 5.6.

The plot indicates that there is a straight line relationship between the log-
cumulative hazard and logt, confirming that the Weibull distribution is an
appropriate model for the discontinuation times. From the graph, the inter-
cept of the line is approximately —6.0 and the slope is approximately 1.25.
Approximate estimates of the parameters of the Weibull distribution are there-
fore \* = exp(—6.0) = 0.002 and +v* = 1.25. The estimated value of v, the
shape parameter of the Weibull distribution, is quite close to unity, suggesting
that the discontinuation times might be adequately modelled by an exponen-
tial distribution.

These informal estimates of A and v can be used to estimate the parameters
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Figure 5.6 Log-cumulative hazard plot for the data from Exzample 1.1.

of the distribution, and hence functions of these estimates, such as the me-
dian of the survival time distribution. However, this graphical approach does
not lead to a measure of the precision with which the quantities have been
estimated. In view of this limitation, a more formal way of fitting parametric
models to survival data is developed in the next section.

5.3 Fitting a parametric model to a single sample

Parametric models can be fitted to an observed set of survival data using the
method of maximum likelihood, outlined in Section 3.3. Consider first the
situation where actual survival times have been observed for n individuals,
so that there are no censored observations. If the probability density function
of the random variable associated with survival time is f(t), the likelihood of
the n observations t1,ts, ..., t, is simply the product

1] 7).
i=1

This likelihood will be a function of the unknown parameters in the probability
density function, and the maximum likelihood estimates of these parameters
are those values for which the likelihood function is a maximum. In practice,
it is generally more convenient to work with the logarithm of the likelihood
function. Those values of the unknown parameters in the density function
that maximise the log-likelihood are of course the same values that maximise
the likelihood function itself.

We now consider the more usual situation where the survival data include
one or more censored survival times. Specifically, suppose that r of the n
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individuals die at times #,%2,...,t,., and that the survival times of the re-
maining n — r individuals, ¢},#5,... ¢ _ ., are right-censored. The 7 death

times contribute a term of the form
-
I1re»
j=1

to the overall likelihood function. Naturally, we cannot ignore information
about the survival experience of the n — r individuals for whom a censored
survival time has been recorded. If a survival time is censored at time t*, say,
we know that the lifetime of the individual is at least ¢*, and the probability
of this event is P(7 > t*), which is S(t*). Thus each censored observation
contributes a term of this form to the likelihood of the n observations. The
total likelihood function is therefore

T n—r

1T 7@ T s@ (5.11)
j=1 1=1

in which the first product is taken over the r death times and the second over

the n — r censored survival times.

More compactly, suppose that the data are regarded as n pairs of observa-
tions, where the pair for the sth individual is (¢;,0;), ¢ = 1,2,...,n. In this
notation, J; is an indicator variable that takes the value zero when the sur-
vival time ¢; is censored and unity when ¢; is an uncensored survival time.
The likelihood function can then be written as

ﬁ [P Sy . (5.12)

This function, which is equivalent to that in expression (5.11), can then be
maximised with respect to the unknown parameters in the density and sur-
vivor functions. A more careful derivation of this likelihood function is given in
Appendix B, which shows the relevance of the assumption of non-informative
censoring, mentioned in Section 1.1 of Chapter 1.

An alternative expression for the likelihood function can be obtained by
writing expression (5.12) in the form
n &3
[1{£e21 sco,

S(t:)

t=1

so that, from equation (1.3) of Chapter 1, this becomes

[T {r}* (). (5.13)

This version of the likelihood function is particularly useful when the probabil-
ity density function has a complicated form, as it often does. Estimates of the
unknown parameters in this likelihood function are then found by maximising
the logarithm of the likelihood function.



160 PARAMETRIC PROPORTIONAL HAZARDS MODELS

We now consider fitting exponential and Weibull distributions to a single
sample of survival data.

5.8.1* Fitting the exponential distribution

Suppose that the survival times of n individuals, ¢1,t2,...,tn, are assumed
to have an exponential distribution with mean A\~!. Further suppose that the
data give the actual death times of 7 individuals, and that the remaining n—r
survival times are right-censored.

For the exponential distribution,

ft) = e M, S(t) = e M,

and on substituting into expression (5.12), the likelihood function for the n
observations is given by

n

H ~)\t —Ati)1‘5l
)

i=1

where §; is zero if the survival time of the ith individual is censored and unity
otherwise. After some simplification,

n

L) = [ A0e s,

i=1

and the corresponding log-likelihood function is

log L(\) = anéi log A — )\iti.
i=1 i=1

Since the data contain r deaths, Y., §; = r and the log-likelihood function
becomes

log L(\) = rlog A — )\Zti.

We now need to identify the value A\, for which the log-likelihood function is
a maximum. Differentiation with respect to A gives

dlog L(A r "
A Z:: v
and equating the derivative to zero and evaluating it at X gives
R T
A=r/> "t (5.14)
i=1

for the maximum likelihood estimator of A.
The mean of an exponential distribution is g = 271 and so the maximum
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likelihood estimator of y is

This estimator of p is the total time survived by the n individuals in the data
set divided by the number of deaths observed. The estimator therefore has
intuitive appeal as an estimate of the mean lifetime from censored survival
data.

The standard error of either A or fi can be obtained from the second deriva-
tive of the log-likelihood function, using a result from the theory of maximum
likelihood estimation given in Appendix A. Differentiating log L(\) a second
time gives

d*log L(\) T
dxa? Y
and so the asymptotic variance of A is

var (A) = {—E (-d-z—l%%\fﬂ) }—1 = %2

Consequently, the standard error of \ is given by

se (A) = A/ /7. (5.15)
This result could be used to obtain a confidence interval for the mean survival
time. In particular, the limits of a 100(1 — )% confidence interval for A are
Ax zg se (\), where z, /2 18 the upper «/2-point of the standard normal
distribution.

In presenting the results of a survival analysis, the estimated survivor and
hazard functions, and the median and other percentiles of the distribution of
survival times, are useful. Once an estimate of A has been found, all these func-
tions can be estimated using the results given in Section 5.1.1. In particular,
under the assumed exponential distribution, the estimated hazard function is
h(t) = A and the estimated survivor function is S(¢ (t) = exp(—At). In addition,
the estimated pth percentile is given by

R 1 100
t(p) = =1 1
(p) 3 0g<100_p>, (5.16)
and the estimated median survival time is
#(50) = A" log 2. (5.17)

The standard error of an estimate of the pth percentile of the distribution of
survival times can be found using the result for the approximate variance of a
function of a random variable given in equation (2.9) of Chapter 2. According
to this result, an approximation to the variance of a function g(j\) of \ is such

that )
var {g(\)} ~ {di‘(:\)\)} var ()). (5.18)
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Using this result, the approximate variance of the estimated pth percentile is
given by
var {t(p)} ! lo 100 i ar (\)
~§ = $ AY% .
P 52 %%\ 100 =
On simplifying this and taking the square root, we get

N 1 100 <
se i)} = 55 og (1 ) s

and on further substituting for se(\) from equation (5.15) and f(p) from
equation (5.16), we find

se{t(p)} = t(p)/V/r. (5.19)

In particular, the standard error of the estimated median survival time is

se {£(50)} = #(50)//r. (5.20)

Confidence intervals for a true percentile are best obtained from exponenti-
ating the confidence limits for the logarithm of the percentile. This procedure
ensures that confidence limits for the percentile will be non-negative. Again
making use of the result in equation (5.18), the standard error of logi(p) is
given by

se{logi(p)} = i(p) " se {(p)},

and after substituting for se {f(p)} from equation (5.19), this standard error
becomes

se {logi(p)} = 1/+/r.
Using this result, 100(1 — «)% confidence limits for the 100pth percentile are

exp{log(p) +24/2/+/T}, that is, £(p) exp{+zq/2/+/}, where 2,5 is the upper
a/2-point of the standard normal distribution.

Ezample 5.2 Time to discontinuation of the use of an IUD

In this example, the data of Example 1.1 on the times to discontinuation
of an IUD for 18 women are analysed under the assumption of a constant
hazard of discontinuation. An exponential distribution is therefore fitted to
the discontinuation times. For these data, the total of the observed and right-
censored discontinuation times is 1046 days, and the number of uncensored
times is 9. Therefore, using equation (5.14), A= 9/1046 = 0.0086, and the
standard error of A from equation (5.15) is se (A) = 0.0086/,/9 = 0.0029. The
estimated hazard function is therefore A(t) = 0.0086, ¢ > 0, and the estimated
survivor function is $(t) = exp(—0.0086 £). The estimated hazard and survivor
functions are shown in Figures 5.7 and 5.8, respectively.

Estimates of the median and other percentiles of the distribution of discon-
tinuation times can be found from Figure 5.8, but more accurate estimates
are obtained from equation (5.16). In particular, using equation (5.17), the
median discontinuation time is 81 days, and an estimate of the 90th per-
centile of the distribution of discontinuation times is, from equation (5.16),
£(90) = log 10/0.0086 = 267.61. This means that on the assumption that the

FITTING A PARAMETRIC MODEL TO A SINGLE SAMPLE

163

0.010

0.008

0.006 A

0.004 A

Estimated hazard function

0.002

0.000 +_ , : . - *
0 20 40 60 80 100 120

Discontinuation time

Figure 5.7 Estimated hazard function on fitting the exponential distribution.
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risk of discontinuing the use of an IUD is independent of time, 90% of women
will have a discontinuation time of less than 268 days.

From equation (5.20), the standard error of the estimated median time to

discontinuation is 80.56/1/9, that is, 26.85 days. The limits of a 95% confidence
interval for the true median discontinuation time are

80.56 exp{+1.96/./9},

and so the interval is from 42 days to 155 days. Confidence intervals for other
percentiles can be calculated in a similar manner.

5.3.2*% Fitting the Weibull distribution

The survival times of n individuals are now taken to be a censored sample
from a Weibull distribution with scale parameter A\ and shape parameter .
Suppose that there are r deaths among the n individuals and n — r right-
censored survival times. We can again use expression (5.12) to obtain the
likelihood of the sample data. The probability density, survivor and hazard
function of a W(A,~) distribution are given by

J(&) = Myt Texp(—=At?), S(t) = exp(—AtY), h(t) = Myt? "L,

and so, from expression (5.12), the likelihood of the n survival times is

ﬁ {/\fyt;’_l exp(—/\tz)}(;i {exp(—AE)} 70

=1

where d; is zero if the ith survival time is censored and unity otherwise. Equiv-
alently, from expression (5.13), the likelihood function is

ﬁ {)«yt?—l }ai exp(—At]).

i=1

This is regarded as a function of A and v, the unknown parameters in the
Weibull distribution, and so can be written L(\,~). The corresponding log-
likelihood function is given by

log L(A,v) = Zélog (M) + hl)znjéilogti—/\itz,
i=1 i=1

and noting that Y ;" | 6; = r, the log-likelihood becomes

n n
log L(A,7) = 7log(My) + (v = 1) Y " dilogt; — A > _t].
i=1 i=1
The maximum likelihood estimates of A and ~ are found by differentiating
this function with respect to A and v, equating the derivatives to zero, and
evaluating them at A and 4. The resulting equations are

A o (5.21)
i=1

Sl =
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and

+ Zéi logt; — ;\thz logt; = 0. (5.22)
i=1 i

21

From equation (5.21),
A=r/y 8], (5.23)
i=1

and on substituting for \ in equation (5.22), we get the equation
n

ow £ —
_+25 logt; — Z = = 1] logt; = 0. (5.24)

Y1 =1

This is a non-linear equation in 4, which can only be solved using an iterative
numerical procedure. Once the estimate, 4, which satisfies equation (5.24),
has been found, equation (5.23) can be used to obtain A.

In practice, a numerical procedure, such as the Newton-Raphson algorithm,
is used to find the values A and 4 which maximise the likelihood function
simultaneously. This procedure was described in Section 3.3.3 of Qhapter 3,
in connection with fitting the Cox regression model. In that section it was
noted that an important by-product of the Newton-Raphson procedur.e is an
approximation to the variance-covariance matrix of the parameter estimates,
from which their standard errors can be obtained.

Once estimates of the parameters A and + have been found from fitting the
Weibull distribution to the observed data, percentiles of the survival time dis-
tribution can be estimated using equation (5.9). The estimated pth percentile

of the distribution is
1/
. 1 100 (5.25)
o) = {ilog (100 —p>} ’

and so the estimated median survival time is given by

t(50) = {élogz}w. (5.26)

The standard error of the estimated pth percentile can be obtained using
a generalisation of the result in equation (5.18) to the case where the ap-
proximate variance of a function of two estimates is required. Details of the
derivation are given in Appendix C, where it is shown that

se {f(p b= { var (\) + 22 <cp log /A\)2 var (%)

(SIS

+ 204 (cp —log 5\> cov (/A\,’?/)} ) (5.27)

where
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The variances of A and 4, and their covariance, are found from the variance-
covariance matrix of the estimates.

As before, a confidence interval for the true value of the pth percentile, ¢(p),
is best obtained from the corresponding interval for logt(p). The standard
error of log #(p) is

- 1 R
se{logt(p)} = ——se{t(p)}, (5.28)
t(p)
and 100(1 — a)% confidence limits for log t(p) are
log t(p) =+ 24/2 se {logt(p)}.

Corresponding interval estimates for ¢(p) are found by exponentiating these
limits. For example, the limits of a 100(1 — a)% confidence interval for the
median survival time, ¢(50), are £(50) exp [£2,, se {log £(50)}].

There is a substantial amount of arithmetic involved in these calculations,
and care must be taken to ensure that significant figures are not lost during
the course of the calculation. For this reason, it is better to perform the
calculations using a suitable computer program.

Example 5.3 Time to discontinuation of the use of an IUD
In Example 5.1, it was found that an exponential distribution provides a
satisfactory model for the data on the discontinuation times of 18 TUD users.
For comparison, a Weibull distribution will be fitted to the same data set.
The distribution can be fitted using computer software, and from the resulting
output, the estimated scale parameter of the distribution is found to be A =
0.000454, while the estimated shape parameter is ¥ = 1.676. The standard
errors of these estimates are given by se (A) = 0.000965 and se (§) = 0.460,
respectively. Note that approximate confidence limits for the shape parameter,
v, found using 4 £ 1.96se (%), include unity, suggesting that the exponential
distribution would provide a satisfactory model for the discontinuation times.
The estimated hazard and survivor functions are obtained by substituting
these estimates into equations (5.7) and (5.8), whence

h(t) = M7,
and
S(t) = exp (—Atﬁ) .
These two functions are shown in Figures 5.9 and 5.10.
Although percentiles of the discontinuation time can be read from the esti-
mated survivor function in Figure 5.10, they are better estimated using equa-

tion (5.25). Hence, under the Weibull distribution, the median discontinuation
time can be estimated using equation (5.26), and is given by

1 1/1.676
t(50) = { ————— log 2 = 79.27.
(50) {0.000454 8 }

As a check, notice that this is perfectly consistent with the value of the dis-
continuation time corresponding to S(¢) = 0.5 in Figure 5.10. The standard
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error of this estimate, from equation (5.27) is, after much arithmetic, found
to be

se {£(50)} = 15.795.

In order to obtain a 95% confidence interval for the median discontinuation
time, the standard error of log £(50) is required. From equation (5.28),
15.795

se {log £(50)} = 79073 = 0.199,

and so the required confidence limits for the log median discontinuation time
are log 79.272+1.96 x 0.199, that is, (3.982,4.763). The corresponding interval
estimate for the true median discontinuation time is (53.64,117.15), so that
there is a 95% chance that the interval from 54 days to 117 days includes the
true value of the median discontinuation time. This interval is rather wide
because of the small number of actual discontinuation times in the data set.

It is interesting to compare these results with those found in Example 5.2,
where the discontinuation times were modelled using an exponential distribu-
tion. The estimated median survival times are very similar, at 80.6 days for
the exponential and 79.3 days for the Weibull model. However, the standard
error of the estimated median survival time is 26.8 days when the times are
assumed to have an exponential distribution, and only 15.8 days under the
Weibull model. The median is therefore estimated more precisely when the
discontinuation times are assumed to have a Weibull distribution.

Other percentiles of the discontinuation time distribution, and accompany-
ing standard errors and confidence intervals, can be found in a similar fashion.
For example, the 90th percentile, that is, the time beyond which 10% of those
in the study continue with the use of the IUD, is 162.23 days, and 95% confi-
dence limits for the true percentile are from 95.41 to 275.84 days. Notice that
the width of this confidence interval is larger than that for the median discon-
tinuation time, reflecting the fact that the median is more precisely estimated
than other percentiles.

5.4 A model for the comparison of two groups

We saw in Section 3.1 that a convenient general model for comparing two
groups of survival times is the proportional hazards model. Here, the two
groups will be labelled Group I and Group II, and X will be an indicator
variable that takes the value zero if an individual is in Group I and unity if an
individual is in Group II. Under the proportional hazards model, the hazard
of death at time ¢ for the ith individual is given by

hi(t) = Pt ho(t), (5.29)

where z; is the value of X for the ith individual. Consequently, the hazard
at time ¢ for an individual in Group I is hg(¢), and that for an individual in
Group Il is ¥ho(t), where ¢ = exp(8). The quantity 5 is then the logarithm of
the ratio of the hazard for an individual in Group II, to that of an individual
in Group L
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We will now make the additional assumption that the survival times for
the individuals in Group I have a Weibull distribution with scale parameter
) and shape parameter . Using equation (5.29), the hazard function for the
individuals in this group is hg(t), where

ho(t) = Ayt

Now, also from equation (5.29), the hazard function for those in Group II is
Who(t), that is,
YAyt

This is the hazard function for a Weibull distribution with scale parameter ¥\
and shape parameter . We therefore have the result that if the survival times
of individuals in one group have a Weibull distribution with shape parameter
~, and the hazard of death at time ¢ for an individual in the spcond group
is proportional to that of an individual in the first, the survwal‘ times of
those in the second group will also have a Weibull distribution with shape
parameter . The Weibull distribution is then said to have the proportional
hazards property. This property is another reason for the importance of the
Weibull distribution in the analysis of survival data.

5.4.1 The log-cumulative hazard plot

When a single sample of survival times has a Weibull distribution W(/\j v),
the log-cumulative hazard plot described in Section 5.2 will give a strz%lght
line with intercept log A and slope . It then follows that if the survival times
in a second group have a W (), ) distribution, as they would under the pro-
portional hazards model in equation (5.29), the log-cumulative hazard plot
will give a straight line, also of slope v, but with intercept log ¢ + log /\ If the
estimated log-cumulative hazard function is plotted against the logarithm of
the survival time for individuals in two groups, parallel straight lines would
mean that the assumptions of a proportional hazards model and Weibull sur-
vival times were tenable. The vertical separation of the two lines provides an
estimate of 3 = log 1, the logarithm of the relative hazard.

If the two lines in a log-cumulative hazard plot are essentially straight,
but not parallel, this means that the shape parameter, v, is different in the
two groups, and the hazards are no longer proportional. If the lines are nqt
particularly straight, the Weibull model may not be appropriate. However, if
the curves can be taken to be parallel, this would mean that the proportional
hazards model is valid, and the Cox regression model discussed in Chapter 3
might be more satisfactory.

Ezample 5.4 Prognosis for women with breast cancer

In this example, we investigate whether the Weibull proportional hazards
model is likely to be appropriate for the data of Example 1.2 on the sur-
vival times of breast cancer patients. These data relate to women classified
according to whether their tumours were positively or negatively stained. The
Kaplan-Meier estimate of the survivor functions for the women in each group
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were shown in Figure 2.9. From these estimates, the log-cumulative hazards
can be estimated and plotted against log¢. The resulting log-cumulative haz-
ard plot is shown in Figure 5.11.
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Figure 5.11 Log-cumulative hazard plot for women with tumours that were posi-
tively stained (%) and negatively stained (e).

In this figure, the lines corresponding to the two staining groups are reason-
ably straight. This means that the assumption of Weibull distributions for the
survival times of the women in each group is quite plausible. Moreover, the
gradients of the two lines are very similar, which means that the proportional
hazards model is valid. The vertical separation of the two lines provides an
estimate of the log relative hazard. From Figure 5.11, the vertical distance be-
tween the two straight lines is approximately 1.0, and so a rough estimate of
the hazard ratio is e!'? = 2.72. Women in the positively stained group would
appear to have nearly three times the risk of death at any time compared to
those in the negatively stained group. More accurate estimates of the relative
hazard will be obtained from fitting exponential and Weibull models to the
data of this example, in Examples 5.5 and 5.6.

5.4.2" Fitting the model

The proportional hazards model in equation (5.29) can be fitted using the
method of maximum likelihood. To illustrate the process, we consider the
situation where the survival times in each group have an exponential distri-
bution.

Suppose that the observations from n; individuals in Group I can be ex-
pressed as (t;1,0:1), ¢ = 1,2,...,n;, where d;1 takes the value zero if the
survival time of the ith individual in that group is censored, and unity if that
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time is a death time. Similarly, let (¢;2,842), ¢ = 1,2,...,n2, be the obser-
vations from the ng individuals in Group II. For individuals in Group I, the
hazard function will be taken to be A, and the probability density function
and survivor function are given by
f(til) = )\E—At“, S(til) = e"’\t“.
For those in Group II, the hazard function is 9, and the probability density
function and survivor function are
f(ti’2> = 2/1/\6_1/)Ati/2, S(t1/2) = e_whtilz.

Using equation (5.12), the likelihood of the nq + ng observations, L(1, ),
is

ﬁ{/\e-—)\tﬂ}(sn {e——/\t“}l—éll ﬁ {¢)\e*¢)‘ti’2}6i'2 {6“7/’)‘75«;'2}1—51"2 ,
=1 =1

which simplifies to

n

ny
H A5i164>\ti1 H (wA)(Si/Zeﬁ’Lp)\tirZ .
=1

=1
If the numbers of actual death times in the two groups are r; and rg, respec-
tively, then ry = >, ;1 and rp = ., dy2, and the log-likelihood function is
given by

log L(, ) = 1 log A — /\Zt1+rzlog¢/\ wxzm

i=1 =1

Now write T; and 75 for the total known time survived by the individuals in
Groups I and II, respectively. Then, 77 and T3 are the totals of uncensored
and censored survival times in each group, so that the log-likelihood function
becomes

log L(1, A) = (r1 + r2) log A + rolog ¢ — AM(Th + ¢T3).

In order to obtain the values '(/AJ \ for which this function is a maximum, we
differentiate with respect to ¢ and A, and set the derivatives equal to zero.
The resulting equations that are satlsﬁed by 0, A are

2 N\ =0, (5.30)
1/}

ntr o 4gm) —o. (5.31)

From equation (5.30),
T2

Ty
and on substituting for A in equation (5.31) we get

h o1
¥ Ty’

A

| !

(5.32)
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Then, from equation (5.30),
5\ =T / Tl-

Both of these estimates have an intuitive justification. The estimated value
of ) is the reciprocal of the average time survived by individuals in Group
I, while the estimated relative hazard, 1, is the ratio of the average times
survived by the individuals in the two groups.

The asymptotic variance-covariance matrix of the parameter estimates is
the inverse of the information matrix, whose elements are found from the
second derivatives of the log-likelihood function; see Appendix A. We have

that
d%log L(1, \) ro  d?log L(1, \) r 47y d%log L(, \) 7
e = — 27

dy? R dx? Az dAdy
and the information matrix is the matrix of negative expected values of these
partial derivatives. The only second derivative for which expectations need
to be obtained is the derivative with respect to A and t, for which E(T2)
is required. This is straightforward when the survival times have an expo-
nential distribution, but as shown in Section 5.1.2, the expected value of a
survival time that has a Weibull distribution is much more difficult to calcu-
late. For this reason, the information matrix is usually approximated by using
the observed values of the negative second partial derivatives. The observed
information matrix is thus
_ (r2/¥? 1
I(lev)‘)—( TQ (7"1+7'2)/A2)7

and the inverse of this matrix is
1 (7‘1 -+ 7'2)1/)2 —Tzl/)z/\Q
(1 +ra)rs — T2P2N2 \ —Toy?A? md® )7

The standard errors of ’g@ and ) are found by substituting 7,@ and A for (]
and ) in this matrix, and taking square roots. Thus, the standard error of ¢

is given by ]
- (r1 +7r2)1p?

se = —

(¢> \/(77'1 +T‘2)7"2 4T221p2>\2

On substituting for ¥ and X in the denominator of this expression, this stan-

dard error simplifies to
by /T2 (5.33)
172

Similarly, the standard error of ) turns out to be given by
se(N\) = A\/y/ri.

The standard error of these estimates cannot be used directly in the construc-
tion of confidence intervals for 1 and A. The reason for this is that the values
of both parameters must be positive and their estimated values will tend to
have skewed distributions. This means that the assumption of normality, used
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in constructing a confidence interval, would not be justified. The distribution
of tht-a logarithm of an estimate of either 1 or A is much more likely to be sym-
me.ztrlc, and so confidence limits for the logarithm of the parameter are found
using the standard error of the logarithm of the parameter estimate. The re-
sulting confidence limits are then exponentiated to give an interval estimate
for the parameter itself.

The standard error of the logarithm of a parameter estimate can be found
using the geperal result given in equation (5.18). Thus the approximate vari-
ance of log 1 is

var (log 1&) A 1&—2 var (1/;),

and so the standard error of log z[} is given by

se (log ¥) = 1~  se (1)) = 1/ Erti (5.34)
)

A 100(1 — @)% confidence interval for the logarithm of the relative hazard
has limits log ¢ & 2,2 se (log ), and confidence limits for the hazard ratio 1
are found by exponentiating these limits for log+. If required, a confidence
interval for A can be found in a similar manner.

Ezample 5.5 Prognosis for women with breast cancer

The theoretical results developed in this section will now be illustrated using
the data on the survival times of breast cancer patients. The survival times
for the women in each group are assumed to have exponential distributions, so
that the hazard of death, at any time, for a woman in the negatively stair’led
group is a constant value, A, while that for a woman in the positively stained
group is A, where ¢ is the hazard ratio.

From the data given in Table 1.2 of Chapter 1, the numbers of death times in
the negatively and positively stained groups are, respectively, 7; = 5 and ry =
21. Also, the total time survived in each group is 7% = 1652 and Ty = 2679
months. Using equation (5.32), the estimated hazard of death for a woman in
;le:le positively stained group, relative to one in the negatively stained group,

521 x 1652

5 x 2679

so thfa,t a woman in the positively stained group has about two and a half times

the r1§k of death at any given time, compared to a woman whose tumour was

negatively stained. This is consistent with the estimated value of ¥ of 2.72
from the graphical procedure used in Example 5.4. '

Ne?ct, using equation (5.33), the standard error of the estimated hazard
ratio is given by

= 2.59,

5+ 21
5 x 21

In order to obtain a 95% confidence interval for the true relative hazard
the standard error of {ogw is required. Using equation (5.34), this is founci
to be given by se (log®) = 0.498, and so 95% confidence limits for log vy are

se (1) = 2.59

= 1.289.
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log(2.59)+1.96 se (log ), that is, 0.9524(1.96 x 0.498). The confidence interval
for the log relative hazard is (—0.024,1.927), and the corresponding interval
estimate for the relative hazard itself is (e=0-024 ¢1-927) that is, (0.98,6.87).
This interval only just includes unity, and suggests that women with positively
stained tumours have a poorer prognosis than those whose tumours were
negatively stained. This result is consistent with the result of the log-rank
test in Example 2.12, where a P-value of 0.061 was obtained on testing the

hypothesis of no group difference.

Computer software is generally required to fit a Weibull model to two groups
of survival data, assuming proportional hazards. When the model in equa-
tion (5.29) is fitted using a computer package, estimates of §, A and v, and
their standard errors, can be obtained from the resulting output. Further cal-
culation may then be needed to obtain an estimate of the relative hazard, and
the standard error of this estimate. In particular, the estimated hazard ratio
would be obtained as ¥ = exp(3) and se (1)) found from the equation

se (1) = exp(f) se (0),

a result that follows from equation (5.18).
The median and other percentiles of the survival time distributions in the

two groups can be estimated from the values of A and 1/; For example, from
equation (5.25), the estimated pth percentile for those in Group I is found

from 14
. 1 100 K

= 71
) {A °g<100—p)} ’

and that for individuals in Group II is

. 1 100 el
i) = {ﬁk’g <100 —p>} '

An expression similar to that in (5.27) can be used to obtain the standard error
of an estimated percentile for individuals in each group, once the variances and
covariances of the parameter estimates in the model have been found. Specific
results for the standard error of percentiles of the survival time distributions
in each of the two groups will not be given. Instead, the general expression for
the standard error of the pth percentile after fitting a Weibull model, given

in equation (5.27), may be used.

Ezample 5.6 Prognosis for women with breast cancer
In Example 5.4, a Weibull proportional hazards model was found to be ap-
propriate for the data on the survival times of two groups of breast cancer
patients. Under this model, the hazard of death at time t is Ayt?™! for a neg-
atively stained patient and PAyt7~! for a patient who is positively stained.
The estimated value of the shape parameter of the fitted Weibull distribu-
tion is 4 = 0.937. The estimated scale parameter for women in Group 1 is
% = 0.00414 and that for women in Group II is AYp = 0.0105. The estimated
hazard ratio under this Weibull model is 1 = 2.55, which is not very different
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from the value obtained in Example 5.5, on the assumption of exponentially
distributed survival times.

Putting 4 = 0.937 and A = 0.00414 in equation (5.26) gives 235.89 for the
median survival time of those in Group I. The estimated median survival time
for women in Group II is found by putting 4 = 0.937 and A = 0.0105 in that
equation, and gives 87.07 for the estimated median survival time of those
women. The median survival time of women whose tumour was positively
stained is about one third that of those whose tumour was negatively stained.

Using the general result for the standard error of the median survival time,
given in equation (5.27), the sAtandard error of the two medians is found by
taking p = 50, 4 = 0.937 and A = 0.00414 and 0.0105 in turn. They turn out
to be 114.126 and 20.550, respectively.

As in Section 5.3.2, 95% confidence limits for the true median survival times
for each group of women are best obtained by working with the logarithm of
the median. The standard error of log#(50) is found using equation (5.28)
from which . ’

se {¢(50)} 0 se {£(50)}.
Confidence limits for log ¢(50) are then exponentiated to give the correspond-
ing confidence limits for ¢(50) itself.

In this example, 95% confidence intervals for the true median survival times
of the two groups of women are (91.4,608.9) and (54.8,138.3), respectively.
Notice that the confidence interval for the median survival time of patients
with positive staining is much narrower than that for women with negative
staining. This is due to there being a relatively small number of uncensored
survival times in the women whose tumours were negatively stained.

5.5 The Weibull proportional hazards model

The model in equation (5.29) for the comparison of two groups of survival
data can easily be generalised to give a model that is similar in form to
the Cox regression model described in Section 3.1.2. Suppose that the values
Zy, T2, -5 Tp of p explanatory variables, X1, Xo, ..., X,, are recorded for each
of n individuals. Under the proportional hazards model, the hazard of death
at time ¢ for the ith individual is

hi(t) = exp(B171; + Bowai + - + Bpzpi)ho(t), (5.35)

fQY L= 1,2,...,n. Although this model has a similar appearance to that
glven in equation (3.3), there is one fundamental difference, which concerns
the specification of the baseline hazard function ho(t). In the Cox regression
model, the form of ho(t) is unspecified, and the shape of the function is es-
sentially determined by the actual data. In the model being considered in this
section, the survival times are assumed to have a Weibull distribution, and
this imposes a particular parametric form on hg(t). T

) Consider an individual for whom the values of the p explanatory variables
In the model of equation (5.35) are all equal to zero. The hazard function for
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such an individual is ho(t). If the survival time of this individual has a Weibull
distribution with scale parameter A and shape parameter -, then their hazard
function is such that
ho(t) = Ayt L,
Using equation (5.35), the hazard function for the ith individual in the study
is then given by
hi(t) = exp(B'@;)Mt7 1, (5.36)

where B'x; stands for By z1; + Boxa;+ - - -+ Bppi. From the form of this hazard
function, we can see that the survival time of the ith individual in the study
has a Weibull distribution with scale parameter A exp(3'x;) and shape param-
eter v. This again is a manifestation of the proportional hazards property of
the Weibull distribution. This result shows that the effect of the explanatory
variates in the model is to alter the scale parameter of the distribution, while
the shape parameter remains constant.

The survivor function corresponding to the hazard function given in equa-
tion (5.36) is found using equation (1.5), and turns out to be

Si(t) = exp {— exp(B'@;)At7 } . (5.37)

5.5.1% Fitting the model

The Weibull proportional hazards model is fitted by constructing the likeli-
hood function of the n observations, and maximising this function with respect
to the unknown parameters, 81, f2, ..., 8p, A and . Since the hazard function
and survivor function differ for each individual, the likelihood function in
expression (5.13) is now written as

H {ha(t:)} Si(ta). (5.38)

The logarithm of the likelihood function, rather than the likelihood itself,
is maximised with respect to the unknown parameters, and from expres-
sion (5.38), this is

i{él log hz (ti) -+ log Sz(tz)}
On substituting for hi(tlsland S;(t;) from equations (5.36) and (5.37), the
log-likelihood becomes
i (648w +log(\y) + (v — 1) log t:} — Aexp(B8'z:)t"] ,
i=1
which can be written as

ST 6B +log(\y) + ylogti} — Aexp(B'm)t’] = > dilogt,.  (5.39)
=1

=1

The final term in this expression, — > .-, §; log?;, does not involve any of the
unknown parameters, and can be omitted from the likelihood. The resulting
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log-likelihood function is then
ki3

Z [6:{8'x; +log(Xy) + vlogt;} — Nexp(B'z:)t"], (5.40)

i=1
which differs from that obtained from the full log-likelihood, given in expres-
sion (5.39), by the value of >°" | §;logt;. When computer software is used
to fit the Weibull proportional hazards model, the log-likelihood is generally
computed from expression (5.40). This expression will also be used in the
examples given in this book.

Computer software for fitting parametric proportional hazards models gen-
erally includes the standard errors of the parameter estimates, from which
confidence intervals for relative hazards and the median and other percentiles
of the survival time distribution can be found. Specifically, suppose that the es-
timates of the parameters in the model of equation (5.36) are (1,52, . .., Bp, A
and 4. The estimated survivor function for the ith individual in the study, for
whom the values of the explanatory variables in the model are z;, €2, - .., Tpi,
is then

Si(t) = exp {— exp(Brz1s + Bowai + -+ + Bpzpi) A } , (5.41)
and the corresponding estimated hazard function is
hi(t) = exp(Brz1; + Bozgi + -+ + Bpxpi);\’?t:kl-
Both of these functions can be estimated and plotted against ¢, for individuals
with particular values of the explanatory variables in the model.
Generalising the result in equation (5.25) to the situation where the Weibull

scale parameter is Aexp(3'z;), the estimated pth percentile of the survival
time distribution for an individual, whose vector of explanatory variables is

x;, is
1/4
tp) = ! log ( 10 >}
S\exp(Blwi) 100 —p

The estimated median survival time for such an individual is therefore

1/4
i(50) = {——— log2 } . (5.42)
Aexp(B ;)

The standard error of #(p), and confidence intervals for ¢(p), can be found af-
ter first obtaining the standard error of log £(p). The standard error of log £(p)
is shown in equation (C.5) of Appendix C to be given by

se {logt(p)} = 47 '/(dy Vdy),
where V is the variance-covariance matrix of the estimated values of the
parameters v, X, 51, B2, ---,8p, and dy is a vector whose p + 2 components
~ ~ ~t
are A1, 471 {c, — log A — 3 x}, T1, Ta,...,x,, with

¢, = loglo 100
P \t00=5)"
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If required, the standard error of #(p) is found using

se {E(p)} = (p) se {log i(p)},

and as usual, confidence intervals for ¢(p) can be found by exponentiating
confidence limits for log ¢(p).

5.5.2* Log-linear form of the model

Most computer software for fitting the Weibull proportional hazards model
uses a different form of the model from that adopted in this chapter. The
reason for this will be given in the next chapter, but for the moment we note
that the model can be formulated as a log-linear model for T;, the random
variable associated with the survival time of the ith individual. In this version
of the model, the survivor function of 77, given in equation (5.37), is expressed

as
Si(t) :exp{_exp (M)}
ag

The correspondence between these two representations of the model is such
that

A=exp(—p/o), y=0', B;=—qaj/o,
forj =1,2,...,p, and p, o are often termed the intercept and scale parameter,
respectively; see Chapter 6 for fuller details.

Generally speaking, it will be more straightforward to use the log-linear form
of the model to estimate the hazard and survivor functions, percentiles of the
survival time distribution, and their standard errors. The relevant expressions
are given as equations (6.17), (6.18) and (6.20) in Section 6.5 of Chapter 6.

However, the log-linear representation of the model makes it difficult to
obtain confidence intervals for a log-hazard ratio, 3, in a proportional hazards
model, since only the standard error of the estimate of « is given in the output.
In particular, on fitting the Weibull proportional hazards model, the output
provides the estimated value of & = —o 3, &, and the standard error of &. The
corresponding estimate of £ is easily found from 8 = —& /&, but the standard
error of B is more complicated to calculate.

To obtain the standard error of ,6’, we can use the result that the approxi-
mate variance of a function of two parameter estimates, 01, 02, say, is

8g>2 A (ag>2 A (ag 09) .0
- 0.)+ [ = 65) + 2 <z 7 01,02). 5.43
< s var (61) s var (62) 96, 90, cov (61, 02) (5.43)

This is an extension of the result given in equation (2.9) of Chapter 2 for the
approximate variance of a function of a single random variable. To obtain the
approximate variance of the function
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the derivatives of (&, 6) are required. We have that
0g _ 1 99 _
PR AN

and so using expression (5.43),

var (;%) N (%)2 var (&) + (%)2 var (6 )+2( i) (%) cov (&, &).

After some algebra, the approximate variance becomes

—12 {62 var (&) + & var (6) — 245 cov (&, &)}, (5.44)

/\27

and the square root of this is the standard error of B

Ezample 5.7 Prognosis for women with breast cancer
The computation of a standard error of a log-hazard ratio is now illustrated
using the data on the survival times of two groups breast cancer patients. In
this example, computer output from fitting the log-linear form of the Weibull
proportional hazards model is used to illustrate the estimation of the hazard
ratio, and calculation of the standard error of the estimate.

On fitting the model that contains the treatment effect, represented by
a variable X, where X = 0 for a woman with negative staining and X =
1 for positive staining, we find that the estimated coefficient of X is & =
—0.9967. Also, the estimates of u and o are given by i = 5.8544 and & =
1.0668, respectively. The estimated log-hazard ratio for a woman with positive
staining, (X = 1) relative to a woman with negative staining (X = 0) is

5 —-0.9967
= ———— = 0.9343.
p 1.0668 09

The corresponding hazard ratio is 2.55, as in Example 5.6.

The standard errors of & and & are generally included in standard computer
output, and are 0.5441 and 0.1786, respectively. The estimated variances of &
and & are therefore 0.2960 and 0.0319, respectively. The covariance between
& and & can be found from computer software, although it is not usually part
of the default output. It is found to be —0.0213.

Substituting for &, &, and their variances and covariance in expression
(5.44), we get

var (3) ~ 0.2498,

and so the standard error of 3 is given by se (B) = 0.4998. This can be used
in the construction of confidence intervals for the corresponding true hazard
ratio.

5.5.8 Exploratory analyses

In Sections 5.2 and 5.4.1, we saw how a log-cumulative hazard plot could
be used to assess whether survival data can be modelled by a Weibull dis-
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tribution, and whether the proportional hazards assumption is valid. These
procedures work perfectly well when we are faced with a single sample of
survival data, or data where the number of groups is small and there is a
reasonably large number of individuals in each group. But in situations where
there are a small number of death times distributed over a relatively large
number of groups, it may not be possible to estimate the survivor function,
and hence the log-cumulative hazard function, for each group.

As an example, consider the data on the survival times of patients with
hypernephroma, given in Table 3.3. Here, individuals are classified according
to age group and whether or not a nephrectomy has been performed, giving
six combinations of age group and nephrectomy status. To examine the as-
sumption of a Weibull distribution for the survival times in each group, and
the assumption of proportional hazards across the groups, a log-cumulative
hazard plot would be required for each group. The number of patients in each
age group who have not had a nephrectomy is so small that the survivor
function cannot be properly estimated in these groups. If there were more
individuals in the study who had died and not had a nephrectomy, it would
be possible to construct a log-cumulative hazard plot. If this plot featured six
parallel straight lines, the Weibull proportional hazards model is likely to be
satisfactory.

When a model contains continuous variables, their values will first need to
be grouped before a log-cumulative hazard plot can be obtained. This may
also result in there being insufficient numbers of individuals in some groups
to enable the log-cumulative hazard function to be estimated.

The only alternative to using each combination of factor levels in construct-
ing a log-cumulative hazard plot is to ignore some of the factors. However, the
resulting plot can be very misleading. For example, suppose that patients are
classified according to the levels of two factors, A and B. The log-cumulative
hazard plot obtained by grouping the individuals according to the levels of A
ignoring B, or according to the levels of B ignoring A, may not give cause
to doubt the Weibull or proportional hazards assumptions. However, if the
log-cumulative hazard plot is obtained for individuals at each combination of
levels of A and B, the plot may not feature a series of four parallel lines. By
the same token, the log-cumulative hazard plot obtained when either A or B
is ignored may not show sets of parallel straight lines, but when a plot is ob-
tained for all combinations of A and B, parallel lines may result. This feature
is illustrated in the following example, which is based on artificial data.

Example 5.8 An artificial data set
Suppose that a number of individuals are classified according to the levels of
two factors, A and B, each with two levels, and that their survival times are
as shown in Table 5.1. As usual, an asterisk denotes a censored observation.
The log-cumulative hazard plot shown in Figure 5.12 is derived from the
individuals classified according to the two levels of A, ignoring the level of
factor B. The plot in Figure 5.13 is from individuals classified according to
the two levels of B, ignoring the level of factor A.
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Table 5.1 Artificial data on the survival
times of 87 patients classified according to
the levels of two factors, A and B.

A=1 A=2
B=1 B=2 B=1 B=2
59 10 88 25%
20 4 70* 111
71 16 54 152
33 18 139 86
25 19 31 212
25 35 59 187*
15 11 111 54
53 149 357
47 30 301
44 195
25
2 4
14 * .
° =k"*' -~
« # o i
_g 04 * * o «°
2 g - s
-% -1 ** o".v
(E:) :'?k'.' .l o )
| -2 *
g
-3 P
-4+, ‘ ‘ ' ‘ '
1 2 3 4 5 6

Log of survival time

Figure 5.12 Log-cumulative hazard plot for individuals for whom A =1 () and
A=2(e)
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Figure 5.13 Log-cumulative hazard plot for individuals for whom B =1 (x) and
B=2(e).

From Figure 5.12 there is no reason to doubt the assumption of a Weibull
distribution for the survival times at the two levels of A, and the assumption of
proportional hazards is clearly tenable. However, the crossed lines on the plot
shown as Figure 5.13 strongly suggest that the hazards are not proportional
when individuals are classified according to the levels of B. A different picture
emerges when the 37 survival times are classified according to the levels of
both A and B. The log-cumulative hazard plot based on the four groups is
shown in Figure 5.14. The four parallel lines show that there is no doubt about
the validity of the proportional hazards assumption across the groups.

In this example, the reason why the log-cumulative hazard plot for B ig-
noring A is misleading is that there is an interaction between A and B. An
examination of the data reveals that, on average, the difference in the survival
times of patients for whom B = 1 and B = 2 is greater when A = 2 than
when A = 1.

Even when a log-cumulative hazard plot gives no reason to doubt the as-
sumption of a Weibull proportional hazards model, the validity of the ad-
equacy of the fitted model will need to be examined using the methods to
be described in Chapter 7. When it is not possible to use a log-cumulative
hazard plot to explore whether a Weibull distribution provides a reasonable
model for the survival times, a procedure based on the Cox regression model,
described in Chapter 3, might be helpful. Essentially, a Cox regression model
that includes all the relevant explanatory variables is fitted, and the baseline
hazard function is estimated, using the procedure described in Section 3.8. A
plot of this function may suggest whether or not the assumption of a Weibull
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Figure 5.14 Log-cumulative hazard plot for individuals in the groups defined by the
four combinations of levels of A and B.

distribution is tenable. In particular, if the estimated baseline hazard function
in the Cox model is increasing or decreasing, the Weibull model may provide
a more concise summary of the baseline hazard function than the Cox regres-
sion model. Because the estimated baseline hazard function for a fitted Cox
model can be somewhat irregular, comparing the estimated baseline cumula-
tive hazard or the baseline survivor function, under the fitted Cox regression
model, with that of the Weibull model may be more fruitful.

5.6 Comparing alternative Weibull models

In order to ascertain which explanatory variables should be included in a
Weibull proportional hazards model, alternative models need to be compared.
Weibull models can be compared using methods analogous to those for the
Cox regression model described in Section 3.5.

Suppose that one model contains a subset of the explanatory variables in
another, so that the two models are nested. The two models can then be
compared on the basis of the statistic —2log L, where L is the maximised value
of the likelihood function under the fitted model. For a model that contains
p explanatory variables, the sample likelihood is a function of p + 2 unknown

parameters, 81, 82, - - -, Bp, A and 7. The maximised likelihood is then the value
of this function when these parameters take their estimates, ,/3’1, Bg, o ,,ép, A
and 4.

More specifically, if one model, Model (1), say, contains p explanatory vari-
ables, and another model, Model (2), contains an additional ¢ explanatory
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variables, the estimated hazard functions for these two models are as given
below:

Model (1):  hi(t) = exp{Brz1 + Bawa + -+ - -+ Bpzp A3t

Model (2):  hi(t) = exp{Biz1 + Boawa + -+ + Bppqprq X7t .

The maximised likelihoods under Model (1) and Model (2) will be denoted
by L; and L2, respectively. The difference between the values of —2log Ly
and —2log Lo, that is, —2{log L, — log L,}, then has an approximate chi-
squared distribution with ¢ degrees of freedom, under the null hypothesis
that the coefficients of the additional ¢ variates in Model (2) are all equal to
zero. If the difference between the values of —2log L for these two models is
significantly large when compared with percentage points of the chi-squared
distribution, we would deduce that the extra ¢ terms are needed in the model,
in addition to the p that are already included. Since differences between values
of —210gf/ are used in comparing models, it does not matter whether the
maximised log-likelihood, used in computing the value of —2log L, is based
on expression (5.39) or (5.40).

The description of the modelling process in Section 3.5 applies equally well
to models based on the Weibull proportional hazards model, and so will not
be repeated here. However, the modelling process will be illustrated using two
examples.

Example 5.9 Treatment of hypernephroma

Data on the survival times of 36 patients, classified according to their age
group and whether or not they have had a nephrectomy, were introduced in
Example 3.4 of Chapter 3. In that example, the data were analysed using
the Cox proportional hazards model. Here, the analysis is repeated using the
Weibull proportional hazards model. As in Example 3.4, the effect of the jth
age group will be denoted by «;, and that associated with whether or not a
nephrectomy was performed by vy. There are then five possible models for
the hazard function of the ith individual, h;(¢), which are as follows:

Model (1):  hy(t) = ho(t);

Model (2):  hi(t) = exp{a; }ho(t);
Model (3):  hi(t) = exp{vy }ho(t);
Model (4):  hi(t) = exp{a; + vi tho(t);

Model (5):  hi(t) = exp{e; + vx + (aw)jx tho(t).

In these models, ho(t) = Ayt?~1 is the baseline hazard function, and the

;Efm;;/s;.:n -

COMPARING ALTERNATIVE WEIBULL MODELS 185

parameters A and v have to be estimated along with those in the linear com-
ponent of the model.

These five models have the interpretations given in Example 3.4. They can
be fitted by constructing indicator variables corresponding to the factors age
group and nephrectomy status, as shown in Example 3.4, but some software
packages will allow factors to be fitted directly.

Once a Weibull proportional hazards model has been fitted to the data,
values of —2log L can be found. These are given in Table 5.2 for the five
models of interest.

Table 5.2 Values of —2logl on fitting
five Weibull models to the data on hyper-

nephroma.

Model Terms in model —2log L
(1) null model 104.886
(2) o 96.400
(3) Vi 94.384
(4) o+ vk 87.758
(5) a; + vi + (av) i 83.064

The values of the —210gﬁ statistic in Table 5.2, and other examples in
this book, have been computed using the log-likelihood in expression (5.40).
Accordingly these values may differ from the values given by some computer
software packages by an amount equal to 237, d;logt;, which in this case
has the value 136.3733.

The reduction in the value of ——2log]:2 on adding the interaction term to
Model (4) is 4.69 on two degrees of freedom. This reduction is just about
significant at the 10% level (P = 0.096) and so there is some suggestion of an
interaction between age group and nephrectomy status. For comparison, note
that when the Cox regression model was fitted in Example 3.4, the interaction
was not significant (P = 0.220).

The interaction can be investigated in greater detail by examining the haz-
ard ratios under the model. Under Model (5), the estimated hazard function
for the ith individual is

hi(t) = exp{dy + 0 + (@) 1, Hho(2),

where

ho(t) = Ayt 1
is the estimated baseline hazard function. The logarithm of the hazard ratio
for an individual in the jth age group, j = 1,2, 3, and kth level of nephrectomy
status, k = 1, 2, relative to an individual in the youngest age group who has
not had a nephrectomy, is therefore

P —

Gy + Dk + (o) — @1 — oy — (av) 4, (5.45)
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since the baseline hazard functions cancel out.

As in Example 3.4, models can be fitted to the data by defining indicator
variables As; and As; for age group and N for nephrectomy status. As in
that example, Ao is unity for an individual in the second age group and
zero otherwise, Az is unity for an individual in the third age group and zero
otherwise, and NN is unity if a nephrectomy has been performed and zero
otherwise. Thus, fitting the term «; corresponds to fitting the variables A
and As, fitting v corresponds to fitting NV, and fitting the interaction term
(o) ;i corresponds to fitting the products As N = Ay x N and A3N = A3 x N.
In particular, to fit Model (5), the five variables As, A3, N, AoN, Az N are
included in the model. With this choice of indicator variables, & =0, 3 =0

and (av) jx = 0 when either ¢ or j is unity. The remaining values of é&;, 7, and

—

(ow)j,C are the coefficients of As, Az, N, Ao N, A3 N and are given in Table 5.3.

Table 5.3 Parameter esti-
mates on fitting a Weibull
model to the data on hyper-

nephroma.
Parameter Estimate
e —0.085
a3 0.115
2 —2.436
(aU)QQ 0 121
(Oél/)32 2.538

Many computer packages set up indicator variables internally, and so es-
timates such as those in the above table can be obtained directly from the
output. However, to repeat an earlier warning, when packages are used to fit
factors, the coding used to define the indicator variables must be known if the
output is to be properly interpreted.

When the indicator variables specified above are used, the logarithm of the
hazard ratio given in equation (5.45) reduces to

Gy + 0+ (av)yy,
for j = 1,2,3, k = 1,2. Table 5.4 gives the hazards for the individuals, relative
to the baseline hazard. The baseline hazard corresponds to an individual in
the youngest age group who has not had a nephrectomy, and so a hazard ratio
of unity for these individuals is recorded in Table 5.4.

This table helps to explain the interaction between age group and nephrec-
tomy status, in that the effect of a nephrectomy is not the same for individuals
in each of the three age groups. For patients in the two youngest age groups,
a nephrectomy substantially reduces the hazard of death at any given time.
Performing a nephrectomy on patients aged over 70 does not have much effect
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Table 5.4 Hazard ratios for individuals classified
by age group and nephrectomy status.

Age group No nephrectomy  Nephrectomy

<60 1.00 0.09
60-70 0.92 0.09
>70 1.12 1.24

on the risk of death. We also see that for those patients who have not had a
nephrectomy, age does not much affect the hazard of death.

Estimated median survival times can be found in a similar way. Using
equation (5.42), the median survival time for a patient in the jth age group,
J=1,2,3, and the kth level of nephrectomy status, k = 1,2, becomes

/5
(50) = { i log2 .
Aexp{a; + D + (o).}

When the model containing the interaction term is fitted to the data, the
estimated values of the parameters in the baseline hazard function are A —
0.0188 and 4 = 1.5538. Table 5.5 gives the estimated median survival times, in
months, for individuals with each combination of age group and nephrectomy
status. This table shows that a nephrectomy leads to more than a fourfold

Table 5.5 Median survival times for individuals
classified by age group and nephrectomy status.

Age group No nephrectomy  Nephrectomy

<60 10.21 48.94
60-70 10.78 47.81
>70 9.48 8.87

increase in the median survival time in patients aged up to 70 years. The
median survival time of patients aged over 70 is not much affected by the
performance of a nephrectomy.

We end this example with a note of caution. For some combinations of
age group and nephrectomy status, particularly the groups of individuals who
have not had a nephrectomy, the estimated hazard ratios and median survival
times are based on small numbers of survival times. As a, result, the standard

errors of estimates of such quantities, which have not been given here, will be
large. ’

Ezample 5.10 Chemotherapy in ovarian cancer patients
Following surgical treatment of ovarian cancer, patients may undergo a course
of chemotherapy. In a study of two different forms of chemotherapy treat-
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ment, Edmunson et al. (1979) compared the anti-tumour effects of cyclophos-
phamide alone and cyclophosphamide combined with adriamycin. The trial
involved 26 women with minimal residual disease and who had experienced
surgical excision of all tumour masses greater than 2 cm in diameter. Fol-
lowing surgery, the patients were further classified according to whether the
residual disease was completely or partially excised. The age of the patient
and their performance status were also recorded at the start of the trial. The
response variable was the survival time in days following randomisation to
one or other of the two chemotherapy treatments. The variables in the data
set are therefore as follows:

Time: Survival time in days,
Status: Event indicator (0 = censored, 1 = uncensored),
Treat: Treatment (1 = single, 2 = combined),
Age:  Age of patient in years,
Rdisease: Extent of residual disease (1 = incomplete, 2 = complete),
Perf  Performance status (1 = good, 2 = poor).

The data, which were obtained from Therneau (1986), are given in Table 5.6.

In modelling these data, the factors Treat, Rdisease and Perf each have two
levels, and will be fitted as variates that take the values given in Table 5.6.
This does of course mean that the baseline hazard function is not directly
interpretable, since there can be no individual for whom the values of all these
variates are zero. From both a computational and interpretive viewpoint, it is
more convenient to relocate the values of the variables Age, Rdisease, Perfand
Treat. If the variable Age — 50 is used in place of Age, and unity is subtracted
from Rdisease, Perf and Treat, the baseline hazard then corresponds to the
hazard for an individual of age 50 with incomplete residual disease, good
performance status, and who has been allocated to the cyclophosphamide
group. However, the original variables will be used in this example.

We begin by identifying which prognostic factors are associated with the
survival times of the patients. The values of the statistic —2log L on fitting a
range of models to these data are given in Table 5.7.

‘When Weibull models that contain just one of Age, Rdisease and Perf are
fitted, we find that both Age and Rdisease lead to reductions in the value of
—QIOgE that are significant at the 5% level. After fitting Age, the variables
Rdisease and Perf further reduce —210gl€ by 1.903 and 0.048, respectively,
neither of which is significant at the 10% level. Also, when Age is added to the
model that already includes Rdisease, the reduction in —2log L is 13.719 on
1 d.f., which is highly significant (P < 0.001). This leads us to the conclusion
that Age is the only prognostic variable that needs to be incorporated in the
model.

The term associated with the treatment effect is now added to the model.
The value of —2log I is then reduced by 2.440 on 1 d.f. This reduction of 2.440
is not quite large enough for it to be significant at the 10% level (P = 0.118).

A
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Table 5.6 Survival times of ovarian cancer palients.

Patient Time Status Treat Age Rdisease Perf
1 156 1 1 66 2 2
2 1040 0 1 38 2 2
3 59 1 1 72 2 1
4 421 0 2 53 2 1
5 329 1 1 43 2 1
6 769 0 2 59 2 2
7 365 1 2 64 2 1
8 770 0 2 57 2 1
9 1227 0 2 59 1 2

10 268 1 1 74 2 2
11 475 1 2 59 2 2
12 1129 0 2 53 1 1
13 464 1 2 56 2 2
14 1206 0 2 44 2 1
15 638 1 1 56 1 2
16 563 1 2 59 1 2
17 1106 0 1 44 1 1
18 431 1 1 50 2 1
19 855 0 1 43 1 2
20 803 0 1 39 1 1
21 115 1 1 74 2 1
22 744 0 2 50 1 1
23 477 0 1 64 2 1
24 448 0 1 56 1 2
25 353 1 2 63 1 2
26 377 0 2 58 1 1

Table 5.7 Values of —2log L on fitting
models to the data in Table 5.6.

Variables in model ——2logﬁ
none 59.534
Age 43.566
Rdisease 55.382
Perf 58.849
Age, Rdisease 41.663
Age, Perf 43.518
Age, Treat 41.126
Age, Treat, Treat x Age 39.708

189
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There is therefore only very slight evidence of a difference in the effect of the
two chemotherapy treatments on the hazard of death.

For comparison, when Treat alone is added to the null model, the value of
—2log L is reduced from 59.534 to 58.355. This reduction of 1.179 is certainly
not significant when compared to percentage points of the chi-squared dis-
tribution on 1 d.f. Ignoring Age therefore leads to an underestimate of the
magnitude of the treatment effect.

To explore whether the treatment difference is consistent over age, the in-
teraction term formed as the product of Age and Treat is added to the model.
On doing so, —210gf/ is only reduced by 1.419. This reduction is nowhere
near being significant and so there is no need to include an interaction term
in the model.

The variable Treat will be retained in the model, since interest centres on
the magnitude of the treatment effect. The fitted model for the hazard of
death at time ¢ for the ith individual is then found to be

hi(t) = exp{0.144 Age; — 1.023 Treat; } 33t~

where A = 5.645x 102 and 4 = 1.822. In this model, Treat = 1 for cyclophos-
phamide alone and Treat = 2 for the combination of cyclophosphamide with
adriamycin. The hazard for a patient on the single treatment, relative to one
on the combined treatment, is therefore estimated by

W = exp{(—~1.023 x 1) — (—=1.023 x 2)} = 2.78.

This means that a patient receiving the single chemotherapy treatment is
nearly three times more likely to die at any given time than a patient on
the combined treatment. Expressed in this way, the benefits of the combined
chemotherapy treatment sound to be great. However, when account is taken
of the inherent variability of the data on which these results are based, this
relative hazard is only significantly greater than unity at the 12% level (P =
0.118).

The median survival time can be estimated for patients of a given age on a
given treatment from the equation

1/
2
i(50) = { - log :
Aexp(0.144 Age — 1.023 Treat)

For example, a woman aged 60 (Age = 60) who is given cyclophosphamide
alone (Treat = 1) has an estimated median survival time of 423 days, whereas
someone of the same age on the combination of the two chemotherapy treat-
ments has an estimated median survival time of 741 days. Confidence intervals
for these estimates can be found using the method illustrated in Example 5.6.

5.7 The Gompertz proportional hazards model

Although the Weibull model is the most widely used parametric proportional
hazards model, the Gompertz model has found application in demography and
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the biological sciences. Indeed the distribution was introduced by Gompertz
in 1825, as a model for human mortality. o
The hazard function of the Gompertz distribution is given by

h(t) = Ae,

for 0 <t < 0o, and A > 0. In the particular case where 6 = 0, the hazard fugc—
tion has a constant value, A, and the survival times then have an exponential
distribution. The parameter @ determines the shape of the hazard function,
positive values leading to a hazard function that increases with time. The
hazard function can also be expressed as h(t) = exp(a+6t), which shows that
the log-hazard function is linear in . On the other hand, from equation (5.7),
the Weibull log-hazard function is linear in log?. Like the Weibull hazard
function, the Gompertz hazard increases or decreases monotonically.
The survivor function of the Gompertz distribution is given by

500 = exo { 50— e},
and the corresponding density function is
f(t) = A exp {%(1 - eet)} .
The pth percentile is such that
t(p) = %log {1 - -i—log (10100829)} ,

from which the median survival time is

6
t(50) = 1log {1 + - logQ} :

0 A

A plot of the Gompertz hazard function for distributions with a median‘ of
20 and 6 = —0.2,0.02 and 0.05 is shown in Figure 5.15. The corresponding
values of A are 0.141, 0.028, and 0.020.

It is straightforward to see that the Gompertz distribution has the prop%rt—
tional hazards property, described in Section 5.4, since if we take ho(t) = Ae™,
then thg(t) is also a Gompertz hazard function with parameters YA and 6.

The general Gompertz proportional hazards model, for the hazard of death
at time ¢ for the ith of n individuals, is expressed as

hi(t) = exp(Bra1; + Bazai + -+ + Bpwps) Ae™,

where 21;, Z2i, - - - » Zpi are the values of p explanatory variables X1, Xo,..., X,
for the ith individual, i = 1,2,...,n, and the #’s, A and 8 are unknown pa-
rameters. The model can be fitted by maximising the likelihood function given
in expression (5.12) or (5.13). The B-coefficients are interpreted as log—hazaljd
ratios, and alternative models are compared using the approach described in
Section 5.6. No new principles are involved.
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Ezample 5.11 Chemotherapy in ovarian cancer patients

In Example 5.10 on the survival times of ovarian cancer patients, a Weibull
proportional hazards model that contained the variables Age anci Treat was
fitted. For comparison, a Gompertz proportional hazards model that contains

these th variables is now fitted. Under this model, the fitted hazard function
for the ith patient is

hi(t) = exp{0.122 Age; — 0.848 Treat;} X exp(6t),

where /\ = 1.706 x 107% and 6 = 0.00138. The change in the value of —2 log L
on addlng. Treat to the Gompertz proportional hazards model that contains
Ag{i al(?ne is now 1.686 (P = 0.184). The hazard ratio for the treatment effect
Wl}lch is now exp(0.848) = 2.34, is therefore smaller and less significant undel;
this model than it was for the Weibull model.

5.8 Model choice

One attraction of the proportional hazards model for survival data is that it is
not necessary to adopt a specific probability distribution for the survival times.
However, when a Weibull distribution is appropriate for the observed survival
data, the parametric version of the proportional hazards model provides a
more suitable basis for modelling the data.

Diagnostic plots based on the log-cumulative hazard function, described in
Section 5.4.1, may throw light on whether the assumption of Weibull survival
times is plausible, but as has already been pointed out, this technique is often
not informative in the presence of explanatory variables that affect survival
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times. In such circumstances, to help choose between the Cox and Weibull
proportional hazards models, it can be useful to fit the Cox regression model
and examine the shape of the baseline hazard function. The fitted Weibull
baseline cumulative hazard function, or the fitted baseline survivor function,
can also be compared with the corresponding estimates for the Cox regression
model, as described in Section 5.5.3.

A suitable analysis of residuals, to be discussed in Chapter 7, can be used
to investigate whether one model fits better than the other. However, it will
only be in exceptional circumstances that model-checking diagnostics provide
convincing evidence that one or other of the two models is more acceptable.

In general, discrimination between a Cox and a Weibull proportional haz-
ards model will be difficult unless the sample data contain a large number of
death times. In cases where there is little to choose between the two models
in terms of goodness of fit, the standard errors of the estimated [-parameters
in the linear component of the two models can be compared. If those for
the Weibull model are substantially smaller than those for the Cox model,
the Weibull model would be preferred on grounds of efficiency. On the other
hand, if these standard errors are similar, the Cox model is likely to be the
model of choice in view of its less restrictive assumptions.

5.9 Further reading

The properties of the exponential, Weibull and Gompertz distributions are
presented in Johnson and Kotz (1970). A thorough discussion of the theory
of maximum likelihood estimation is included in Barnett (1999) and Cox and
Hinkley (1974), and a useful summary of the main results is contained in
Hinkley, Reid and Snell (1991). Numerical methods for obtaining maximum
likelihood estimates, and the Newton-Raphson procedure in particular, are
described by Everitt (1987) and Thisted (1988), for example; see also the
description in Section 3.3.3 of Chapter 3. Byar (1982) presents a comparison
of the Cox and Weibull proportional hazards models. One other distribution
with the proportional hazards property is the Pareto distribution. This model
is rarely used in practice, but see Davis and Feldstein (1979) for further details.



CHAPTER 6

Accelerated failure time and other
parametric models

Although the proportional hazards model finds widespread applicability in the
analysis of survival data, there are relatively few probability distributions for
the survival times that can be used with this model. Moreover, the distribu-
tions that are available, principally the Weibull and Gompertz distributions,
lead to hazard functions that increase or decrease monotonically. A model
that encompasses a wider range of survival time distributions is the accel-
erated failure time model. In circumstances where the proportional hazards
assumption is not tenable, models based on this general family may prove to
be fruitful. Again, the Weibull distribution may be adopted for the distribu-
tion of survival times in the accelerated failure time model, but some other
probability distributions are also available. This chapter therefore begins with
a brief survey of alternative distributions for survival data, that may be used
in conjunction with an accelerated failure time model. The model itself is then
considered in detail in Sections 6.3 to 6.6.

One other general family of survival models, known as the proportional odds
model, may be useful in some circumstances. This model is described in Sec-
tion 6.7, and the chapter concludes with a brief reference to other parametric
models that are sometimes used in practical applications.

6.1 Probability distributions for survival data

The Weibull distribution, described in Section 5.1.2, will not necessarily pro-
vide a satisfactory model for survival times in all circumstances, and so alter-
natives to this distribution need to be considered. Although any continuous
distribution for non-negative random variables might be used, the properties
of the log-logistic distribution make it a particularly attractive alternative to
the Weibull distribution. The lognormal, gamma and inverse Gaussian distri-
butions are sometimes used in accelerated failure time modelling, and so these
distributions are also introduced in this section.

6.1.1 The log-logistic distribution

One limitation of the Weibull hazard function is that it is a monotonic function
of time. However, situations in which the hazard function changes direction
can arise. For example, following a heart transplantation, a patient faces an
increasing hazard of death over the first ten days or so after the transplant,
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while the body adapts to the new organ. The hazard then decreases with time
as the patient recovers. In situations such as this, a unimodal hazard function
may be appropriate.

A particular form of unimodal hazard is the function

60/4325&‘1
ht) = S
W8 = T g

for 0 <t < 00, k > 0. This hazard function decreases monotonically if x < 1,
but if £ > 1, the hazard has a single mode. The survivor function correspond-
ing to the hazard function in equation (6.1) is given by

S(t) = {14}, (6.2)
and the probability density function is

(6.1)

eeﬁt5*1
This is the density of a random variable T that has a log-logistic distribution,
with parameters 6, x. The distribution is so called because the variable logT
has a logistic distribution, a symmetric distribution whose probability density
function is very similar to that of the normal distribution.

The pth percentile of the log-logistic distribution is

0 1/k
pe
t(p) =
(p) <100~p> ;

and so the median of the distribution is
t(50) = e/, (6.3)

The hazard functions for log-logistic distributions with a median of 20 and
k& = 0.5, 2.0 and 5.0 are shown in Figure 6.1. The corresponding values of #
for these distributions are —1.5, —6.0 and —15.0, respectively.

flt) =

6.1.2 The lognormal distribution

The lognormal distribution is also defined for random variables that take pos-
itive values, and so may be used as a model for survival data. A random
variable, T, is said to have a lognormal distribution, with parameters u and
o, if log 7" has a normal distribution with mean y and variance 2. The prob-
ability density function of T is given by

(0 = st ewp {—(logt — 10?/20%)

for 0 <t < 00, o > 0, from which the survivor and hazard functions can be
derived. The survivor function of the lognormal distribution is

S(t)=1-a (b—g—ilﬁ) : (6.4)
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Figure 6.1 Hazard functions for a log-logistic distribution with a median of 20 and
k= 0.5, 2.0 and 5.0.

where ®(-) is the standard normal distribution function, given by

z

®(z) = —“—\/(127r) / exp (—u?/2) du.

The pth percentile of the distribution is then
t(p) = exp {o® " (p/100) + i} ,

where ®71(p/100), the pth percentile of the standard normal distribution, is
often called the probit of p/100. In particular, the median survival time under
this distribution is simply ¢(50) = e*. .
The hazard function can be found from the relation h(t) = f(t)/S(t). This
function is zero when ¢ = 0, increases to a maximum and then decreases to
zero as t tends to infinity. The fact that the survivor and hazard functions
can only be expressed in terms of integrals limits the usefulness of this model.
Moreover, in view of the similarity of the normal and logistic distributions,
the lognormal model will tend to be very similar to the log-logistic model.

6.1.3* The gamma distribution

The probability density function of a gamma distribution with mean p/A and

variance p/\? is such that

)\Ptpﬁle—)\t
T(p)

for 0<t < oo, A > 0, and p > 0. As for the lognormal distribution, the

survivor function of the gamma distribution can only be expressed as an

ft) = (6.5)
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integral, and we write
S(t) = 1—Tx(p),

where I'x;(p) is known as the incomplete gamma function, given by

T — 1 A p—1_~u
At(p) = m/o uP e % du.
The hazard function for the gamma distribution is then h(t) = f(¢)/S(t). This
hazard function increases monotonically if p > 1 and decreases if p < 1, and
tends to A as ¢ tends to co.

When p = 1, the gamma distribution reduces to the exponential distri-
bution described in Section 5.1.1, and so this distribution, like the Weibull
distribution, includes the exponential distribution as a special case. Indeed,
the gamma distribution is quite similar to the Weibull, and inferences based
on either model will often be very similar.

A generalisation of the gamma distribution is actually more useful than
the gamma distribution itself, since it includes the Weibull and lognormal
distributions as special cases. This model, known as the generalised gamma
distribution, may therefore be used to discriminate between alternative para-
metric models for survival data.

The probability density function of the generalised gamma distribution is an
extension of the gamma density in equation (6.5), that includes an additional
parameter, ¢, where § > 0, and is defined by

B ONPIEPO—1 exp{—(\t)?}
- I'(p) ’

for 0 < ¢ < oo. The survivor function for this distribution is again defined in
terms of the incomplete gamma function and is given by

S(t) =1—Tae(p),

and the hazard function is again found from A(t) = f(¢)/S(t). This distribu-
tion leads to a wide range of shapes for the hazard function, governed by the
parameter 0. This parameter is therefore termed the shape parameter of the
distribution. When p = 1, the distribution becomes the Weibull, when 6 = 1,
the gamma, and as p — oo, the lognormal.

f)

6.1.4* The inverse Gaussian distribution

The inverse Gaussian distribution is a flexible model that has some important
theoretical properties. The probability density function of the distribution
which has mean p and scale parameter X is given by

for 0 <t < 0o, and A > 0. The corresponding survivor function is

Sy =@ {(1—tp7") v (M)} —exp@A/w) @ {— (T + 1)/ (xe71)},
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and the hazard function is found from the ratio of the density and survivor
functions. However, the complicated form of the survivor function makes this
distribution difficult to work with.

6.2 Exploratory analyses

When the number of observations in a single sample is reasonably large, an
empirical estimate of the hazard function could be obtained using the method
described in Section 2.3.1. A plot of the estimated hazard function may then
suggest a suitable parametric form for the hazard function. For example, if
the hazard plot is found to be unimodal, a log-logistic distribution could
be used for the survival times. When the data base includes a number of
explanatory variables, the form of the estimated baseline hazard, cumulative
hazard, or survivor functions, for a fitted Cox regression model, may also
indicate whether a particular parametric model is suitable, in the manner
described in Section 5.5.3 of Chapter 5.

A method for exploring the adequacy of the Weibull model in describing a
single sample of survival times was described in Section 5.2. A similar proce-
dure can be used to assess the suitability of the log-logistic distribution. The
basic idea is that a transformation of the survivor function is sought, which
leads to a straight line plot. From equation (6.2), the odds of surviving beyond
time ¢ are

S(t)
1-5(t)
and so the log-odds of survival beyond ¢ can be expressed as

log{lTS%)(—Ej} = —0 — klogt.

If the survivor function for the data is estimated using the Kaplan-Meier
estimate, and the estimated log-odds of survival beyond ¢ are plotted against
log ¢, a straight line plot will be obtained if a log-logistic model for the survival
times is suitable. Estimates of the parameters of the log-logistic distribution,
0 and &, can be obtained from the intercept and slope of the straight line plot.

The suitability of other parametric models can be investigated along similar
lines. For example, from the survivor function of the lognormal distribution,
given in equation (6.4),

— e_et_",

logt —
PTHI- S} = =—F,

and so a plot of ®1{1 — S(t)} against log ¢ should give a straight line, if the
lognormal model is appropriate. The slope and intercept of this line provide
estimates of o1 and —pu/o, respectively.

Ezample 6.1 Time to discontinuation of the use of an IUD
In Example 5.1, a log-cumulative hazard plot was used to evaluate the fit of
the Weibull distribution to the data on times to discontinuation of an IUD,
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given in Example 1.1. We now consider whether the log-logistic distribution
is appropriate. A plot of log{S(t)/[1 — S(¢)]} against log¢ for the data on the
times to discontinuation of an IUD is shown in Figure 6.2.
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Figure 6.2 A plot of the estimated log-odds of discontinuation after t against logt
for the data from Example 1.1.

From this plot, it appears that the relationship between the estimated log-
odds of discontinuing use of the contraceptive after time ¢, and log, is reason-
ably straight. This suggests that a log-logistic model could be used to model
the observed data.

Notice that there is very little difference in the extent of departures from
linearity in the plots in Figures 5.6 and 6.2. This means that either the Weibull
distribution or the log-logistic distribution is likely to be satisfactory, even
though the estimated hazard function under these two distributions may be
quite different. Indeed, when survival data are obtained for a relatively small
number of individuals, as in this example, there will often be little to choose
between alternative distributional models for the data. The model that is the
most convenient for the purpose in hand will then be adopted.

6.3 The accelerated failure time model for comparing two groups

The accelerated failure time model is a general model for survival data, in
which explanatory variables measured on an individual are assumed to act
multiplicatively on the time-scale, and so affect the rate at which an individual
proceeds along the time axis. This means that the models can be interpreted
in terms of the speed of progression of a disease, an interpretation that has
immediate intuitive appeal. Before the general form of the model is presented
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in Section 6.4, the model for comparing the survival times of two groups of
patients is described in detail.

Suppose that patients are randomised to receive one of two treatments, a
standard treatment, S, or a new treatment, N. Under an accelerated failure
time model, the survival time of an individual on the new treatment is taken to
be a multiple of the survival time for an individual on the standard treatment.
Thus the effect of the new treatment is to “speed up” or “slow down” the
passage of time. Under this assumption, the probability that an individual on
the new treatment survives beyond time ¢ is the probability that an individual
on the standard treatment survives beyond time ¢/¢, where ¢ is an unknown
positive constant.

Now let Sg(t) and Sy (t) be the survivor functions for individuals in the
two treatment groups. Then, the accelerated failure time model specifies that

Sn(t) = Ss(t/¢),

for any value of the survival time ¢. One interpretation of this model is that
the lifetime of an individual on the new treatment is ¢ times the lifetime
that the individual would have experienced under the standard treatment.
The parameter ¢ therefore reflects the impact of the new treatment on the
baseline time scale. When the end-point of concern is the death of a patient,
values of ¢ less than unity correspond to an acceleration in the time to death
of an individual assigned to the new treatment, relative to an individual on the
standard treatment. The standard treatment would then be the more suitable
in terms of promoting longevity. On the other hand, when the end-point is
the recovery from some disease state, values of ¢ less than unity would be
found when the effect of the new treatment is to speed up the recovery time.
In these circumstances, the new treatment would be superior to the standard.
The quantity ¢! is therefore termed the acceleration factor.

The acceleration factor can also be interpreted in terms of the median sur-
vival times of patients on the new and standard treatments, ¢ (50) and tg(50),
say. These values are such that Sy{tn(50)} = Ss{ts(50)} = 0.5. Now, under
the accelerated failure time model, Sn{tn(50)} = Ss{tn(50)/¢}, and so it
follows that ¢x(50) = ¢ts(50). In other words, under the accelerated failure
time model, the median survival time of a patient on the new treatment is ¢
times that of a patient on the standard treatment. In fact, the same argument
can be used for any percentile of the survival time distribution. This means
that the pth percentile of the survival time distribution for a patient on the
new treatment, ¢ty (p), is such that ty(p) = ¢ts(p), where tg(p) is the pth
percentile for the standard treatment. This interpretation of the acceleration
factor is particularly appealing to clinicians.

From the relationship between the survivor function, probability density
function and hazard function given in equation (1.3), the relationship between
the density and hazard functions for individuals in the two treatment groups
is

fn(t) =07 fs(t/9),
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and

hn(t) = ¢ hs(t/9).
Now let X be an indicator variable that takes the value zero for an individual
in the group receiving the standard treatment, and unity for one who receives
the new treatment. The hazard function for the 7th individual can then be
expressed as

Ba(t) = 6~ ho(t/¢™), (6.6)
where z; is the value of X for the ith individual in the study. Putting x; =0
in this expression shows that the function hg(#) is the hazard function for an
individual on the standard treatment. This is again referred to as the baseline
hazard function. The hazard function for an individual on the new treatment
is then ¢ 1ho(t/¢).

The parameter ¢ must be non-negative, and so it is convenient to set ¢ = e®.

The accelerated failure time model in equation (6.6) then becomes

hi(t) = e *Fiho(t/e™), (6.7)

so that the hazard function for an individual on the new treatment is now
e %ho(t/e”).

6.8.1* Comparison with the proportional hazards model

To illustrate the difference between a proportional hazards model and the
accelerated failure time model, again suppose that the survival times of indi-
viduals in two groups, Group I and Group I, say, are to be modelled. Further
suppose that for the individuals in Group I, the hazard function is given by

05 it <1,
ho(t) = { 1.0 i > 1,

where the time-scale is measured in months. This type of hazard function
arises from a piecewise exponential model, since a constant hazard in each
time interval implies exponentially distributed survival times, with different
means, in each interval. This model provides a simple way of representing a
variable hazard function, and may be appropriate in situations where there is
a constant short-term risk that increases abruptly after a threshold time.

Now let hp(t) and h4(t) denote the hazard functions for individuals in
Group II under a proportional hazards model and an accelerated failure time
model, respectively. Consequently, we may write

hp(t) = vho(t),
and
ha(t) = ¢~ ho(t/8),
for the two hazard functions. Using the result S(¢) = exp{— fg h{u)du}, the
baseline survivor function is

e 05t if t <1,
So(t) = {ewO.S—(trl) ift> 1.
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Since Sp(t) > 0.61 if ¢ < 1, the median occurs in the second part of the
survivor function and is when exp{—0.5— (t — 1)} = 0.5. The median survival
time for those in Group I is therefore 1.19 months.

The survivor functions for the individuals in Group II under the two models
are

Sp(t) = [So(t)]?,

and

Sa(t) = So(t/9),

respectively.

To illustrate the difference between the hazard functions under proportional
hazards and accelerated failure time models, consider the particular case where
¢ = ¢~ = 2.0. The median survival time for individuals in Group II is 0.69
months under the proportional hazards model, and 0.60 months under the
accelerated failure time model. The hazard functions for the two groups under
both models are shown in Figure 6.3 and the corresponding survivor functions
are shown in Figure 6.4.
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Figure 6.3 The hazard functions for individuals in Group I, ho(t), and in Group
II under (a) a proportional hazards model (—) and (b) an accelerated failure time
model (---).

Under the accelerated failure time model, the increase in the hazard for
Group II from 1.0 to 2.0 occurs sooner than under the proportional hazards
model. The “kink” in the survivor function also occurs earlier under the ac-

celerated failure time model.
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Figure 6.4 The survivor functions for individuals in Group I, So(t), and in Group
II, under (a) a proportional hazards model (—) and (b) an accelerated failure time
model (---).

6.3.2 The percentile-percentile plot

The percentile-percentile plot, also known as the quantile-quantile plot or the
Q-Q plot, provides an exploratory method for assessing the validity of an
accelerated failure time model for two groups of survival data. Recall that
the pth percentile of a distribution is the value ¢(p), which is such that the
estimated survivor function at time ¢(p) is 1 — (p/100), for any value of p in
the interval (0,100). The pth percentile is therefore such that

t(p) = S <%> .

Now let ¢5(p) and ¢;(p) be the pth percentiles estimated from the survivor
functions of the two groups of survival data. The values of p might be taken
to be 10,20,...,90, so long as the number of observations in each of the two
groups is not too small. The percentiles of the two groups may therefore be
expressed as

_1 /100 —-p 1 {100 —0p

_ 1 _ 1

w) =57 (2], ne = st (Fhet).

where Sp(t) and S;(t) are the survivor functions for the two groups. It then
follows that

S1{t1(p)} = So {to(p)}, (6.8)

for any given value of p.
Under the accelerated failure time model, S1(f) = So (t/¢), and so the pth
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percentile for the second group, t1(p), is such that
Su{ti(p)} = So{t1(p)/0} -
Using equation (6.8),
So {to(p)} = So {ta(p)/0},

and hence
to(p) = ¢~ t1(p).
Now let £o(p), t (p) be the estimated percentiles in the two groups, so that

R N 100 — , A 100 —

) =5t (Mg ) o =5 (U
A plot of the quantity f5(p) against t;(p), for suitably chosen values of p,
should give a straight line through the origin if the accelerated failure time
model is appropriate. The slope of this line will be an estimate of the accelera-
tion factor, 1. This plot may therefore be used in an exploratory assessment
of the adequacy of the accelerated failure time model. In this sense, it is an

analogue of the log-cumulative hazard plot, used in Section 4.4.1 to examine
the validity of the proportional hazards model.

Example 6.2 Prognosis for women with breast cancer

In this example, the data on the survival times of women with breast tumours
that were negatively or positively stained, originally given as Example 1.2 in
Chapter 1, is used to illustrate the percentile-percentile plot. The percentiles
of the distribution of the survival times in each of the two groups can be
estimated from the Kaplan-Meier estimate of the respective survivor functions.
These are given in Table 6.1.

Table 6.1 FEstimated percentiles of the distributions
of survival times for women with tumours that were
positively or negatively stained.

Percentile Negative staining  Positive staining

10 47 13
20 69 26
30 148 35
40 181 48
50 - 61
60 - 113
70 - 143
80 - -

90 - _

The relatively small numbers of death times, and the censoring pattern in
the data from the two groups of women, mean that not all of the percentiles
can be estimated. The percentile-percentile plot will therefore have just four
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pairs of points. For illustration, this is shown in Figure 6.5. The points fall on
a line that is reasonably straight, suggesting that the accelerated failure time
model would not be inappropriate. However, this conclusion must be regarded
with some caution in view of the limited number of points in the graph.
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Figure 6.5 Percentile-percentile plot for the data on the survival times of breast
cancer patients.

The slope of a straight line drawn through the points in Figure 6.5 is ap-
proximately equal to 3, which is a rough estimate of the acceleration factor.
The interpretation of this is that for women whose tumours were positively
stained, the disease process is speeded up by a factor of three, relative to those
whose tumours were negatively stained. We can also say that the median sur-
vival time for women with negatively stained tumours is estimated to be three
times that of women with positively stained tumours.

6.4 The general accelerated failure time model

The accelerated failure time model in equation (6.7) can be generalised to the
situation where the values of p explanatory variables have been recorded for
each individual in a study. According to the general accelerated failure time
model, the hazard function of the ith individual at time ¢, h;(t), is then such
that

hi(t) = e T ho(t/e™), (6.9)
where

N = 01Ty + 0T + -+ QpTpi

is the linear component of the model, in which zj;; is the value of the jth
explanatory variable, X;, 7 = 1,2,...,p, for the ith individual, i = 1,2, ... n.
As in the proportional hazards model, the baseline hazard function, hg(t),
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is the hazard of death at time # for an individual for whom the values of
the p explanatory variables are all equal to zero. The corresponding survivor
function for the i¢th individual is

Si(t) = So{t/exp(n;:)},

where Sy(t) is the baseline survivor function.

Parametric accelerated failure time models are unified by the adoption of
a log-linear representation of the model, described in the sequel. This repre-
sentation shows that the accelerated failure time model for survival data is
closely related to the general linear model used in regression analysis. More-
over, this form of the model is adopted by most computer software packages
for accelerated failure time modelling.

6.4.1* Log-linear form of the accelerated failure time model

Consider a log-linear model for the random variable T;, associated with the
lifetime of the ith individual in a survival study, according to which

log T = p+ oy + aZo; + - + pp; + 0€;. (6.10)
In this model, ay,as,..., o, are the unknown coefficients of the values of p
explanatory variables, X1, Xs,..., X, and u, o are two further parameters,

known as the intercept and scale parameter, respectively. The quantity e; is
a random variable used to model the deviation of the values of log T; from
the linear part of the model, and ¢; is assumed to have a particular proba-
bility distribution. In this formulation of the model, the a-parameters reflect
the effect that each explanatory variable has on the survival times; positive
values suggest that the survival time increases with increasing values of the
explanatory variable, and vice versa.

To show the relationship between this representation of the model and that
in equation (6.9), consider the survivor function of T}, the random variable
associated with the survival time of the ith individual. Using equation (6.10),
this is given by

Si(t) =P(T; > t) = P {exp(u + &'z + 0¢;) = t},
where o'x; = oy + Qoo + - + apTp;
Now, S;(t) can be written in the form
Si(t) = P {exp(p + o¢;) = t/ exp(ax;)},
and the baseline survivor function, Sy (¢), the survivor function of an individual
for whom x = 0, is
So(t) = P {exp(u + oe;) > t}.

It then follows that

Si(t) = So{t/exp(a/x;)}, (6.11)
which is the general form of the survivor function for the ith individual in an
accelerated failure time model. In this version of the model, the acceleration
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factor is exp(—a’x;) for the ith individual. The corresponding relationship
between the hazard functions is obtained using equation (1.4) of Chapter 1.
Specifically, taking logarithms of both sides of equation (6.11), multiplying by
~1, and differentiating with respect to t, leads to

hi(t) = exp(—a'z; ) ho{t/ exp(c’x;)},

which is the model in equation (6.9) with 7; = a/x;.
The log-linear formulation of the model can also be used to give a general
form of the survivor function for the ith individual, which is

Si(t) =P(T; > t) = P(log T; > logt).
From equation (6.10),
Si(t) = P(p+ a1m1; + apo; + - + 0y + 06 = logt),

=P (ei > 817 [T oty — Ty ""O‘px”>. (6.12)
g

If we now write S, (€) for the survivor function of the random variable ¢; in the
log-linear model of equation (6.10), the survivor function of the ith individual
can, from equation (6.12), be expressed as

t — — ; R C— e e — .
Si(t) = S, ( gL~ pi- ey — %m’”> . (6.13)

This result shows how the survivor function for 7, can be found from the
survivor function of the distribution of ¢;. The result also demonstrates that
an accelerated failure time model can be derived from many probability dis-
tributions for ¢;, although some are more tractable than others.

A general expression for the pth percentile of the distribution of survival
times also follows from the results in this section. The pth percentile for the
ith individual, ¢;(p), is given by

100 — p
Si{t; =
{ti(p)} 100
and using equation (6.12),
Ple > logti(p) — p — 11 — ao®o; — -+ — Qpyy _ 100 —p
o 100
If €;(p) is used to denote the pth percentile of the distribution of e;, then
100 —p
Se {6 =Pl 2 ¢ =,
La)} =Pla > @)} = o
Consequently,
Ei(p) _ lOgt,,(p) — U~ Q1T — Ty — 0 — oszpi’
o
and so
ti(p) = exp {o€;(p) + 1+ Q1215 + Qozo; + -+ + QpTpi} (6.14)
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is the pth percentile of the distribution of survival times for the ith individual.
Note that the percentile in equation (6.14) can be written in the form

ti(p) = exp(onz1; + agze; + - + apTpi)to(p),

where to(p) is the pth percentile for a baseline individual for whom all ex-
planatory variables take the value zero. This confirms that the a-coefficients
can be interpreted in terms of the effect of the explanatory variables on a
particular percentile of the distribution of survival times.

The cumulative hazard function of the distribution of T} is given by H,(¢) =
—log S;(t), and from equation (6.13),

logt — p— @171; — QT — -+ - — ap:cpi)
2
o

Hi(t) = —log Scl(

_ g logt — pp— 11 — Q@ — -+ — Qpps (6.15)
€4 a ?
where H,(¢) = —log S, (¢) is the cumulative hazard function of ¢;. The cor-

responding hazard function, found by differentiating H;(¢) in equation (6.15)
with respect to ¢, is

m@ﬁvim(b“‘“_a””_””“’”%%ﬁ, (6.16)
ot o

where h,, (¢) is the hazard function of the distribution of ¢;.

The distributions of ¢; that are most often used in accelerated failure time
modelling are such that their percentiles, €;(p), have a simple form. Models
based on such distributions are described in the following section.

6.5 Parametric accelerated failure time models

Particular choices for the distribution of ¢; in the log-linear formulation of the
accelerated failure time model, described in Section 6.4.1, lead to distributions
for the random variable associated with the survival time of the 7th individual.
But the representation of the model in equation (6.10) invariably leads to
different parameterisations of the models from those given in Sections 5.1 and
6.1. Parametric accelerated failure time models based on the Weibull, log-
logistic and lognormal distributions for the survival times are most commonly
used in practice, and so these models are described in detail, and summarised
in Section 6.5.4.

6.5.1 The Weibull accelerated failure time model

Suppose that survival times are assumed to have a Weibull distribution with
scale parameter A and shape parameter ~y, written W (\,~), so that the base-
line hazard function is

ho(t) = Aytv—t,
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The hazard function for the ith individual is then, from equation (6.9), given
by

Ba(t) = € P dy(e ) E = (e AT,
so that the survival time of this individual has a W (e~ ) distribution.
The Weibull distribution is therefore said to possess the accelerated failure
time property. Indeed, this is the only probability distribution that has both
the proportional hazards and accelerated failure time properties.

Because the Weibull distribution has both the proportional hazards prop-
erty and the accelerated failure time property, there is a direct correspondence
between the parameters under the two models. If the baseline hazard function
is the hazard function of a W(\,~) distribution, the survival times under the
general proportional hazards model in equation (5.35) of Chapter 5 have a
W (Xexp(B'x;),) distribution, while those under the accelerated failure time
model have a W(Aexp(—ya/z;),v) distribution. It then follows that when
the coefficients of the explanatory variables in the linear component of the
accelerated failure time model are multiplied by —v, we get the correspond-
ing [-coefficients in the proportional hazards model. In the particular case of
comparing two groups, an acceleration factor of ¢~ = e~ ® under the accel-
erated failure time model corresponds to a hazard ratio of ¢~ = e~7* in a
proportional hazards model.

In terms of the log-linear representation of the model in equation (6.10),
if T; has a Weibull distribution, then ¢; does in fact have a type of extreme
value distribution known as the Gumbel distribution. This is an asymmetric
distribution with survivor function given by

Se, (€) = exp(—e®),
for —oo < € < co. The cumulative hazard and hazard functions of this distri-
bution are given by He, (¢) = €€, and h,, (¢) = e, respectively.
To show that the random variable T; = exp(u + o', + oe¢;) has a Weibull
distribution, from equation (6.13), the survivor function of Tj is given by

Si(t) = exp {w exp <10gt — BTy _0042$2i — = ap:cpi)} (6.17)

This can be expressed in the form
Si(t) = exp <—>\z‘t1/0> )

where
A = exp {*‘(/L + 1Ty + oo + -0 + ozpmpi)/a} s

which, from equation (5.8) of Chapter 5, is the survivor function of a Weibull
distribution with scale parameter );, and shape parameter o~ 1. Consequently,
equation (6.17) is the accelerated failure time representation of the survivor
function of the Weibull model described in Section 5.5 of Chapter 5.

The cumulative hazard and hazard functions for the Weibull accelerated
failure time model can be found directly from the survivor function in equa-
tion (6.17), or from H(e) and h.,(e), using the general results in equa-
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tions (6.15) and (6.16). We find that the cumulative hazard function is

IOgt — U — 1Ty — QX2 — apa:pi)
K

Hi(t) = —log Si(#) = exp ( :

which can also be expressed as A\;t'/¢, and the hazard function is given by

logt — 0 — i Qg — = QipTp
hﬂt)z%exp(og W~ Q1T 022 pp)7 (6.18)

or hi(t) = )\1'0'4115071"1.

We now reconcile this form of the model with that for the Weibull pro-
portional hazards model. From equation (5.37) of Chapter 5, the survivor
function for the ith individual is

Si(t) = exp {—exp(Brz1i + Paai + - -+ + BpTpi) A}, (6.19)

in which X\ and « are the parameters of the Weibull baseline hazard function.
There is a direct correspondence between equation (6.17) and equation (6.19),
in the sense that

A =exp(—pjo), yv=o0 ', f;=-q;/o,

for j =1,2,...,p. We therefore deduce that the log-linear model where
1
logT; = 5 {=log X\ — Brz1; — Bowos — - — Bppi + i},

and in which ¢; has a Gumbel distribution, provides an alternative represen-
tation of the Weibull proportional hazards model.

In this form of the model, the pth percentile of the survival time distribution
for the ith individual is the value #;(p), which is such that S;{t;(p)} = 1 —
(p/100), where S;(t) is as given in equation (6.17). Straightforward algebra
leads to the result that

ti(p) = exp [a log {— log (—106——> } +p+ o/an] (6.20)

for that individual. Equivalently, the pth percentile of the distribution of ¢;,
€;(p), is such that

100 — p
_ ei<p>} _-p
exp{ (&4 100 s

ei(p) = log {— log <10f06 p) } 7

and the general result in equation (6.14) leads directly to equation (6.20).
The survivor function and hazard function of the Weibull model follow
from equations (6.17) and (6.18), and equation (6.20) enables percentiles to

be estimated directly.

so that
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6.5.2 The log-logistic accelerated failure time model

Now suppose that the survival times have a log-logistic distribution. If the
baseline hazard function in the general accelerated failure time model in equa-
tion (6.9) is derived from a log-logistic distribution with parameters 6, &, this
function is given by
66 P
hO(t) - 1 +69t'€.
Under the accelerated failure time model, the hazard of death at time ¢ for
the 7th individual is
hi(t) = e Tho(e™t),

where 7; = 1715 + oo + -+ - + Ty is a linear combination of the values
of p explanatory variables for the ith individual. Consequently,

e el k(e mit)rt

hi(t) = ,
® 14 ef(emt)s

that is,

eﬂff-cm ,{tnfl
It then follows that the survival time for the ith individual also has a log-
logistic distribution with parameters 8 — xn; and x. The log-logistic distribu-
tion therefore has the accelerated failure time property. However, this distri-
bution does not have the proportional hazards property.

The log-linear form of the accelerated failure time model in equation (6.10)
also provides a representation of the log-logistic distribution. Suppose that
in this formulation, ¢; now has a logistic distribution with zero mean and
variance m2/3, so that the survivor function of ¢; is

hi(t)

1
Sele) = =
Using equation (6.13), the survivor function of 7; is then
~1
Si(t) = {1 +exp (logt i apx’”)} . (621)
g

From equation (6.2), the survivor function of T;, when T} has a log-logistic
distribution with parameters § — k7, x, where 1; = 121, + 2o+« - +QpTpi,

is
1

L+ efrmmgr’

On comparing this expression with that for the survivor function in equa-
tion (6.21), we see that the parameters § and x can be expressed in terms of
1 and o. Specifically,

Si(t) =

0=—plo, k=0 ',
and this shows that the accelerated failure time model with log-logistic sur-
vival times can also be formulated in terms of a log-linear model. This is
the form of the model that is usually adopted by computer software, and so

PARAMETRIC ACCELERATED FAILURE TIME MODELS 213

computer-based parameter estimates are usually estimates of 1 and o, rather
than 6 and &.
The cumulative hazard and hazard functions of the distribution of ¢; are

such that

Ho(e) = log (1 +¢).
and )

he(e)=(1+e¢) ",
respectively. Equations (6.15) and (6.16) may then be used to obtain the cu-
mulative hazard, and hazard function, of T;. In particular, the hazard function
for the ith individual is

1 logt — u — 1 T1; — Qoo — =+ — QpTpi
hi(t):—{lirexp{—( R L L
ot o

-1

(6.22)

Estimates of quantities such as the acceleration factor, or the median sur-

vival time, can be obtained directly from the estimates of i, o and the a;’s.

For example, the acceleration factor for the ith individual is exp{—(a121; +

Qaai + - -+ apy;) } and the pth percentile of the survival time distribution,
from equation (6.21), or the general result in equation (6.14), is

t;(p) = exp {orlog <100p—p> + p+ a1Ty; + QT+t apxp.é} .

The median survival time is simply
t:(50) = exp {pt + c1@15 + Qome; + -+ + QpTpi} (6.23)

and so an estimate of the median can be straightforwardly obtained from the
estimated values of the parameters in the model.

6.5.3 The lognormal accelerated failure time model

If the survival times are assumed to have a lognormal distribution, the baseline
survivor function is given by

So (t) =]1-0 (
where p and o are two unknown parameters. Under the accelerated failure
time model, the survivor function for the ith individual, is then

S;(t) = Sole” ™),

where n; = q121; + qame; + - - + Qpip; is a linear combination of the values
of p explanatory variables for the ith individual. Therefore,

Sit)=1-® (M) : (6.24)

logtnu>

o

g

which is the survivor function for an individual whose survival times have a
lognormal distribution with parameters p -+ 7; and o. The lognormal distri-
bution therefore has the accelerated failure time property.
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In the log-linear formulation of the model, the random variable associated
with the survival time of the ith individual has a lognormal distribution if
log T; is normally distributed. We therefore take €; in equation (6.10) to have
a standard normal distribution, so that the survivor function of €; 18

Sei(€) =1 —®(e).
The cumulative hazard, and hazard function, of ¢, are
He,(€) = —log {1 - ®(e)},

and

o) = 245,

respectively, where f, (¢) is the density function of a standard normal random
variable, given by

1 2
fe(€) = "\/(Q—W)QXP (—e /2).

The random variable 7}, in the general accelerated failure time model, then
has a lognormal distribution with parameters o + o’x; and o. The survivor
function of T} is as given in equation (6.24), and the hazard function is found
from equation (6.16).

The pth percentile of the distribution of T}, from equation (6.14), is

ti(p) = exp {CTCI)_I(p/lOO) +pu+ Ty + oz + -+ O‘pxpz'} ’

and, in particular, t(50) = exp(u + a’z;) is the median survival time for the
i1th individual.

6.5.4 Summary

It is convenient to summarise the models and results that have been described
in this section, so that the different parameterisations of the distributions used
in accelerated failure time models can clearly be seen.

The general accelerated failure time model for the survival time of the ith
of n individuals, for whom x1;, zo;, .. . Tp; are the values of p explanatory
variables, X1, X5,..., X}, is such that the random variable associated with
the survival time, T}, can be expressed in the form

logT; = p+ a1y + oo + -+ + QpTp; + T€;.

Particular distributions for 7j are derived from assumptions about the dis-
tribution of ¢ in this model. The survivor function and hazard function of
the distributions of ¢;, that lead to commonly used accelerated failure time
models for the survival times, are summarised in Table 6.2.

The cumulative hazard function of ¢; is found from H,(¢) = — log S, (¢),
and, if desired, the density function of ¢; is fe, (€) = he,(€) Se,(¢). From the
survivor and hazard function of ¢;, the survivor and hazard function of T} can

1
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Table 6.2 Summary of parametric accelerated failure time models.

Distribution of T} Se, (€) he; (€) Percentile, €;(p)
(100—
Exponential exp(—e°) e’ log {— log ( 100”)}
100~
Weibull exp(—e®) e log {— log ( 100”)}
Log-logistic (1+e)t  (A+e ! log (1—05—75)
exp(—€2/2) —1
Lognormal 1—®(e) {—1?(%%}—\/@ & *(p/100)
be found from
logt — p — 1Ty — QX2 — *** — Qppi
S,L' (t) == Sei < o ]
d
. 1 logt — p— a1z — Q2 — - —ap:cpi>
hi(t) = o e, .

results that were first given in equations (6.13) and (6..16), 'respectively.
The pth percentile of the distribution of ¢€; is also given in 'I.‘ab}e.6_2, from
which #;(p), the pth percentile of the survival times for the ¢th individual, can

be found from
ti(p) = exp {o€i(p) + 1+ a121; + oo + -+ QpTpi}

i s equation (6.14).
gl\’?ieaiog?linear ripres)entation of the Weibull an(jl log-logist'%c models leads
to parameterisations of the survival time distributions that differ from those
used in Sections 5.1 and 6.1, when the distributions were first presented. The
link between the two sets of parameters is summarised in Table.6.3, which
includes the number of the equation that gives the survivor function of each

distribution in terms of the original parameters.

Table 6.3 Summary of the parameterisation of accelerated failure time models.

Distribution of 7; Equation number Parameterisation of survivor function

Exponential (5.5) A=eH, y=1(c=1)
Weibull (5.8) A=e M y=1/o,
Log-logistic (6.2) 0 =—pjo,k=1/c

For the proportional hazards representation of the Weibull model, where

hi(t) = exp(B8'x;)ho(t),

the correspondence between 3;, and «; in the accelerated time model, is s‘uch
that 3, = —«;/0, ] = 1,2,...,p. This shows how the [-parameters in a
] - b
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;Nel‘tgull' proportional hazards model, which represent log-hazard ratios, can
¢ obtained from the fitted a-parameters in an accelerated failure time model.

6.6 Fitting and comparing accelerated failure time models

Acce'lerated failure time models are fitted using the method of maxim

hkehhgod. The likelihood function is best derived from the log-linear re ro.
sen.tatlon of the model, after which iterative methods are used to obtainptl;f_
estimates. The likelihood of the n observed survival times, t1,1o y

from expression (5.12) in Chapter 5, given by e

Lie, o) = [TAA )} {8:(t:)}' ™™,

yvh(.arfz fi(t;) and Si(ti). are the density and survivor functions for the ith
gncpwdu.:l a;c t}il, and ¢; is the event indicator for the ith observation, so that
i 1S unity if the ith observation is an event and zero if it i 7

o if it
from equation (6.19) 1t is censored. Now,

, Si(t:) = Se, (2),

where z; = (logt; — u — a1z —
. 1 QX9 — *+* — Qppg i iati
L voamect bt v i i » ,n) /o, and differentiation

filt:) = ’O%fei(zi)-

The likelihood function can then b i
. : e expressed in terms of th i
density functions of ¢;, giving ¢ sunvivor and

L(CX:I“»U) = H(O’ti)_ai {fQ (Zi)}&i {Sei(zi)}l—&; ]

The log-likelihood function is then

n
1 —

og L(ex, p,0) = Z {—d;log(at;) + d;log fe,(2;) + (1 — 86;) log S, (2;)}

i=1 i )
. i 6.25
ana t:lfdmammum likelihood estimates of the p 4+ 2 unknown param(eters)
) 1, Qg,..., ap, are found by maximisin i i ] ’
) g this functio th
Negston;lzaphson procedure, described in Section 3.3.3. n e e
includis 5 }?Z :he expresiion for the log-likelihood function in equation (6.25)
erm — %" | §;logt;, which does not involve any unknown pa-

rameters. is
rs. ‘This term may therefore be omitted from the log-likelihood function

as noted in Section 5.5 i
tional hazards model.~ -1 of Chapter 5, in the context of the Weibull propor-

software for acoaary ZHCfleed, log-likelihood values given by most computer
erate 1 : . .
_ Z?:l 5 log ;. ailure time modelling do not include the value of

After fitti 2
and ueed Eclmg a'model, the value of the statistic —2log L can be computed
portions] 1 making comparisons between nested models, just as for the pro—’
azards model. Specifically, to compare two nested models, the dif-
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ference in the values of the statistic —2log L for the two models is calculated,
and compared with percentage points of the chi-squared distribution, with
degrees of freedom equal to the difference in the number of a-parameters
included in the linear component of the model.

Once a suitable model has been identified, estimates of the survivor and
hazard functions may be obtained and plotted. The fitted model can be inter-
preted in terms of the estimated value of the acceleration factor for particular
individuals, or in terms of the median and other percentiles of the distribution
of survival times. In particular, the estimated pth percentile of the distribution
of survival times, for an individual whose vector of values of the explanatory
variables is x;, is, from equation (6.14), given by

Ei(p) = exp{Ge;(p) + A+ 121 + GioTo; + -+ + GpTpi}-

The standard error of the estimated pth percentile, t;i(p), is generally ob-
tained from the standard error of log #;(p), which is

logt;(p) = 6ei(p) + o + Gazri + Qoo + -+ GpTpi }-

Using the results in Appendix C, se{log t(p)} = d'Vd, where d is a vec-
tor with components 1,z1;, ... , Tpir €i(p), and V 1s the variance covariance
matrix of the parameter estimates in the order fi, 61, Gz, - . ., Gp, 0. Then, the
standard error of the estimated percentile itself is obtained from se {t:(p)} =

#i(p) se {logt:(p)}.

Ezample 6.3 Prognosis for women with breast cancer

In this example, accelerated failure time models are fitted to the data on the
survival times of women with breast cancer. The Weibull accelerated failure
time model is first considered. A log-linear model for the random variable
associated with the survival time of the ith woman, T;, is such that

logT; = pu+ aw; + 0¢;,

where ¢; has a Gumbel distribution, y, o and « are unknown parameters, and
z; is the value of an explanatory variable, X, associated with staining, such
that 2; = 0 if the ith woman is negatively stained and z; = 1 if positively
stained. When this model is fitted, we find that f = 5.854, 6 = 1.067, and
& = —0.997.

The acceleration factor, e~%¢, is estimated by €997 = 2.71 for a woman
with positive staining. The time to death of a woman with a positively stained
tumour is therefore accelerated by a factor of about 2.7 under this model. This
is in broad agreement with the estimated slope of the percentile-percentile plot
for this data set, found in Example 6.2.

The estimated survivor function for the ith woman is given by

g

from equation (6.17), and may be plotted against ¢ for the two possible values
of z;. The median survival time of the ith woman under the Weibull acceler-
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ated failure time model, using equation (6.20), is

t:(50) = exp {o log (log 2) + 11 + az;)}.

The estimated median survival time for a woman with negative staining (z; =

0) i.s 236 days, while that for women with positive staining (z; = 1) is 87 days,
as in Examp'le 5.6. Note that the ratio of the two medians is 2.71, which is
the acceleration factor. The median survival time for women with positively

stained tumours is therefore about one third that of those whose tumours
were negatively stained.

. The estimated hazard function for the ith woman is, from equation (6.18)
given by 7 o

?

fz,(t) =g lp 1 exp (~—~—_'& — 4z
\ &
that is,
hi(t) = 0.937¢7 %% exp(— 5.486 4 0.934 z;).
A plot of this function for the two groups of women is shown in Figure 6.6.
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Flgdu;'e 6.6 Estz’mqted hagam’ functions under the Weibull accelerated failure time
model for women with positively stained (—) and negatively stained (---) tumours.

g I]?. the proportional hazards representation of the Weibull model, given in
ection 5.5 of Chapter 5, the hazard of death at time ¢ for the ith woman is
hi(t) = €7 ho(t),

wh s i i

moil;e ;Lz C;Bake§ tl.le value zero if the ith woman had a negatively stained tu-

e » and unity '1f the tumour was positively stained. For the Weibull distri-
ution, the baseline hazard function is

ho(t) = Myt~ 1,
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which is the hazard function for women with negatively stained tumours, and
hence
hi(t) = eyt

The corresponding estimated values of the parameters A, v and (3 are given
by A = exp(—ji/A) = 0.00414, 4 = 1/6 = 0.937 and 3 = —&/6 = 0.997. The
correspondence between the Weibull accelerated failure time model and the
Weibull proportional hazards model means that the hazard ratio under the
latter model is e=%/7 = ¢f which is estimated to be 2.55. This is in agreement
with the value found in Example 5.6.

We now fit the log-logistic accelerated failure time model to the same data
set. The log-linear form of the model now leads to g = 5.461, 6 = 0.805 and
& = —1.149. The acceleration factor is e~%, which is estimated by 3.16. This
is slightly greater than that found under the Weibull accelerated failure time
model.

The median survival time for the ith woman under this model is, from
equation (6.23), given by

exp(p + ax;),
from which the estimated median survival time for a women with negative
staining is 235 days, while that for women with positive staining is 75 days.
These values are very close to those obtained under the Weibull accelerated
failure time model.

The estimated hazard function for the ith woman is now

) 1 log t —
hi(t) = = {1+exp [~ <L—

~ —1
=)}
from equation (6.22), which is
ha(t) = 1.243¢ {1 4 ¢4 exp (6.787 — 1.428 z)} 7

A graph of this function for the two groups of women is shown in Figure 6.7.
This can be compared with the graph in Figure 6.6.

The hazard functions for those with negative staining are quite similar
under the two models. However, the hazard function for those with positive
staining under the log-logistic model is different from that under the Weibull
model. The values of the statistic —QIOgJi for the fitted Weibull and log-
logistic models are 121.77 and 118.495. On this basis, the log-logistic model
is a slightly better fit. An analysis of residuals, to be discussed in Chapter
7, may help in choosing between these two models, although with this small
data set, such an analysis is unlikely to be very informative.

Finally, in terms of the parameterisation of the model given in Section 6.1.1,
the baseline hazard function is

ho(t) = ———5=

and so the hazard function for the ith woman in the study is

Q=

L (t) B e@—nazl /{tm—l
T - 1+ ef—rawipr’
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Figure 6.7 Estimated hazard functions under the log-logistic accelerated failure time
model for women with positively stained (—) and negatively stained (---) tumours.

The corresponding estimated values of 8 and x are given by § = —[/5 =
—6.787, and £ = 1/6 = 1.243.

Ezample 6.4 Comparison of two treatments for prostatic cancer

In a further illustration of modelling survival data using the log-logistic ac-
celerated failure time model, the data from a clinical trial to compare two
treatments for prostatic cancer are considered. These data were first given in
Example 1.4, and analysed using a Cox regression model in Examples 3.6 and
3.10.

To identify the terms that should be in the linear component of the log-
logistic accelerated failure time model, the procedure described in Example 3.6
can again be followed. The values of the statistic —2log [, on fitting models
with all combinations of the four prognostic variables, Age, Shb, Size and
Indez, are shown in Table 6.4. As in Example 3.6, the variables Size and Indez
are the ones that are needed in the model. When either of these variables is
omitted, the corresponding increase in the value of —2 log L is significant, and
neither Age nor Shb reduce —2log L by a significant amount when they are
added to the model.

When the term corresponding to the treatment effect, Treat, is added to the
model that contains Size and Indez, —2log L decreases to 21.245. When this
reduction of 1.867 is compared with percentage points of a chi-squared distri-
bution on 1 d.f., the reduction is not significant at the 10% level (P =0.172).
There is no evidence of any interaction between Treat and the prognostic
variables Size and Indez, and so the conclusion is that there is no statistically
significant treatment effect.
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Table 6.4 Values of —2 log L for models
fitted to the data from Ezample 1.4.

Variables in model —~2log L
none 35.806
Age 35.752
Shb 35.700
Size 27.754
Index 27.965
Age + Shb 35.657
Age + Size 27.652
Age + Index 27.859
Shb + Size 27.722
Shb + Index 26.873
Size + Index 23.112
Age + Shb + Size 27.631
Age + Shb + Index 26.870
Age + Size + Index 23.002
Shb + Size + Index 22.895

Age + Shb + Size + Index  22.727

The magnitude of the treatment effect can be assessed by calculating the
acceleration factor. According to the log-linear form of thfe model,'the rancilom
variable associated with the survival time of the ith patient, T3, is such that

log T; = p + o Size; + anIndez; + a3 Treat; + o€,

in which ¢; has a logistic distribution, Size; and Index; are tbe valu'es }?f
tumour size and Gleason index for the ith individual, and Treat; is zero if the
ith individual is in the placebo group and unity if in the tr.eateq group. The
maximum likelihood estimates of the unknown parameters in thlSA model are
given by fi = 7.661, & = 0.338, &, = —0.029, &2 = —0.293, and &3 = 0.5’f73.
The values of the a’s suggests that the survival time tends to be Asho‘rt.er or
larger values of the tumour size and tumour index, and longer for individuals

assigned to the active treatment. . ‘ . A
Using equation (6.21), the fitted survivor function for the ith patient is

. —1
A logt — i — &1 Size; — Golndex; — &3 Treat;

which can be written in the form
. Ny —1
5.0 = {1+ e (2))

where 1
& = = {—h— &1 Size; — Galndex; — a3 Treat;} ,

Q
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that is,

Gi = —22.645 -+ 0.085 Size; + 0.865 Index; — 1.693 Treats.

The corresponding estimated hazard function can be found by differentiating
the estimated cumulative hazard function, H;(t) = - log 9;(t), with respect
to ¢. This gives

hi(t) = L {1 +17 V0 ex (—é) }71

i 51 1Y i >

a result that can also be obtained directly from the hazard function given in
equation (6.22).

The estimated acceleration factor for an individual in the treated group,
relative to an individual in the control group, is %573 = 0.56. The interpre-
tation of this result is that after allowing for the size and index of the tumour,
the effect of the treatment with DES is to slow down the progression of the
cancer by a factor of about 2. This effect might be of clinical importance, even
though it is not statistically significant. However, before accepting this inter-
pretation, the adequacy of the fitted model should be checked using suitable
diagnostics.

A confidence interval for the acceleration factor is found by exponentiat-
ing the confidence limits for the logarithm of the acceleration factor. In this
example, the logarithm of the acceleration factor for the treatment effect is
the estimated coefficient of Treat in the model for the hazard function, mul-
tiplied by —1, which is —0.573, and the standard error of this estimate is
0.473. Thus a 95% confidence interval for the acceleration factor has limits
of exp{—0.573 £ 1.96 x 0.473}, and the required interval is from 0.70 to 4.48.
Notice that this interval estimate includes unity, which is consistent with the
earlier finding of a non-significant treatment difference.

Finally, in terms of the parameterisation of the model in Section 6.1.1, the
fitted hazard function for the ith patient, i =1,2,..., 38, is given by

iLl<t) = e_ﬁi ilo(e_ﬁit),
where

fi; = —0.029 Size; — 0.293 Indez; + 0.573 Treat;,

and from equation (6.1),

6 pph—1
ho(t) = £50°

1+ efth
The estimated parameters in this form of the estimated baseline hazard func-
tion, ho (t), are given by § = —22.644 and % = 2.956. A graph of this function
is shown in Figure 6.8.

This figure indicates that the baseline hazard is increasing over time. Com-
parison with the baseline hazard function for a fitted Weibull model, also
shown in this figure, indicates that under the log-logistic model, the estimated
baseline hazard function does not increase quite so rapidly.
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Figure 6.8 Estimated baseline hazard function for the fitted log-logistic model (—)
and a fitted Weibull model (- --).

6.7* The proportional odds model

In this general model, the odds of an individual surviving beyond some time
t are expressed as
Silh) _ _ oo _Solh) (6.26)

1-8i(t) 1-5(@)

where
ni = Prw1; + Loz + 0+ Pplpi

is a linear combination of the values of p explanatory v.ariables., X4, Xgé.. .
X, measured on the ith individual, and So(t), the baseline survivor furﬁ: thlI{l,
is the survivor function for an individual whose explanatory variables all take
ro.
th?nvjllllil: rzeodel, the explanatory variables act multiplicatively on Ath(; (}))dds r?(f
survival beyond t. The logarithm of the ratio of the odds of survwaI e;;c; '
¢ for the ith individual, relative to an individual for whom thg exi) anf rez
variables are all equal to zero, is therefore just ;. The model is thereio
i del for the log-odds ratio. ‘ o
hnlilfwné(;nsider the pafticular case of a two-group study, in Whl.Ch 1n§h\(;1'cclu:;lsp
receive either a standard treatment or new treatment. Let the single in 11; Haluent
variable X take the value zero if an individual is on the st'ar%dard tread pent
and unity if on the new. The odds of the ith individual surviving beyon

¢ is then _Sit)  _ pe, Solt)
1—8i(t) L= So(t)’

where 2. is the value of X for the ith individual, i = 1,2,...,n. Thus if Sn(t)
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and Sg(t) are the survivor functions for individuals on the new and standard
treatments, respectively,

Snlt) 5 5s(t)
1=Sn(t)  ~ 1-8s(t)’
and the log-odds ratio is simply 3. The parameters in the linear component
of the model therefore have an immediate interpretation.

As for the proportional hazards model, a non-parametric estimate of the
baseline hazard function can be obtained. The model is then fitted by estimat-
ing the B-parameters in the linear component of the model, and the baseline
survivor function, from the data. A method for accomplishing this has been
described by Bennett (1983a), but details will not be included here. Fully
parametric versions of the proportional odds model can be derived by using
a specific probability distribution for the survival times. One such model is
described below in Section 6.7.1.

One particularly important property of the proportional odds model con-
cerns the ratio of the hazard function for the ith individual to the baseline
hazard, h;(t)/ho(t). It can be shown that this ratio converges from the value

e ™ at time ¢ = 0, to unity at ¢ = oo. To show this, the model in equa-
tion (6.26) can be rearranged to give

Sift) = So(t) {e™™ + (1 —e™™)So(1)}
and taking logarithms, we get
log S;(t) = log So(t) —log {e™™ + (1 — e ") So(t)} . (6.27)

Using the general result from equation (1.4), the hazard function is

d
hi(t) = —q; log Silt),

and so

(1 —e™™)fo(t)
}Lz‘ t) = h t) — b
() = ho(?) e~ + (14 em)So(t)
after differentiating both sides of equation (6.27) with respect to ¢, where fo(t)

is the baseline probability density function. After some rearrangement, this
equation becomes

hi(t) = ho(t) — (_eriTTJ;O-(Jf)_FT(t)‘ (6.28)

From equation (1.3), we also have that ho(t) = fo(t)/So(t) and substituting
for fo(t) in equation (6.28) gives

(®) = hoft) {1~ Sl 5t
Finally, after further rearrangement, the hazard ratio is given by
hi(t)
ho(t)

= {1+ (" — 1)So(t)} "
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As t increases from 0 to oo, the baseline survivor ﬁ.lnc'tiorj decreases II.lOnOtOIl—‘
ically from 1 to 0. When Sy(t) = 1, the hazard ratio is e~ and as ¢ increases
the hazard ratio converges to unity. . ‘
tolilo})ractical applications, it is common for the }}azar.d functions obt&lnne'd
for patients in two or more groups to converge with time. For e).(anllp fe, llln
a follow-up study of patients in a clinical trial, the effect on survival o tde
treatment, or the initial stage of disease, may wear oﬁ’..Slmllarly, in stl.l -
ies where a group of patients with some disease are being compared' with
a control group of disease-free individuals, an effective cure of the d}se'ase
would lead to the survival experience of each group becoming more similar
over time. This suggests that the proportional 0dd§ model, with its prop-
erty of convergent hazard functions, might be of considerable val.ue. Howevgr,
there are two reasons why this general model has not been_ widely used in
practice. The first of these is that computer software fqr ﬁ.ttmg the .mod.el is
not generally available. The second is that the mode.l is likely to give §1m11—
lar results to a Cox regression model that includes a time-dependent Varlap e
to produce non-proportional hazards. This particular a_pproa'ch to @odelllng
survival data with non-proportional hazards was described in Section 4.4.3,
and is considered more fully in Chapter 8.

6.7.1 The log-logistic proportional odds model

If survival times for individuals are assumed to have a log-logistic distribution,
the baseline survivor function is

-1
So(t) = {1+e%"}
where 0 and & are unknown parameters. The baseline odds of survival beyond
time t are then given by

SO(t) — e—Qt—-m'

1 — So(t)
The odds of the ith individual surviving beyond time t are therefore
Sz(t) — emfetfn,
1= 8:(1)

and so the survival time of the ith individual has a log-logistic distribution
with parameters 6 — n; and . The log-logistic distribution therefore has t}}e
proportional odds property, and the distribution is the .na.xtural one tq use in
conjunction with the proportional odds model. In fact, it is the only dlst?lbu—
tion to share both the accelerated failure time property and the proportional
rty.
Od’?‘iizr:epsiltymeans that the -parameters under the proportional odds moc.lel
can be obtained from those under the accelerated failure time model, a.nd vice
versa. In particular, the estimated coefficients of the explanator.y variable in
the linear component of the pl”OpOljtional odds model arﬂe (l)btamed 1i)y. mul-
tiplying those in the accelerated failure time model by 6!, where & is the
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estimated value of the parameter o in the accelerated failure time model.
This enables the result of the survival analysis to be interpreted in terms of
an acceleration factor or the ratio of the odds of survival beyond some time,
whichever is the more convenient.

As for other models for survival data, the proportional odds model can be
fitted using the method of maximum likelihood. Alternative models may then
be compared on the basis of the statistic —2log L.

In a two-group study, a preliminary examination of the likely suitability
of the model can easily be undertaken. The log-odds of the ith individual
surviving beyond time ¢ are

S
IOg{l—_é%} = fz; — 6 — klogt,

where z; is the value of an indicator variable that takes the value zero if an
individual is in one group and unity if in the other. The Kaplan-Meier estimate
of the survivor function is then obtained for the individuals in each group and

the estimated log-odds of survival beyond time ¢, log {5’1(25)/[1 - S’,(t)]}, are

plotted against logt. If the plot shows two parallel straight lines, this would
indicate that the log-logistic model was appropriate. If the lines were straight
but not parallel, this would suggest that the parameter x in the model was
not the same for each treatment group. Parallel curves in this plot suggest
that although the proportional odds assumption is valid, the survival times
cannot be taken to have a log-logistic distribution.

Ezxample 6.5 Prognosis for women with breast cancer

In this example to illustrate the use of the proportional odds model, the model
is fitted to the data on the survival times of breast cancer patients. In order to
assess the likely suitability of the proportional odds model, the Kaplan-Meier
estimate of the survivor function for the negatively and positively stained
women is computed. For the two groups of women, the log-odds of survival
beyond time ¢ are estimated and plotted against log t. The resulting graph is
shown in Figure 6.9. The lines are reasonably straight and parallel, and so
we go on to use the log-logistic proportional odds model to summarise these
data.

‘The model can be fitted using software for fitting the log-logistic accelerated
failure time model. In Example 6.3, this latter model was fitted to the data
on the survival of breast cancer patients. The estimated value of x and 6 in
the proportional odds model are 1.243 and —6.787, the same as those in the
accelerated failure time model. However, the estimated value of 3 in the linear
component of the proportional odds model is 3 = —1.149 x 1.243 = —1.498.
This is an estimate of the logarithm of the ratio of the odds of a positively
stained woman surviving beyond time ¢, relatively to one who is negatively
stained. The corresponding odds ratio is e~ 142% = 0.24, so that the odds of a
woman surviving beyond ¢ are about four times greater if that woman has a
negatively stained tumour.

SOME OTHER DISTRIBUTIONS FOR SURVIVAL DATA 227

*1

Log—odds of survival
N

T T T T

15 20 25 3.0 35 4.0 4.5 50 5.5

Log of survival time

Figure 6.9 Estimated values of the log-odds of survival beyond t plotted against
logt for women with positwvely stained () and negatively stained (o) tumours.

6.8* Some other distributions for survival data

Although a number of distributions for survival data have already beep con-
sidered in some detail, there are others that can be useful in specific circum-
stances. Some of these are mentioned in this section.

When the hazard of death is expected to increase or decrease with time in
the short term, and to then become constant, a hazard function thajc follows
a general exponential curve or Mitscherlich curve may be appropriate. We
would then take the hazard function to be

h(t) =60 — Be™ ™,

where 8 > 0, 8 > 0 and v > 0. This is essentially a Gompertz hazard function,
defined in Section 5.7, with an additional constant. The general shape of this
function is depicted in Figure 6.10. This function has a value of § — 8 when
t = 0 and increases to a horizontal asymptote at a hazard of 6. Similarly the

function

h(t) = 6+ Be 7,
where § > 0, 3 > 0 and v > 0, could be used to model a hazard which
decreases from 8 + 3 to a horizontal asymptote at 6.

Using equation (1.5), the corresponding survivor function can be found,
from which the probability density function can be obtained. The probability
distribution corresponding to this specification of the hazard function is known
as the Gompertz-Makeham distribution.

To model a hazard function that decreases and then increases symmetrically
about the minimum value, a quadratic hazard function might be suitable.
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Figure 6.10 An asymptotic hazard function, where h(t) =0 — Ge~ "t
Thus if

h(t) = 0 + Bt +~yt2,

for values of 0, 8 and ~ which give the required shape of hazard and ensure
that h(t) > 0, explicit forms for the survivor function and probability density
function can be obtained.

. Another form of hazard function that decreases to a single minimum and
increases thereafter is the “bathtub” hazard. The model with

h(t) = at + —D—

14t
provides a straightforward representation of this form of hazard, and corre-

sponding expressions for the survivor and density functions can be found.

Each of the models described in this section can be fitted by constructing a
log-likelihood function, using the result in expression (5.38) of Chapter 5, and
maximising this with respect to the unknown model parameters. In principle,
the unknown parameters in the hazard function can also depend on the values

of explanatory variables. Non-linear optimisation routines can then be used
to maximise the log-likelihood.

6.9 Further reading

The prope.rties of random variables that have probability distributions such
as the logistic, lognormal and gamma, are presented in Johnson and Kotz
(1970). Chhikara and Folks (1989) give a detailed study of the inverse Gaussian
distribution.

A description of the log-linear model for survival data is contained in many
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of the major textbooks on survival analysis; see in particular Cox and Oakes
(1984), Kalbfleisch and Prentice (2002), Klein and Moeschberger (1997) or
Lawless (2002). Descriptions of this form of the model are also presented in
computer manuals that accompany computer software packages for acceler-
ated failure time modelling.

Cox and Oakes (1984) show that the Weibull distribution is the only one to
have both the proportional hazards property and the accelerated failure time
property. They also demonstrate that the log-logistic distribution is the only
one that shares the accelerated failure time property and the proportional
odds property.

A non-parametric version of the accelerated failure time model, which does
not require the specification of a probability distribution for the survival data,
has been introduced by Wei (1992). This paper, and the published discussion,
Fisher (1992), includes comments on whether the accelerated failure time
model should be used more widely in the analysis of survival data.

The application of the accelerated failure time and proportional odds mod-
els to the analysis of reliability data is described by Crowder et al. (1991). The
general proportional odds model for survival data was introduced by Bennett
(1983a). Bennett (1983c) describes the log-logistic proportional odds model,
and GLIM macros for fitting the model are described in Bennett and White-
head (1981). The model has been further developed by Yang and Prentice
(1999).

The piecewise exponential model, mentioned in Section 6.3.1, in which haz-
ards are constant over particular time intervals, was introduced by Breslow
(1974). Breslow also points out that the Cox regression model is equivalent
to a piecewise exponential model with constant hazards between each death
time. The piecewise exponential model and the use of the normal, lognormal,
logistic and log-logistic distributions for modelling survival times are described
in Aitkin et al. (1989).

Use of the quadratic hazard function was discussed by Gaver and Acar
(1979) and the bathtub hazard function was proposed by Hjorth (1980).

A more general way of modelling survival data is to use a general family
of distributions for survival times, which includes the Weibull and log-logistic
as special cases. The choice between alternative distributions can then be
made within a likelihood framework. In particular, the exponential, Weibull,
log-logistic, lognormal and gamma distributions are special cases of the gener-
alised F-distribution described by Kalbfleisch and Prentice (2002). However,
this methodology will only tend to be informative in the analysis of data sets
in which the number of death times is relatively large.

In another approach to modelling survival data, the baseline hazard func-
tion is represented by regression splines. A flexible class of models, based on
proportional hazards and proportional odds assumptions, has been proposed
by Royston and Parmar (2002). The implementation of this approach, through
the statistical package Stata, has been described by Royston (2001).



CHAPTER 7

Model checking in parametric models

Diagnostic procedures for the assessment of model adequacy are as important
in parametric modelling as they are when the Cox regression model is used in
the analysis of survival data. Procedures based on residuals are particularly
relevant, and so we begin this chapter by defining residuals for parametric
models, some of which stem from those developed for the Cox model, described
in Chapter 4. This is followed by a summary of graphical procedures for
assessing the suitability of models fitted to data that are assumed to have a
Weibull, log-logistic or lognormal distribution. Other ways of examining the
fit of a parametric regression model are then considered, along with methods
for the detection of influential observations. We conclude with a summary of
how the assumption of proportional hazards can be examined after fitting the
Weibull proportional hazards model.

7.1 Residuals for parametric models

Suppose that T; is the random variable associated with the survival time of
the ith individual, ¢ = 1,2,...,n, and that x1;,29;,...,Zp; are the values
of p explanatory variables, X1, Xs,..., X, for this individual. Assuming an
accelerated failure time model for 7, we have that

log T; = p + a121; + o®ai + -+ + app; + 06y,

where ¢; is a random variable with a probability distribution that depends on
the distribution adopted for T;, and u, o and o, j = 1,2, ..., p, are unknown
parameters. If the observed survival time of the 7th individual is censored, the
corresponding residual will also be censored, complicating the interpretation
of these quantities.

7.1.1 Standardised residuals

A natural form of residual to adopt in accelerated failure time modelling is
the standardised residual defined by

rg; = {logt, — i — G115 — Aoz — - — Gppi} /0, (7.1)

where t; is the observed survival time of the ith individual, and f, &, aj,
j = 1,2,...,p, are the estimated parameters in the fitted accelerated fail-
ure time model. This residual has the appearance of a quantity of the form
“observation — fitted value”, and would be expected to have the same distri-
bution as that of ¢; in the accelerated failure time model, if the model were
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correct. For example, if a Weibull distribution is adopted for T}, the rg; would
be expected to behave as if they were a possibly censored sample from a Gum-
bel distribution, if the fitted model is correct. The estimated survivor function
of the residuals would then be similar to the survivor function of ¢;, that is,
Se, (€). Using the general result in Section 4.1.1 of Chapter 4, —log S, (¢) has
a unit exponential distribution, and so it follows that —log S, (7s;) will have
an approximate unit exponential distribution, if the fitted model is appro-
priate. This provides the basis for a diagnostic plot that may be used in the
assessment of model adequacy, described in Section 7.2.4.

7.1.2 Cox-Snell residuals

The Cox-Snell residuals that were defined for the Cox regression model in Sec-
tion 4.1.1 of Chapter 4 are essentially the estimated values of the cumulative
hazard function for the ith observation, at the corresponding event time, ¢;.
Residuals that have a similar form may also be used in assessing the adequacy
of parametric models. The main difference is that now the survivor and hazard
functions are parametric functions that depend on the distribution adopted
for the survival times. In particular, the estimated survivor function for the ith
individual, on fitting an accelerated failure time model, from equation (6.13),
is given by

. logt — fi — &yz1s — Qolos — - - - — &y
8i(t) = S.. (og ft— bz, Uamz Gpyp )7 (72)

where S, (¢) is the survivor function of ¢; in the accelerated failure time model,
@; is the estimated coefficient of z;;, j = 1,2,...,p, and /i, & are the estimated
values of 11 and o. The form of S, (e) for some commonly used distributions
for T; was summarised in Table 6.2 of Chapter 6.

The Cox-Snell residuals for a parametric model are defined by

rei = Hi(t;) = —log Si(ty), (7.3)

where H;(t;) is the estimated cumulative hazard function, and S;(¢;) is the
estimated survivor function in equation (7.2), evaluated at ¢;. As in the context
of the Cox regression model, these residuals can be taken to have a wunit
exponential distribution when the correct model has been fitted, with censored
observations leading to censored residuals; see Section 4.1.1 for details.

The Cox-Snell residuals in equation (7.3) are very closely related to the
standardised residuals in equation (7.1), since from equation (7.2), we see
that rc; = —log S, (rsi). Assessment of whether the standardised residuals
have a particular distribution is therefore equivalent to assessing whether the
corresponding Cox-Snell residuals have a unit exponential distribution.

7.1.8 Martingale residuals

The martingale residuals provide a measure of the difference between the
observed number of deaths in the interval (0, ¢;), which is either 0 or 1, and the
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aumber predicted by the model. Observations with unusually large ma.rt'}ngale
residuals are not well fitted by the model. The analogue of the martingale
residual, defined for the Cox regression model in equation (4.6) of Chapter 4,
is such that
° S M — (51' —TCq, (74)
where &; is the event indicator for the ith observation, so that 612 is unity if
that observation is an event and zero if censored, and now ?"C.i is the Cox-
Snell residual given in equation (7.3). For reasons given in Section 7.1.5, the
martingale residuals for a parametric accelerated failure time model. suim t'o
zero, but are not symmetrically distributed about zero. Strictly Spgaklng, .1t is
no longer appropriate to refer to these residuals as martingale residuals since
the derivation of them, based on martingale methods, does not carry over Fo
the accelerated failure time model. However, for semantic convenience, we will
continue to refer to the quantities in equation (7.4) as martingale residuals.

7.1.4 Deviance residuals

The deviance residuals, which were first presented in equation (4.7) of Chapter
4, can be regarded as an attempt to make the martingale residuals symmet-
rically distributed about zero, and are defined by

rpi = sgn(ras) (2 {rai + 0ilog(d; — rara) Y (7.5)

It is important to note that these quantities are not components of the‘de—
viance for the fitted parametric model, but nonetheless it will be convenient
to continue to refer to them as deviance residuals.

7.1.5* Score residuals

Score residuals, which parallel the score residuals, or Schoenfeld residuals,
used in connection with the Cox regression model, can be defined for any
parametric model. The score residuals are the components of the derivatives
of the log-likelihood function, with respect to the unknown parameteré;, W, O
and o, j = 1,2,...,p, and evaluated at the maximum likelihood estimates
of these parameters, i, & and &;. From equation (6.25) of Chapter 6, the
log-likelihood function for n observations is

n
log L{ex, pt,0) = Z {—6;log(cts) + 0;log fe, (z:) + (1 — &;) log Se, (1)},
i=1
where z; = (logt; — L — c1@1; — apy; — - - - — QpTpi) /0, fe(€) and S, (€) are
the density and survivor functions of ¢;, and §; is the event indicator.
Differentiating this log-likelihood function with respect to the parameters
i, o, and «a;, for j=12,...,p gives the following derivatives:

dlogL |
a/"' =0 ;g(zl)a
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dlogL | ¢
o =a ; {Zzg<"L) - 517}7
dlog L

n
P o! ijig(zi)a
7 i=1
where the function g(z;) is given by

' Se.(2) fe(zi)

and f! (z;) is the derivative of f. (z;) with respect to z;.
The 7th component of each derivative, evaluated at the maximum likelihood
estimates of the unknown parameters, is then the score residual for the corre-

sponding term. Consequently, from the definition of the standardised residual
in equation (7.1), the ith score residual for 4 is

&vlg(’rSiL

that for the scale parameter, o, is

67 {rsig(rsi) — 6},
and that for the jth explanatory variable in the model, X i, 1s
67 x5 9(rs:).
Of these, the score residuals for X are the most important, and so specific
expressions are only given for this residual when particular models are consid-

ered in the sequel. Because the sums of score residuals are the derivatives of
the log-likelihood function at its maximum, these residuals must sum to zero.

7.2 Residuals for particular parametric models

In this section, the form of the residuals for parametric models based on

Weibull, log-logistic and lognormal distributions for the survival times are
described.

7.2.1 Weibull distribution

The residuals described in Section 7.1 may be used in conjunction with either
the proportional hazards or the accelerated failure time representations of
the Weibull model. We begin with the proportional hazards model described
in Chapter 5, according to which the hazard of death at time ¢ for the ith

individual is
hi(t) = exp(Br@rs + Poxa; + -+ + BpZpi)ho(t),

where ho(t) = Ayt7~! is the baseline hazard function. The corresponding
estimate of the cumulative hazard function is

H,(t) = exp(Br1s + Bowas + - -+ + Bops) AT
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which are the Cox-Snell residuals, as defined in equation (7.3).
In the accelerated failure time form of the model, ¢; has a Gumbel distri-
bution, with survivor function

Sei (E) = exp(—eﬁ), (76)

The standardised residuals are then as given in equation (7.1), and if an ap-
propriate model has been fitted, these will be expected to behave as a possibly
censored sample from a Gumbel distribution. This is equivalent to assessing
whether the Cox-Snell residuals, defined below, have a unit exponential dis-
tribution.

The Cox-Snell residuals, r¢; = — log Se, (rs:), are, from equation (7.6), sim-
ply the exponentiated standardised residuals, that is r¢: = exp(rg;). These
residuals lead immediately to the martingale and deviance residuals for the
Weibull model, using equations (7.4) and (7.5).

The score residuals for the Weibull model are found from the general results
in Section 7.1.5. In particular, the ith score residual for the jth explanatory
variable in the model, Xj;, is

&'1%‘]'1' (erm - 51) )

where 7g; is the ith standardised residual. We also note that the ith score
residual for p is 6 (e™st — §;), which is 67 (rci — 4;). Since these score
residuals sum to zero, it follows that the sum of the martingale residuals,
defined in equation (7.4), must be zero in the Weibull model.

7.2.2 Log-logistic distribution

In the log-logistic accelerated failure time model, the random variable €; has
a logistic distribution with survivor function

Se(e)=(1+e)".

Accordingly, the standardised residuals, obtained from equation (7.1), should
behave as a sample from a logistic distribution, if the fitted model is corFect.
Equivalently, the Cox-Snell residuals for the log-logistic accelerated failure
time model are given by

rei = —logSe, (rsi)
that is,
ro; = log {1 +exp(rs;)},

where rg; is the ith standardised residual. The score residuals are found from
the general results in Section 7.1.5, and we find that the ith score residual for
the jth explanatory variable in the model is

(7*1%-1' {QXP(TSi) - 4; } .

1+ exp(rs;)
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7.2.8 Lognormal distribution

If the survival times are assumed to have a lognormal distribution, then e,
in the log-linear formulation of the accelerated failure time model is normally

distributed. The estimated survivor function for the ith individual, from equa-
tion (6.24), is

Sit)=1-o (logt ettt "A&Qx% - é‘pzpi> ;
&

and so the Cox-Snell residuals become

roi = —log {1 —®(rg)},

where, as usual, rg; is the ith standardised residual in equation (7.1). Again
the martingale and deviance residuals are obtained from these, and the score

residuals are obtained from the results in Section 7.1.5. Specifically, the ith
score residual for X, is

where f, (rs;) is the standard normal density function at rsi, and @(rg;) is
the corresponding distribution function.

7.2.4 Analysis of residuals

In the analysis of residuals after fitting parametric model to survival data, one
of the most useful plots is based on comparing the distribution of the Cox-
Snell residuals with the unit exponential distribution. As noted in Section
7.1.1, this is equivalent to comparing the distribution of the standardised
residuals with that of the random variable €; in the log-linear form of the
accelerated failure time model. This comparison is made using a cumulative
hazard, or log-cumulative hazard, plot of the residuals, as shown in Section
4.2.1 of Chapter 4, where the use of this plot in connection with residuals after
fitting the Cox regression model was described. In summary, the Kaplan-Meier
estimate of the survivor function of the Cox-Snell residuals, denoted S (req),
is obtained, and — log S'(rcl») is plotted against r¢;. A straight line with unit
slope and zero intercept should be obtained if the fitted model is appropriate.
Alternatively, a log-cumulative hazard plot of the residuals is obtained by
plotting log{—log S(r¢;)} against log r¢i, which will also give a straight line
with unit slope and passing through the origin, if the fitted survival model is
satisfactory.

In Section 4.2.1, substantial criticisms were levied against the use of this
plot. However, these criticisms do not have as much force for residuals derived
from parametric models. The reason for this is that the non-parametric esti-
mate of the baseline cumulative hazard function, used in the Cox regression
model, is now replaced by an estimate of a parametric function. This function
usually depends on just two parameters, ;. and o, and so fewer parameters are
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being estimated when an accelerated failure time model is ﬁtjued to sillrvwad
data. The Cox-Snell residuals for a parametric mo.del. are 'thereiore IIEIC mori
likely to be approximated by a unit exponential distribution, when the correc
has been fitted. -

mOOdtier residual plots that are useful include index plot-s of martingale or
deviance residuals, which can be used to identify o.bservatloQS not well ﬁt'te%
by the model. A plot of martingale or deviance readual.s against the Surv1;lfa‘
times, the rank order of the times, or explanatory variables, ShOW.S whet fe1
there are particular times, or particular values o'f explanatory Vanabl‘ejs, cir
which the model is not a good fit. Plots of marAt/mgale or deviance re.&dua cs1
against the estimated acceleration factor, exp(—a @;), or AS}mply the estlTl("ilat.e

linear component of the accelerated failure time @odel, &'z, als.o provide m—1
formation about the relationship between the residuals agd the likely surviva
time of an individual. Those with large values of the estimated accele.ratlcl)n
factor will tend to have shorter survival times. Index plots of score reszldga ;,
or plots of these residuals against the survival times, or the 'rank order of t ef
survival times, might be examined in a more comprehensive assessment O

model adequacy.

Ezample 7.1 Chemotherapy in ovarian cancer pati.ents . . .
In Example 5.10 of Chapter 5, data on the survival tuneg of patle'znts Wl. h
ovarian cancer were presented. The data were analysed using a Welbull pro-
portional hazards model, and the model chosen contained variables cor're}—
sponding to the age of the woman, Age, and the trraatmept group to wh}c 1
the woman was assigned, Treat. In the accelerated faﬂgre time representatlon
of the model, the estimated survivor function for the ith woman is

A logt — i — &1 Age; — &g Treat;
Se, )

Si(t) =

~

o

where S, (¢) = exp(—e), so that
. logt — 10.4254 4 0.0790 Age; — 0.5615 Treati) } 4
Silt) = exp {' P ( 0.5489

The standardised residuals are the values of

rgi = (logt; — 10.4254 + 0.0790 Age; — 0.5615 Treat;)/0.5489,

fori=1,2,...,26, and these are given in Table 7.1. Also given are the values
of the Coox Snell residuals, which for the Weibull model, are such that r¢; =
exp(rg;)-

A cumulative hazard plot of the Cox-Snell residuals is given in Figure 7.1.
In this plot, the plotted points lie on a line that has an mtercep? and slope
close to zero and unity, respectively. However, there is some evidence of a
systematic deviation from the straight line, giving some cause for concern
about the adequacy of the fitted model.

Plots of the martingale and deviance residuals against the rank order of the
survival times are shown in Figures 7.2 and 7.3, respectively. Both of these



238

Cumulative hazard of residual
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Table 7.1 Values of the standardised and Coz-Snell resid-
uals for 26 ovarian cancer patients.
Patient TSi rCi Patient 754 rCi
1 —1.320 0.267 14 —1.782 0.168
2 —-1.892 0.151 15 —0.193 0.825
3 —2.228 0.108 16 —1.587 0.204
4 —2.404  0.090 17 —0.917  0.400
5 —3.270 0.038 18 —1.771  0.170
6 —0.444  0.642 19 -1.530 0.217
7 -1.082 0.339 20 —2.220  0.109
8 —0.729  0.482 21 —0.724 0.485
9 0.407 1.503 22 —1.799 0.165
10 0.817 2.264 23 0.429 1.535
11 —1.321 0.267 24 —0.837 0.433
12 —0.607 0.545 25 —1.287 0.276
13 —-1.796 0.166 26 —-1.886 0.152
154
L ..
0.5 1 .
4
)
00 —v - » T T T N — T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.1 Cumulative hazard plot of the Coz-Snell residuals.

Cox—Snell residual
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Figure

Deviance residual
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7.2 Plot of the martingale residuals against rank order of survival time.

20 24 28

Rank of survival time

e 7.3 Plot of the deviance residuals against rank order of survival time.
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plots show a slight tendency for observations with longer survival times to
have smaller residuals, but these are also the observations that are censored.

The graphs in Figure 7.4 show the score residuals for the two variables in
the model, Age and Treat, plotted against the rank order of the survival times.

200 A

100 4

—100 4

Score residual for Age
fend
Score residual for Treat

o0 —al

T T T T T T T

0 4 8 12 16 20 24 28 0 4 8 12 16

-

20 24 28
Rank of survival time Rank of survival time

Figure 7.4 Score residuals plotted a

gainst rank order of survival time for Age and
Treat.

The plot of the score residuals for Age shows that there are three observa-
tions with relatively large residuals. These correspond to patients 14, 4 and
26 in the original data set given in Table 5.6. However, there does not appear
to be anything unusual about these observations. The score residual for Treat
for patient 26 is also somewhat larger than the others. This points to the fact
that the model is not a good fit to the data from patients 14, 4 and 26.

7.3 Comparing observed and fitted survivor functions

In parametric modelling, the estimated survivor function is a continuous func-
tion of the survival time, ¢, and so this function can be plotted for particular
values of the explanatory variables included in the model. When there is just
a single sample of survival data, with no explanatory variables, the fitted sur-
vivor function can be compared directly with the Kaplan-Meier estimate of the
survivor function, described in Section 2.1.2 of Chapter 2. If the fitted survivor
function is close to the Kaplan-Meier estimate, which is a step function, the
fitted model is an appropriate summary of the data. Similarly, suppose that
the model incorporates one or two factors that classify individuals according
to treatment group, or provide a cross-classification of treatment group and
gender, say. For each group of individuals defined by the combinations of levels
of the factors in the model, the fitted survivor function can then be compared
with the corresponding Kaplan-Meier estimate of the survivor function.

In situations where the values of a number of explanatory variables are

COMPARING OBSERVED AND FITTED SURVIVOR FUNCTIONS 241

recorded, groups of individuals are formed from t.he yglues of the estilmaFe(i
linear component of the fitted model. For the ith 1.nd.1v1fiual, who_s‘ei{ Va,C srees o
the explanatory variables in theA /model are x;, this 1sA J,ust.the ris s1 o
a proportional hazards model, 8 x;, or .the 'value of &'x; in 1n acrc;: (;r,iere
failure time model. The following discussion is based on t‘he 1rlsldscoua,11 here
large positive values correspond to a greater hazard, b_ut it cou eqd - Zr o
be based on the linear component of an accelerated failure time model, I
ion factor. '
Va};‘lfleof/;ﬁleej C;;i‘i: trll(;lni score for each individual are arranged in '1ncreasmgf
order, and these values are used to divide the din?}ivic;uilsullrét% : iig?:gial
groups. For example, if three groups were used, ther AT
with low, medium and high values of the l"lsk' SCOI{"‘e.h B e
groups formed in this way will depend on the size of the daI rti.cular e
even seven groups might be constructed. In pa , Wi
gizagtr)ilsl?s’,ﬁt‘fefg would be 2%% of the individuals in each group;dtllll(.)sil letil
the lowest and highest values of the risk score Would. be aF LOW and hig ,
respectively, while the middle 20% would be of medium ris . .
The next step is to compare the Aob(se)r\./edt snd ﬁt(;celdbsa;ue\;ve(z : I;lzge o
each of the groups. Suppose that S;;(t) is e model- e
i ion for the ith individual in the jth group. The average fitte
zﬁizi’rgz fflllllrllg‘jllon is then obtained for each group, or just the groups with the
smallest, middle and highest risk scores, from

where n; is the number of observ?tions 1in the jzlﬁa%r(;ug.lo’fhoef :f:evglfuf; (Z)f
would be obtained for a range of ¢ values, sO o
S; inst t, for each value of j, yields a smooth curve. The corresponding
géi?rjfc? ls.rtlls;t\ri;or function for a particular group is the Kaplan—Meler ‘estlgllz:
of the survivor function for the individuals in that group. Superlmpos?gt ese
two sets of estimates gives a visual representation of the agreement betwee
erved and fitted survivor functions.

th%cs)ibnsgrthis approach, it is often easier to detect departures fro(rjn the ﬁl;ctzcei
model, than from plots based on residuals. However, the proce (tilrte 09{)  be
criticised for using the same fitted model to define the groups, an ;)ﬁ o .
the estimated survivor function for each group. If the data base is su Cl(eint hy
large, the survivor function could be estimated from half o.f the data, ar}ll ; .e‘
fit of the model evaluated on the remaining half. Also, since the method is
based on the values of the risk score, no account is taken of dlfference?s bletheré
individuals who have different sets of Values'of the explanatory variables, bu
just happen to have the same value of the risk score.

' ' tients
9 Chemotherapy in ovarian cancer pa .
fxﬁﬁflee;;mple we examine the fit of a Weibull proportional hazards mo d el
tlg the data on tile survival times of 26 women, following treatment for ovarian
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cancer. A Weibull model that contains the variables Age and Treat is fitted,

as in Example 5.10, so that the fitted survivor function for the ith individual
is

S;(t) = exp {—eﬁij\tﬁ} , (7.7)
where 7); = 0.144 Age, — 1.023 Treat; is the risk score, i = 1,2, ..., 26. This is

equivalent to the accelerated failure time representation of the model, used in
Example 7.1.

‘The values of 7); are then arranged in ascending order and divided into three
groups, as shown in Table 7.2.

Table 7.2 Values of the risk score, with the patient number in parentheses, for
three groups of ovarian cancer patients.

Group Risk score

1 (low risk) 4.29 (14) 445 (2)  4.59 (20) 5.15 (22) 5.17 (5)
517 (19) 531 (17) 559 (4) 559 (12)

2 (medium risk) ~ 5.87 (16) 6.02 (13) 6.16 (8)  6.18 (18) 6.31 (26)
6.45 (6) 6.45 (9) 6.45 (11) 7.03 (25)

3 (high risk) 7.04 (15) 7.04 (24) 7.17 (7) 8.19 (23)
8.48 (1) 9.34 (3) 9.63 (10) 9.63 (21)

The next step is to obtain the average survivor function for each group by
averaging the values of the estimated survivor function, in equation (7.7, for
the patients in the three groups. This is done for ¢ = 0, 1,... , 1230, and the
three average survivor functions are shown in Figure 7.5. The Kaplan-Meier
estimate of the survivor function for the individuals in each of the three groups
shown in Table 7.2 is then calculated, and this is also shown in Figure 7.5.

From this plot, we see that the model is a good fit to the patients in the
high-risk group. For those in the middle group, the agreement between the
observed and fitted survivor functions is not that good, as the fitted model
leads to estimates of the survivor function that are a little too high. In fact,
the patients in this group have the largest values of the martingale residuals,
which also indicates that the death times of these individuals are not ade-
quately summarised by the fitted model. There is only one death among the

individuals in the low-risk group, and so little can be said about the fit of the
model to this set of patients.

7.4* Identification of influential observations

As when fitting the Cox regression model, it will be important to identify
observations that exert an undue influence on particular parameter estimates,
or on the complete set of parameter estimates. These two aspects of influence
are considered in turn in this section.

A number of influence diagnostics for the Weibull proportional hazards
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model have been proposed by Hall et al. (1982), derived from the accelerat.ei
failure time representation of the model. However, they may also be us‘eftl w1tt
other parametric models. These diagnostics are computed from .the estlmf; es
of all p + 2 parameters in the model, and their varlgnce-covarlan(icebmae 1x0.
For convenience, the vector of p + 2 parameAtfzrs will be denoted by 8, s
that 8 = (i, 01,02, .-, p,0). The vector 6 will be used to denote the
corresponding vector of estimates of the parameters.

7.4.1 Influence of observations on a parameter estimate

An approximation to the change in the estimated value of 6, Athe. jth 00@—
ponent of the vector @, on omitting the ith observation, A0, is the jth
component of the (p + 2) x 1 vector

V(8)s;. (7.8)

In expreséion (7.8), V() is the estimated variance-covariance matrix of t~h€i
parameters in 0, and s; is the (p 4+ 2) x 1 vector of values Qf the first partia.
derivatives of the log-likelihood for the ith observation, with respect to the
p+ 2 parameters in 6, evaluated at 6. The vector s; is theref.ore the. vector of
values of the score residuals for the ith observation, defined in Sect.lon 7.1.5.

The quantities A;&; are components 2 to p — 1 of the vector in expres-
sion (7.8), which we will continue to refer to as de'lt.a—’betaS rather than as
delta-alphas. These values may be stapdardised by dividing them by the stan-
dard error of &;, leading to standardised delta-betas. Index plots or plots of
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the standardised or unstandardised values of A;&; provide informative sum-
maries of this aspect of influence.

7.4.2 Influence of observations on the set of parameter estimates

Two summary measures of the influence of the ith observation on the set
of parameters that make up the vector 8 have been proposed by Hall et al.
(1982). These are the statistics F; and C;. The quantity F; is given by

o s;R“lsi
T —_ ?
(p+2){1-s;R™"s;}
where the (p + 2) x (p + 2) matrix R is the cross-product matrix of score
residuals, that is, R = > ", s;s;. Equivalently, R = S'S, where S is the
n X (p + 2) matrix whose ith row is the transpose of the vector of score

residuals, s;. An alternative measure of the influence of the ith observation
on the set of parameter estimates is the statistic

(7.9)

/
C,i _ SiV(O)ASi . (710)
{1 -sV(0)s:}?

The statistics F; and C; will typically have values that are quite different
from each other. However, in each case a relatively large value of the statistic
will indicate that the corresponding observation is influential. Exactly how
such observations influence the estimates would need to be investigated by
omitting that observation from the data set and refitting the model.

Ezample 7.3 Chemotherapy in ovarian cancer patients

We now go on to investigate whether there are any influential observations in
the data on the survival times following chemotherapy treatment for ovarian
cancer.

The unstandardised delta-betas for Age and Treat, plotted against the rank
order of the survival times, are shown in Figures 7.6 and 7.7. In Figure 7.6,
two observations have relatively large values of the delta-beta for Age. These
occur for patients 4 and 5 in the original data set. Both women have short
survival times, and in addition one is relatively old at 74 years and the other
relatively young at 43 years. The delta-betas for Treat displayed in Figure 7.7
show no unusual features.

We next investigate the influence of each observation on the set of parameter
estimates. The values of F; and Cj, defined in equations (7.9) and (7.10), have
been calculated using a SAS macro described in Section 12.3.5 of Chapter
12. Plots of the values of the F-statistic and the C-statistic, against the rank
order of the survival times, are shown in Figures 7.8 and 7.9.

Figure 7.8 clearly shows that the observation corresponding to patient 5
is influential, and that the influence of patients 1, 4, 14 and 26 should be
investigated in greater detail. Figure 7.9 strongly suggests that the data from
patients 5 and 26 is influential.

The linear component of the fitted hazard function in the mode! fitted to
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Figure 7.6 Plot of the delta-betas for Age against rank order of survival time.
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Figure 7.7 Plot of the delta-betas for Treat against rank order of survival time.
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all 26 patients is
0.144 Age, — 1.023 Treat;,

while that on omitting each of observations 1, 4, 5, 14 and 26 in turn is as
follows:

Omitting patient number 1: 0.142 Age, — 1.016 Treat;,

Omitting patient number 4: 0.175 Age,; — 1.190 Treat;,

Omitting patient number 5: 0.177 Age,; — 0.710 Treat;,

Omitting patient number 14:  0.149 Age, — 1.318 Treat;,

Omitting patient number 26:  0.159 Age, — 0.697 Treat;.

These results show that the effect of omitting the data from patient 1 on
the parameter estimates is small. When the data from patient 4 are omitted,
the estimated coefficient of Age is most affected, whereas when the data from
patient 14 are omitted, the coefficient of Treat is changed the most. On leaving
out the data from patients 5 and 26, both estimates are considerably affected.

The hazard ratio for a patient on the combined treatment (7Treat = 2),
relative to one on the single treatment (Treat = 1), is estimated by e~ 1023 —
0.36, when the model is fitted to all 26 patients. When the observations from
patients 1, 4, 5, 14 and 26 are omitted in turn, the estimated age-adjusted
hazard ratios are 0.36, 0.30, 0.49, 0.27 and 0.50, respectively. The data from
patients 5 and 26 clearly has the greatest effect on the estimated hazard ratio;
in each case the estimate is increased, and the magnitude of the treatment
effect is diminished. Omission of the data from patients 4 or 14 decreases the
estimated hazard ratio, thereby increasing the estimated treatment difference.

7.5 Testing proportional hazards in the Weibull model

The Weibull model is most commonly used as a parametric proportional haz-
ards model, and so it will be important to test that the proportional hazards
assumption is tenable. In Section 4.4.3 of Chapter 4, it was shown how a
time-dependent variable can be used in testing proportionality of hazards in
the Cox regression model. Parametric models containing time-dependent vari-
ables are more complicated, and because software for fitting such models is
not widely available, further details on this approach will not be given here.
In the Weibull model, the assumption of proportional hazards across a num-
ber of groups, g, say, corresponds to the assumption that the shape parameter
7 in the bageline hazard function is the same in each group. One way of testing
this assumption is to fit a separate Weibull model to each of the g groups,
where the linear component of the model is the same in each case. The models
fitted to the data from each gronp will then have different shape parameters
as well as different scale parameters. The values of the statistic —2log L for
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each of these g separate models are then summed to give a value of —2log L
for a model that has different shape parameter for each group. Denote this by
—2log L1. We then combine the g sets of data and fit a Weibull proportional
hazards model that includes parameters associated with the group effect. This
model then corresponds to there being a common shape parameter for each
group. The inclusion of group effects in the model leads to there being dif-
ferent scale parameters for each group. The value of —2log L for this model,
—2log Lo, say, is then compared with —2log L;. The difference between the
values of these two statistics is the change in —2 logﬁ due to constraining the
Weibull shape parameters to be equal, and can be compared with a chi-squared
distribution on g — 1 degrees of freedom. If the difference is not significant,
the assumption of proportional hazards is justified.

Some alternatives to the proportional hazards model are described in Chap-
ter 6, and further comments on how to deal with situations in which the haz-
ards are not proportional are given in Section 11.1 of Chapter 11. An example
on the use of this method of testing the proportional hazards assumption is
given below.

Ezample 7.4 Chemotherapy in ovarian cancer patients

Data from the study of survival following treatment for ovarian cancer, given
in Example 5.10 of Chapter 5, are now used to illustrate the procedure for
testing the assumption that the Weibull shape parameter is the same for the
patients in each of the two treatment groups. The first step is to fit a Weibull
proportional hazards model that contains Age alone to the data from the
women in each treatment group. When such a model is fitted to the data
from those on the single chemotherapy treatment, the value of the statistic
—210gﬁ is 22.851, while that for the women on the combined treatment is
16.757. The sum of the two values of —2log L is 39.608, which is the value
of the statistic for a Weibull model with different shape parameters for the
two treatment groups. The value of —2log L for the model that constrains the
shape parameters to be equal is 41.126. The change in —2log L on constraining
the shape parameters to be equal is therefore 1.52, which is not significant
when compared with a chi-squared distribution on one degree of freedom.
The two shape parameters may therefore be taken to be equal.

7.6 Further reading

There have been relatively few publications on model checking in parametric
survival models, compared to the literature on model checking in the Cox re-
gression model. Residuals and influence measures for the Weibull proportional
hazards model are described by Hall et al. (1982). Hollander and Proschan
(1979) show how to assess whether a sample of censored observations is drawn
from a particular probability distribution. Weissfeld and Schneider (1994) de-
scribe and illustrate a number of residuals that can be used in conjunction
with parametric models for survival data. Cohen and Barnett (1995) describe
how the interpretation of cumulative hazard plots of residuals can be helped

-
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by the use of simulated envelopes for the plots. I.nﬂuence diagnos’?ics for uge
in parametric survival modelling are given by Weissfeld anq Schnelder (199 )
and Escobar and Meeker (1992). A SAS macro for e\‘/aluatln'g influence diag-
pnostics for the Weibull proportional hazards model is described by‘ HEscobar
and Meeker (1988). These papers involve arguments based on lqcal 1nﬂuence,
a topic that is explored in general terms by Cook (1986), a'nd reviewed in Ran—l
cel and Sierra (2001). A method for testing the assumptions of proportiona.
hazards and accelerated failure times against a geperal model 'for the 'hazard
function is presented by Ciampi and Etezadi-Amoli (19?%5). An mterestl'ng ap-
plication of parametric modelling, based on data on times to reoﬁ'endmg by
prisoners released on parole, which incorporates elements of model checking,

is given by Copas and Heydari (1997).
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CHAPTER 8

Time-dependent variables

In earlier chapters, we have seen how the dependence of the hazard function for
an individual on the values of certain explanatory variables can be modelled.
When explanatory variables are incorporated in a model for survival data,
the values taken by such variables are those recorded at the time origin of
the study. For example, consider the study to compare two treatments for
prostatic cancer first described in Example 1.4 of Chapter 1. Here, the age of
a patient, serum haemoglobin level, size of the tumour, value of the Gleason
index, and of course the treatment group, were all recorded at the time when
a patient was entered into the study. The impact of these variables on the
hazard of death is then evaluated.

In many studies that generate survival data, individuals are monitored for
the duration of the study. During this period, the values of certain explana-
tory variables may be recorded on a regular basis. Thus, in the example on
prostatic cancer, the size of the tumour, and other variables, may be recorded
at frequent intervals. If account can be taken of the values of explanatory
variables as they evolve, a more satisfactory model for the hazard of death at
any given time would be obtained. For example, in connection with the pro-
static cancer study, more recent values of the size of the tumour may provide
a better indication of future life expectancy than the value at the time origin.

Variables whose values change over time are known as time-dependent vari-
ables, and in this chapter we see how such variables can be incorporated in
models used in the analysis of survival data. In this process, the most re-
cent value of a time-dependent variable is used at each specific time in the
modelling procedure.

8.1 Types of time-dependent variables

It is useful to consider two types of variables that change over time, which
may be referred to as internal variables and external variables.

Internal variables relate to a particular individual in a study, and can only
be measured while a patient is alive. Such data arises when repeated measure-
ments of certain characteristics are made on a patient over time, and examples
include measures of lung function such as vital capacity and peak flow rate,
white blood cell count, systolic blood pressure and serum cholesterol level.
Variables that describe changes in the status of a patient are also of this type.
For example, following a bone marrow transplant, a patient may be suscep-
tible to the development of graft versus host disease. A binary explanatory
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variable, that reflects whether the patient is suffering from this life-threatening
side effect at any given time, is a further example of an internal variable. In
each case, such variables reflect the condition of the patient and their values
may well be associated with the survival time of the patient.

On the other hand, external variables are time-dependent variables that
do not necessarily require the survival of a patient for their existence. One
type of external variable is a variable that changes in such a way that its
value will be known in advance at any future time. The most obvious example
is the age of a patient, in that once the age at the time origin is known,
that patient’s age at any future time will be known exactly. However, there
are other examples, such as the dose of a drug that is to be varied in a
predetermined manner during the course of a study, or planned changes to
the type of immunosuppressant to be used following organ transplantation.
Another type of external variable is one that exists totally independently of
any particular individual, such as the level of atmospheric sulphur dioxide, or
air temperature. Changes in the values of such quantities may well have an
effect on the lifetime of individuals, as in studies concerning the management
of patients with certain types of respiratory disease.

Time-dependent variables also arise in situations where the coefficient of
a time-constant explanatory variable is a function of time. In Section 3.7 of
Chapter 3, it was explained that the coefficient of an explanatory variable
in the Cox proportional hazards model is a log-hazard ratio, and so under
this model, the hazard ratio is constant over time. If this ratio were in fact a
function of time, then the coefficient of the explanatory variable that varies
with time is referred to as a time-varying coefficient. In this case, the log-
hazard ratio is not constant and so we no longer have a proportional hazards
model. More formally, suppose that the coefficient of an explanatory variable,
X, is a linear function of time, ¢, so that we may write the term as GtX. This
means that the corresponding log-hazard ratio is a linear function of time.
This was precisely the sort of term introduced into the model in order to test
the assumption of proportional hazards in Section 4.4.3 of Chapter 4. This
term can also be written as SX(t), where X (t) = Xt is a time-dependent
variable. In general, suppose that a model includes the explanatory variable,
X, with a time-varying coefficient of the form B(¢). The corresponding term
in the model would be 8(t)X, which can be expressed as X (t). In other
words, a term that involves a time-varying coefficient can be expressed as a
time-dependent variable with a constant coefficient. However, if 8(t) is a non-
linear function of one or more unknown parameters, for example By exp(Bit),
the term is not easily fitted in a model.

These different types of time-dependent variables can be introduced into the
Cox proportional hazards model. The resulting model will simply be referred
to as the Cox regression model, and is described in the following section.

8.2 A model with time-dependent variables

According to the Cox proportional hazards model described in Chapter 3, the
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hazard of death at time ¢ for the ith of n individuals in a study can be written
in the form

p
hi(t) = exp > Bizji ¢ holt),
F=1

where z;; is the baseline value of the jth explanatory variable, X;, 7 = 1,2,...,
p, for the ith individual, i = 1,2,...,n, and ho(t) is the baseline hazard func-
tion. Generalising this model to the situation in which some of the explanatory
variables are time-dependent, we write z;(t) for the value of the jth explana-
tory variable at time ¢, in the ith individual. The Cox regression model then

becomes
14
hz(t) = exp Zﬁjmji(t) ho(t). (81)
j=1

In this model, the baseline hazard function h(t) is interpreted as the hazard
function for an individual for whom all the variables are zero at the time
origin, and remain at this same value through time.

It is important to note that in the model given in equation (8.1), the val-
ues of the variables x;;(t) depend on the time ¢, and so the relative hazard
hi(t)/ho(t) is also time-dependent. This means that the hazard of death at
time ¢ is no longer proportional to the baseline hazard, and the model is no
longer a proportional hazards model.

To provide an interpretation of the (-parameters in this model, consider
the ratio of the hazard functions at time ¢ for two individuals, the rth and
sth, say. This is given by

ha(t)
hs(t)
The coefficient §;, j = 1,2,...,p, can therefore be interpreted as the log-
hazard ratio for two individuals whose value of the jth explanatory variable

at any time t differs by one unit, with the two individuals having the same
values of all the other p — 1 variables at that time.

= exp [Bi{zr1(t) — zs1 ()} + - + Bp{zrp(t) — 25p(1)}] -

8.2.1* Fitting the Cox model

When the Cox regression model is extended to incorporate time-dependent
variables, the partial log-likelihood function, from equation (3.5) in Chapter 3,
can be generalised to

n 14

P
8 Bizji(t:) —log > exp | Y Bzut) | ¢, (8:2)
1 i=1

leR(t;)

i=1 7=

in which R(t;) is the risk set at time ¢;, the death time of the ith individual in
the study, i = 1,2,..., 7, and J; is an event indicator that is zero if the survival
time of the ith individual is censored and unity otherwise. This expression can
then be maximised to give estimates of the A-parameters.
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In order to use equation (8.1) in this maximisation process, the values of
each of the variables in the model must be known at each death time for all
individuals in the risk set at time ¢,. This is no problem for external variables
whose values are preordained, but it may be a problem for external variables
that exist independently of the individuals in a study, and certainly for internal
variables.

To illustrate the problem, consider a trial of two maintenance therapies for
patients who have suffered a myocardial infarct. The serum cholesterol level
of such patients may well be measured at the time when a patient is admitted
to the study, and at regular intervals of time thereafter. This variable is then
a time-dependent variable, and will be denoted X (¢). It is then plausible that
the hazard of death for any particular patient, the ith, say, at time ¢, h;(t), is
more likely to be influenced by the value of the explanatory variable X (t) at
time ¢, than its value at the time origin, where ¢t = 0.

Now suppose that the ith individual dies at time #; and that there are
two other individuals, labelled r and s, in the risk set at time ¢;. We further
suppose that individual r dies at time ¢, where t. > #;, and that the survival
time of individual s, t,, is censored at some time after ¢,. The situation is
illustrated graphically in Figure 8.1. In this figure, the vertical dotted lines
refer to points in patient time when the value of X (¢) is measured.

Individual

0 ti tr ts
Time
Figure 8.1 Survival times of three patients in patient time.
If individuals 7 and s are the only two in the risk set at time ¢;, and X

is the only explanatory variable that is measured, the contribution of the ith
individual to the log-likelihood function in expression (8.2) will be

Bz;i(t;) — log Z exp{Bx(t:)},
1
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where z;(;) is the value of X(¢) for the ¢th individual at their death time,
t;, and [ in the summation takes the values 4, 7, and s. This expression is
therefore equal to

Bzi(t;) — log {eamti) 4 efer(td) | eﬁrs(ti)} )

This shows that the value of the time-dependent variable X (¢) is needed at
the death time of the 4th individual, and at time ¢; for individuals r and s. In
addition, the value of the variable X (¢) will be needed for individuals 7 and s
at t,, the death time of individual r.

For terms in a model that are explicit functions of time, such as interac-
tions between time and a variable or factor measured at baseline, there is no
difficulty in obtaining the values of the time-dependent variables at any time
for any individual. Indeed, it is usually straightforward to incorporate such
variables in the Cox model when using statistical software that has facilities
for dealing with time-dependent variables. For other variables, such as serum
cholesterol level, the values of the time-dependent variable at times other than
that at which it was measured has to be approximated. There are then several
possibilities.

One option is to use the last recorded value of the variable before the time at
which the value of the variable is needed. When the variable has been recorded
for an individual before and after the time when the value is required, the
value closest to that time might be used. Another possibility is to use linear
interpolation between consecutive values of the variable. Figure 8.2 illustrates
these approximations.

Time — dependent variable

Time

Figure 8.2 Computation of the value of a time-dependent variable at intermediate
times.

In this figure, the continuous curve depicts the actual value of a time-
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dependent variable at any time, and the dotted vertical lines signify times
when the variable is actually measured. If the value of the variable is required
at time ¢ in this figure, we could use either the value at P, the last recorded
value of the variable, the value at R, the value closest to ¢, or the value at Q
the linearly interpolated value between P and R. 7

Linear interpolation is clearly not an option when a time-dependent variable
Is a categorical variable. In addition, some categorical variables may be such
that individuals can only progress through the levels of the variable in a
particular direction. For example, the performance status of an individual may
only be expected to deteriorate, so that the value of this categorical variable
might only change from “good” to “fair” and from “fair” to “poor”. As another
example, following a biopsy, a variable associated with the occurrence of a
tumour will take two values corresponding to absence and presence. It might
then be very unlikely for the status to change from “present” to “absent” in
consecutive biopsies.

Anomalous changes in the values of time-dependent variables can be de-
tected by plotting the values of the variable against time for each patient.
This may then lead on to a certain amount of data editing. For example, con-
sider the plot in Figure 8.3, which shows the biopsy result, absent or present,
for a particular patient at a number of time points. In this diagram, at least
one of the observations made at times ¢4 and ¢tz must be incorrect. The ob-
servation at ¢4 might then be changed to “absent” or that at ¢tz to “present”.

present o A o . .
=
3
@
)
s
>
1%
Q
Q
m
absent . . B
0 t, ty

Time of biopsy
Figure 8.3 Values of a time-dependent categorical variable.
If inferences of interest turn out to be sensitive to the method of inter-

polation used, extreme caution must be exercised when interpreting the re-
sults. Indeed, this feature could indicate that the value of the time-dependent

l
|
|
1
l
l
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variable is subject to measurement error, substantial inherent variation, or
perhaps the values have not been recorded sufficiently regularly.

8.2.2* Estimation of baseline hazard and survivor functions

After a Cox regression model that includes time-dependent variables has been
fitted, the baseline hazard function, ho(t) and the corresponding baseline sur-
vivor function, So(t), can be estimated. This involves an adaptation of the
results given in Section 3.8 of Chapter 3 to cope with the additional com-
plication of time-dependent variables, in which the values of the explanatory
variables need to be updated with their time-specific values. In particular, the
Nelson-Aalen estimate of the baseline cumulative hazard function, given in
equation (3.25), becomes

, (8:3)

k
~ ~ d.;
H(t):—logS(t):E L
’ O =1 Yiereyy) =P8 @i(1)}

for tpy <t < treny, B =1,2,...,r =1, where x;(t) is the vector of values
of the explanatory variables for the [th individual at time ¢, and d; is the
number of events at the jth ordered event time, t¢;y, 7 = 1,2,...,7. Simi-
lar modifications can be made to the other results in Section 3.8. With this
modification, computation of the summation over the risk set is much more
complicated, since for every event time, ¢¢;), j =1,2,...,7, the value of each
time-dependent variable, for all individuals in the risk set, is needed at that
event time.

Having obtained an estimate of the cumulative hazard function, the cor-
responding baseline hazard function can be estimated using equation (3.27),
and an estimate of the baseline survivor function is So(t) = exp{—Ho(t)}.

The survivor function for a particular individual is much more difficult to
estimate. This is because the result that S;(t) can be expressed as a power of
the baseline survivor function, So(t), given in equation (3.22) of Chapter 3, no
longer holds. Instead, the survivor function for the ith individual is obtained
from the integrated hazard function, which, from equation (1.6) in Chapter 1,
is given by

Si(t) = exp {— /O " exp (Zi’ 3 ﬁjxﬁ(u)) ho(u) du} . (8.4)

This survivor function therefore depends not only on the baseline hazard
function hg(t), but also on the values of the time-dependent variables over
the interval from 0 to t. The survivor function may therefore depend on fu-
ture values of the time-dependent variables in the model, which will generally
be unknown. However, approximate conditional probabilities of surviving a
certain time interval can be found from the probability that an individual
survives over an interval of time, from ¢ to ¢t + h, say, conditional on being
alive at time ¢. This probability is P(7; > t + h | T; > t), where T; is the ran-
dom variable associated with the survival time of the th individual. Using the
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standard result for conditional probability, given in Section 3.3.1 of Chapter
3, this probability becomes P(T; >t + h)/P(T; > t), which is the ratio of the
survivor functions at times t+h and ¢, that is, S; (t+h)/S;(t). We now assume
that any time-dependent variable remains constant through this interval, so
that from equation (8.4), the approximate conditional probability is

exp {— €xp (25:1 ﬂjxji(t)) o ho(u) du}
exp {* exp (25:1 Bizsi(t) ) Jo hou du}
= exp |~ {Ho(t + h) — Ho(t)} exp (Zj:l Biasi(t))]

where Hy(t) is the baseline cumulative hazard function. An estimate of this

approximate conditional probability of surviving through the interval (t,t+h)
is then

f’i(t, t+h)=exp [— {Hg(t +h) - }exp (Z Bj:cﬂ >] , (8.5)

where Ho(t) is the estimated baseline cumulative hazard function obtained
on fitting the Cox regression model with p possibly time-dependent variables
VYith values (1), j = 1,2,...,p, for the 4th individual, ; = 1,2,...,n, and
B is the estimated coefficient of the jth time-dependent variable. This result
was given by Altman and De Stavola (1994).

Corresponding estimates of the conditional probability of an event in the
interval (¢,¢+ h) are 1 — P;(t,t + h), and these quantities can be used to
obtain an estimate of the expected number of events in each of a number
of successive intervals of width h. Comparing these values with the observed

number of events in these intervals leads to an informal assessment of model
adequacy.

Pi(t,t+h) =

8.3 Model comparison and validation

Models for survival data that include time-dependent variables can be com-
pared in the same manner as Cox proportional hazards models, using the
procedure described in Section 3.5 of Chapter 3. In particular, the model-
fitting process leads to a maximised partial likelihood function, from which
the value of the statistic —2log L can be obtained. Changes in the value of this
statistic between alternative nested models may then be compared to percent-
age points of the chi-squared distribution, with degrees of freedom equal to
the difference in the number of S-parameters being fitted. For this reason, the
model-building strategies discussed in Chapter 3 apply equally in situations
where there are time-dependent variables.

8.8.1 Comparison of treatments

In order to examine the magnitude of a treatment effect after taking account of
variables that change over time, the value of —2 log L for a model that contains
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the time-dependent variables and any other prognostic factors is compared
with that for the model that contains the treatment term, in addition to
these other variables. But in this analysis, if no treatment effect is revealed,
one explanation could be that the time-dependent variable has masked the
treatment difference.

To fix ideas, consider the example of a study to compare two cytotoxic
drugs in the treatment of patients with leukaemia. Here, a patient’s survival
time may well depend on subsequent values of that patient’s white blood cell
count. If the effect of the treatment is to increase white blood cell count, no
treatment difference will be identified after including white blood cell count
as a time-dependent variable in the model. On the other hand, the treatment
effect may appear in the absence of this variable. An interpretation of this is
that the time-dependent variable has accounted for the treatment difference,
and so provides an explanation as to how the treatment has been effective.

In any event, much useful information will be gained from a comparison of
the results of an analysis that incorporates time-dependent variables with an
analysis that uses baseline values alone.

8.8.2 Assessing model adequacy

After fitting a model that includes time-dependent variables, a number of the
techniques for evaluating the adequacy of the model, described in Chapter
4, can be implemented. In particular, an overall martingale residual can be
computed for each subject, from an adaptation of the result in equation (4.6).
The martingale residual for the ith subject is now

v = 0 — eXP{B/mi(ti)}ﬁO(ti)>

where @;(t;) is the vector of values of explanatory variables for the ith in-
dividual, which may be time-dependent, evaluated at t;, the event time of
that individual. Also, 3 is the vector of coefficients, d; is the event indicator
that takes the value unity if ¢; is an event and zero otherwise, and Ho(t;) is
the estimated baseline cumulative hazard function at ¢;, obtained from equa-
tion (8.3). The deviance residuals may also be computed from the martingale
residuals, using equation (4.7) of Chapter 4.

The plots described in Section 4.2.2 of Chapter 4 will often be helpful. In
particular, an index plot of the martingale residuals will enable outlying obser-
vations to be identified. However, diagnostic plots for assessing the functional
form of covariates, described in Section 4.2.3, turn out to be not so useful
when a time-dependent variable is being studied. This is because there will
then be a number of values of the time-dependent covariate for any one in-
dividual, and it is not clear what the martingale residuals for the null model
should be plotted against.

For detecting influential values, the delta-betas, introduced in Section 4.3.1
of Chapter 4, provide a helpful means of investigating the effect of each obser-
vation on individual parameter estimates. Changes in the value of the —2log L
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statistic, on omitting each observation in turn, can give valuable information
about the effect of each observation on the set of parameter estimates.

8.4 Some applications of time-dependent variables

One application of time-dependent variables is in connection with evaluating
the assumption of proportional hazards. This was discussed in detail in Sec-
tion 4.4.3 of Chapter 4. In this application, a variable formed from the product
of an explanatory variable, X, and time, ¢, is added to the linear part of the
Cox model, and the null hypothesis that the coefficient of Xt is zero is tested.
If this estimated coefficient is found to be significantly different from zero,
there is evidence that the assumption of proportional hazards is not valid.

In many circumstances, the waiting time from the occurrence of some cata-
strophic event until a patient receives treatment may be strongly associated
with the patient’s survival. For example, in a study of factors affecting the
survival of patients who have had a myocardial infarct, the time from the
infarct to when the patient arrives in an Intensive Care Unit (ICU) may be
crucial. Some patients may die before receiving treatment in the ICU, while
those who arrive at the ICU soon after their infarct will tend to have a more
favourable prognosis than those for whom treatment is delayed. It will be
important to take account of this aspect of the data when assessing the effects
of other explanatory variables on the survival times of these patients.

In a similar example, Crowley and Hu (1977) show how a time-dependent
variable can be used in organ transplantation studies. Here, one feature of
interest is the effect of a transplant on the patient’s survival time. Suppose
that in a study on the effectiveness of a particular type of organ transplant,
a patient is judged to be suitable for a transplant at some time to. They then
wait some period of time until a suitable donor organ is found, during which
time the patients are unlikely to receive any beneficial therapy. Suppose that
if the patient survives this period, they receive a transplant at time ¢;.

In studies of this sort, the survival times of patients who have received a
transplant cannot be compared with those who have not had a transplant in
the usual way. The reason for this is that in order to receive a transplant, a
patient must survive the waiting time to transplant. Consequently, the group
who survive to transplant is not directly comparable with the group who
receive no such transplant. Similarly, it is not possible to compare the times
that the patients who receive a transplant survive after the transplant with the
survival times of the group not receiving a transplant. Here, the time origin
would be different for the two groups, and so the groups are not comparable
at the time origin. This means that it is not possible to identify a time origin
from which standard methods for survival analysis can be used.

The solution to this problem is to introduce a time-dependent variable
X1(t), which takes the value zero if a patient has not received a transplant at
time ¢, and unity otherwise. Adopting a Cox regression model, the hazard of

L
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death for the ith individual at time ¢ is then
hi(t) = exp{n: + Brz1i(t) tho(t),

where 7; is a linear combination of the explanatory Varia.bles t1.1a't are not
time-dependent, whose values have been recorded at the time origin for the
ith individual, and z1;(¢) is the value of X; for that individual at time t.
Under this model, the hazard function is exp(7;)ho(t) for patients who do
not receive a transplant before time ¢, and exp{n; + 81 }ho(t) thereafter.. The
effect of transplant on the patient’s survival experience is then reflected in 3;.
In particular, for two patients who have the same values of other exp'lanatory
variables in a model, e is the hazard of death at time ¢ for the pa,tle.nt who
receives a transplant before time ¢, relative to the hazard at that time .for
the patient who does not. Values of —2log L can be compared aftgr ﬁttmg
the models with and without the time-dependent variable X;; a significant
difference in these values means that the transplant has an effect on survival.
In a refinement to this model, Cox and Oakes (1984) suggested that the
term (121:(t) be replaced by (81 + B2 exp{—/S3(t —t1)} for patien‘?s receiving a
transplant at time #;. In this model, the effect of the transplant is to increase
the hazard to some value exp(n; + 61 + B2)ho(t) immediately after the trans-
plant, when ¢ = #;, and to then decrease exponentially to exp(7; +'ﬂ1)h0 (1),
which is less than the initial hazard exp(n;)ho(t) if 81 < 0. See Figure 8.4,
which shows graphically the behaviour of the hazard ratio, hi(t)/ho(t), for a
transplant patient for whom 7; is the linear component of the model.‘AEhough
this is an attractive model, it does have the disadvantage that specialist soft-

ware is required to fit it.

exp(ni+ B+ B82)

exp(ni)

Hazard ratio

eXp(nx + 51) ......................................................................................

Time

Figure 8.4 The hazard ratio exp{n; + 3 + Bae= 3=tV ¢ > 1 for individual i
who receives a transplant at t1.
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In situations where a particular explanatory variable is changing rapidly,
new variables that reflect such changes may be defined. The dependence of
the hazard on the values of such variables can then be explored. For example,
in an oncological study, the percentage increase in the size of a tumour over
a period of time might be a more suitable prognostic variable than either
the size of the tumour at the time origin, or the time-dependent version of
that variable. If this route is followed, the computational burden of fitting
time-dependent variables can be avoided.

8.5 Three examples

In this section, three examples of survival analyses that involve time-dependent
variables are given. In the first, data from a study concerning the use of bone
marrow transplantation in the treatment of leukaemia is used to illustrate
how a variable that is associated with the state of a patient, and whose value
changes over the follow-up period, can be included in a model. In the second
example, data from Example 5.10 of Chapter 5 on the comparison of two
chemotherapy treatments for ovarian cancer are analysed to explore whether
there is an interaction between age and survival time. The third example is
designed to illustrate how information on a time-varying explanatory vari-
ate recorded during the follow-up period can be incorporated in a model for
survival times. Studies in which the values of certain explanatory variables
are recorded regularly throughout the follow-up period of each patient gener-
ate large sets of data. For this reason, artificial data from a small number of
individuals will be used in Example 8.3 to illustrate the methodology.

Ezample 8.1 Bone marrow transplantation in the treatment of leukaemia
Patients suffering from acute forms of leukaemia often receive a bone mMarrow
transplant. This provides the recipient with a new set of parent blood-forming
cells, known as stem cells, which in turn produce a supply of healthy red
and white blood cells. Klein and Moeschberger (1997) describe a multicentre
study of factors that affect the prognosis for leukaemia patients treated in
this manner. This study involved patients suffering from acute lymphoblastic
leukaemia (ALL) and acute myelocytic leukaemia, (AML), with those suffering
from AML being further divided into low-risk and high-risk, according to
their status at the time of transplantation. The survival time from the date
of the transfusion is available for each patient, together with the values of a
number of explanatory variables concerning the characteristics of the donor
and recipient, and adverse events that occurred during the recovery process.
Before the bone marrow transplant, patients were treated with a combination
of cyclophosphamide and busulfan, in order to destroy all abnormal blood
cells. The time taken for the blood platelets to return to a normal level is
then an important variable in terms of the prognosis for a patient, and so the
values of this variable were also recorded.

This example is based on the data from just one hospital, St. Vincent in
Sydney, Australia. The observed survival time of each patient was recorded in
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days, together with the values of an event indicator which is unity if a patient
died, and zero if the patient was still alive at the end of the study period. The
prognostic variables to be used in this example concern th.e disease group, the
ages of the patient and the bone marrow donor, an indicator varlablegthat
denotes whether the platelet count returned to a normal level of 40 x 10° per
litre, and the time taken to return to this value. Two patients, numbers 7 and
21, died before the platelet count had returned to normal, and so for these
patients, no value is given for the time to return to a normal platelet count.
The variables recorded are therefore as follows:

Time: Survival time in days,
Status: Event indicator (0 = censored, 1 = event),
Group: Disease group (1 = ALL, 2 = low-risk AML,

3 = high-risk AML),
Page:  Age of patient,
Dage:  Age of donor,
P Platelet recovery indicator (0 = no, 1 = yes),
Ptime: Time in days to return of platelets to normal level (if P = 1).

The data base used in this example is given in Table .1.

The aim of the analysis of these data is to examine whether there are any
differences between the survival times of patients in the three disease groups,
after adjusting for prognostic variables. In order to investigate‘the effec't of
the time taken for platelets to return to their normal level on patient survival,
a time-dependent variable, Plate(t), is defined. This variable takes the value
zero at times t when the platelets have not returned to normal levels, and
then switches to unity once a normal level has been achieved. Formally,

0 if t < time at which platelets returned to normal,
Plate(t) = 1 if t > time at which platelets returned to normal,

so that Plate(t) = 0 for all ¢ when a patient dies before plat«?let recovery.

We first fit a Cox proportional hazards model that contains the varle}bles
associated with the age of the patient and donor, Page and Dage. When either
of these variables is added on their own or in the presence of the other, there
is no significant reduction in the value of the —2log L statistic.

The time-dependent variable Plate(t) is now added to the null model. The
value of —2logi is reduced from 67.13 to 62.21, a reduction of 4.92 onll d.f.,
which is significant at the 5% level (P = 0.026). This suggests that time t-o
platelet recovery does affect survival. After allowing for the effects of this
variable, there is still no evidence that the hazard of death is dependent on
the age of the patient or donor.

The estimated coeflicient of Plate(t) in the fitted model is —2.696, and the
fact that this is negative indicates that there is a greater hazard of death at
any given time for a patient whose platelets are not at a normal ‘level. The
hazard ratio at any given time is exp(—2.696) = 0.067, and so a patient whose
platelets have recovered to normal at a given time has about one fifteenth
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Table 8.1 Survival times of patients following bone marrow trans-

plantation.

Patient ~ Time Status Group Page Dage P  Ptime
1 1199 0 1 24 40 1 29
2 1111 0 1 19 28 1 22
3 530 0 1 17 28 1 34
4 1279 1 1 17 20 1 22
5 110 1 1 28 25 1 49
6 243 1 1 37 38 1 23
7 86 1 1 17 26 0
8 466 1 1 15 18 1 100
9 262 1 1 29 32 1 59

10 1850 0 2 37 36 1 9
11 1843 0 2 34 32 1 19
12 1535 0 2 35 32 1 21
13 1447 0 2 33 28 1 24
14 1384 0 2 21 18 1 19
15 222 1 2 28 30 1 52
16 1356 0 2 33 22 1 14
17 1136 0 3 47 27 1 15
18 845 0 3 40 39 1 20
19 392 1 3 43 50 1 24
20 63 1 3 44 37 1 16
21 97 1 3 48 56 0

22 153 1 3 31 25 1 59
23 363 1 3 52 48 1 19

the risk of death at that time. However, a 95% confidence interval for the
corresponding true hazard ratio is (0.006,0.751), which shows that the point
estimate of the relative risk is really quite imprecise.

To quantify the effect of disease group on survival, the change in —2 logﬁ
when the two terms corresponding to the factor Group are added to the model
that contains the time-dependent variable Plate(t) is 6.49 on 2 d.f., which is
significant at the 5% level (P = 0.039). The parameter estimates associated
with disease group show that the hazard of death is much greater for those
suffering from ALL and those in the high-risk group of AML sufferers. The
hazard ratios for an ALL patient relative to a low-risk AML patient is 7.97
and that for a high-risk AML patient relative to a low-risk one is 11.77.

For the model that contains the factor Group and the time-dependent vari-
able Plate(t), the estimated baseline cumulative hazard and survivor functions
are given in Table 8.2. These have been obtained using the estimate of the
baseline cumulative hazard function given in equation (8.3).

In this table, Ho(t) and Sy(t) are the estimated cumulative hazard and sur-
vivor functions for an individual with AML and for whom the platelet recovery
indicator, Plate(t), remains at zero throughout the study. Also given in this

h;m;,@, .

THREE EXAMPLES 265

Table 8.2 Estimated baseline cumulative haz-
ard, Ho(t), baseline survivor function, So(t),
and survivor function for an ALL patient with
Plate(t) = 1, 51(t).

Time, t  Ho(t) So(t) 0

0 0.0000 1.0000 1.0000
63 0.1953 0.8226 0.9810
86 0.3962 0.6728 0.9618
97 0.6477 0.5232 0.9383

110 1.2733 0.2799 0.8823
153 1.9399 0.1437 0.8264
222 2.6779 0.0687 0.7685
243 3.4226 0.0326 0.7143
262 4.2262 0.0146 0.6600
363 5.0987 0.0061 0.6057
392 6.0978 0.0022 0.5491
466 7.2663 0.0007 0.4895
1279 13.0700 0.0000 0.2766

table are the values of the estimated survivor function for an individual with
ALL, but for whom Plate(t) = 1 for all values of ¢, denoted S;(t). Since the
value of Plate(t) is zero for each patient at the start of the study, and for most
patients this changes to unity at some later point in time, these two estimated
survivor functions illustrate the effect of platelet recovery at any specific time.
For example, the probability of an ALL patient surviving beyond 97 days is
only 0.52 if their platelets have not recovered to a normal level by this time.
On the other hand, if such a patient has experienced platelet recovery by this
time, they would have an estimated survival probability of 0.94. The estimated
survivor function for an ALL patient whose platelet recovery status changes
at some time tg from 0 to 1 can also be obtained from Table 8.2, since this
will be So(t) for ¢ < to and Sy (t) for t > to. Estimates of the survivor function
may also be obtained for individuals in the other disease groups.

In this illustration, the data from two patients who died before their platelet
count had reached a normal level have a substantial impact on inferences about
the effect of platelet recovery. If patients 7 and 21 are omitted from the data
base, the time-dependent variable is no longer significant when added to the
null model (P = 0.755). The conclusion about the effect of platelet recovery
time on survival is therefore dramatically influenced by the data for these two

patients.

Ezample 8.2 Chemotherapy in ovarian cancer patients

When a Cox proportional hazards model that contains the variables Age, the
age of a patient at the time origin, and Treat, the treatment group, is fitted to
the data on the survival times of patients with ovarian cancer, the estimated
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hazard function for the ith of 26 patients in the study is
ha(t) = exp{0.147 Age, — 0.796 Treat;}ho!(t).

The value of the statistic —2log L for this model is 54.148.

We now f{it a model that contains Age and Treat, and a term corresponding
to an interaction between age and survival time. This interaction will be mod-
elled by including the time-dependent variable Tage, whose values are formed
from the product of Age and the survival time ¢, that is, Tage = Age x t.
Since the values of Tage are dependent upon ¢, this time-dependent variable
cannot be fitted in the same manner as Age and Treat. When Tage is added
to the model, the fitted hazard function becomes

hi(t) = exp{0.216 Age; — 0.664 Treat; — 0.0002 Age, t}ho(t).

Under this model, the hazard of death at ¢ for a patient of a given age on the
combined treatment (Treat = 2), relative to one of the same age on the single
treatment (Treat = 1), is exp(—0.664) = 0.52, which is not very different from
the value of 0.45 found using the model that does not contain the variable
Tage. However, the log-hazard ratio for a patient aged ag years, relative to
one aged a; years, is

0216((12 - al) - OOOOQ(CLQ — al)t

at time ¢. This model therefore allows the log-hazard ratio for Age to be
linearly dependent on survival time.

The value of —2log L for the model that contains Age, Treat and Tage is
53.613. The change in —2log L on adding the variable Tage to a model that
contains Age and Treat is therefore 0.53, which is not significant (P = 0.465).
We therefore conclude that the time-dependent variable Tage is not in fact
needed in the model.

Ezample 8.3 Data from a hypothetical cirrhosis study

Although the data to be used in this example are artificial, it is useful to
provide a background against which these data can be considered. Suppose
therefore that 12 patients have been recruited to a study on the treatment of
cirrhosis of the liver. The patients are randomised to receive either a placebo or
a new treatment that will be referred to as Liverol. Six patients are allocated
to Liverol and six to the placebo. At the time when the patient is entered
into the study, the age and baseline value of the patient’s bilirubin level are
recorded. The natural logarithm of the bilirubin value (in gmol/1) will be used
in this analysis. The variables measured are summarised below:

Time: Survival time of the patient in days,
Status:  Event indicator (0 = censored, 1 = uncensored),
Treat: Treatment group (0 = placebo, 1 = Liverol),
Age:  Age of the patient in years,
Lbr:  Logarithm of bilirubin level.

The values of these variables are given in Table 8.3.
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Table 8.3 Survival times of 12 patients in a
study on cirrhosis of the liver.

Patient Time Status Treat Age Lbr

1 281 1 0 46 3.2
2 604 0 0 57 3.1
3 457 1 0 56 2.2
4 384 1 0 65 3.9
5 341 0 0 73 2.8
6 842 1 0 64 24
7 1514 1 1 69 2.4
8 182 0 1 62 2.4
9 1121 1 1 71 2.5
10 1411 0 1 69 23
11 814 1 1 7 3.8
12 1071 1 1 58 3.1

Patients are supposed to return to the clinic three, six and twelve months
after the commencement of treatment, and yearly thereafter. On these occa-
sions, the bilirubin level is again measured and recorded. Data are therefore
available on how the bilirubin level changes in each patient throughout the du-
ration of the study. Table 8.4 gives the values of the logarithm of the bilirubin
value at each time in the follow-up period for each patient.

In taking log(bilirubin) to be a time-dependent variable, the value of the
variate at any time ¢ is that recorded at the last follow-up visit before ¢, for
each patient. In this calculation, the change to a new value will be assumed
to take place immediately after the time that the reading was taken, so that
patient 1, for example, is assumed to have a log(bilirubin) value of 3.2 from
the time origin until day 47, after which it increases to 3.8, and so on. .Thls
is equivalent to the assumption that the values of Lbr for a given individual
follow a step-function in which the values are assumed constant between any
two adjacent time points.

The data are first analysed using the baseline log(bilirubin) value alone. A
Cox proportional hazards model is used, and the values of —2log L on fitting
particular models are as shown in Table 8.5.

Both Age and Lbr appear to be needed in the model, although the evidence
for including Age as well as Lbr is not very strong. When Treat is added to
the model that contains Age and Lbr, the reduction in the value of 210gL is
5.182 on 1 d.f. This is significant at the 5% level (P = 0.023). The coeflicient
of Treat is —3.052, indicating that the drug Liverol is effective in reducing the
hazard of death. Indeed, other things being equal, Liverol reduces the hazard
of death by a factor of 0.047.

We now analyse these data, taking the log(bilirubin) values to be time-
dependent. Let Lbrt be the time-dependent variate formed from the values of
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Table 8.4 Follow-up times and log(bilirubin)
values for the 12 patients in the cirrhosis study.

TIME-DEPENDENT VARIABLES

Patient  Follow-up time Log(bilirubin)
1 47 3.8
184 4.9
251 5.0
2 94 2.9
187 3.1
321 3.2
3 61 2.8
97 2.9
142 3.2
359 3.4
440 3.8
4 92 4.7
194 4.9
372 5.4
5 87 2.6
192 2.9
341 3.4
6 94 2.3
197 2.8
384 3.5
795 3.9
7 74 2.9
202 3.0
346 3.0
917 3.9
1411 5.1
8 90 2.5
182 2.9
9 101 2.5
410 2.7
774 2.8
1043 3.4
10 182 2.2
847 2.8
1051 3.3
1347 4.9
11 167 3.9
498 4.3
12 108 2.8
187 3.4
362 3.9
694 3.8
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Table 8.5 Values of —210gfz
for models without a time-
dependent variable.

Terms in model -2 logji
null model 25.121
Age 22.135
Lbr 21.662
Age, Lbr 18.475

log(bilirubin). The values of —2log L on fitting Cox regression models to the
data are then given in Table 8.6.

Table 8.6 Values of —2logi
for models with a time-
dependent variable.

Terms in model —2log L
null model 25.121
Age 22.135
Lbrt 12.050
Age, Lbrt 11.145

It is clear from this table that the hazard function depends on the time-
dependent variable Lbrt, and that after allowing for this, the effect of Age is
slight. We therefore add the treatment effect Treat to the model that contains
Lbrt alone. The effect of this is that —2log L is reduced from 12.050 to 10.676,
a reduction of 1.374 on 1 d.f. This reduction is not significant (P = 0.241)
leading to the conclusion that after taking account of the dependence of the
hazard of death on the evolution of the log(bilirubin) values, no treatment
effect is discernible.

The estimated hazard function for the ith individual is given by

hi(t) = exp{3.605 Lbr;(t) — 1.479 Treat; }ho(t),

where Lbr;(t) is the value of log(bilirubin) for the ith patient at time ¢. The
estimated ratio of the hazard of death at time ¢ for two individuals on the same
treatment who have values of Lbr that differ by one unit at ¢ is €3-69% = 36.77.

One possible explanation for the difference between the results of these
two analyses is that the effect of the treatment is to change the values of
the bilirubin level, so that after changes in these values over time have been

allowed for, no treatment effect is visible.
The baseline cumulative hazard function may now be estimated for the
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model that contains the time-dependent variable Lort and Treat. The esti-
mated values of this function are tabulated in Table 8.7.

Table 8.7 Estimatedj)aselme cumula-
twe hazard function, Hy(t), for the cir-
rhosis study.

Follow-up time (%) Ho(t)
0 0.000

281 0.009 x 10~

384 0.012 x 10~

457 0.541 x 107

814 0.908 x 107°

842 1.577 x 10~°

1071 3.318 x 107

1121 6.007 x 10~

1514 6.053 x 10~°

This table shows that the cumulative hazard function is increasing in a
non-linear fashion, which indicates that the baseline hazard is not constant,
but increases with time. The corresponding baseline survivor function could
be obtained from this estimate. However, a model with Lbrt = 0 for all ¢ is
not at all easy to interpret, and so the estimated survivor function is obtained
for an individual for whom Lbrt = 3. This function is shown in Figure 8.5, for
a patient in either treatment group.
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Figure 8.5 FEstimated survivor function for a patient with Lbr = 3, for all ¢, who
is on placebo (—) or Liverol (---).
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This figure clearly shows that patients on placebo have a much poorer
prognosis than those on Liverol.

Finally, we illustrate how estimates of the conditional probabilities of sur-
vival from time t to time t 4+ 360 days can be obtained, using the result given
in equation (8.5). Using the values of the time-dependent variable given in
Tables 8.3 and 8.4, the values of 2?21 Bjxji(t), the prognostic index at time ¢
for the 7th patient, i = 1,2,..., 12, can be calculated for ¢ = 0, 360, 720, 1080,
and 1440. For this calculation, the log(bilirubin) value at one of these times is
taken to be the value recorded at the immediately preceding follow-up time.
Table 8.7 is then used to obtain the values of Hy(t + 360) — Hp(t), and then
P;(t,t+360) is obtained from equation (8.5). The full set of results will not be
given here, but as an example, the estimated approximate conditional proba-
bilities of surviving through consecutive intervals of 360 days, for patients 1
and 7, are shown in Table 8.8.

Table 8.8 Approzimate conditional survival
probabilities for patients 1 and 7.

Time interval Py(t,t+h) Pr(t,t +h)

0- 0.999 1.000
360~ 0.000 0.994
720— 0.000 0.969

1080- 0.000 0.457
1440~ 0.045 0.364

Note that because these estimates are survival probabilities conditional on
being alive at the start of an interval, they are not necessarily monotonic.
These estimates again show that patients on Liverol have a greater probability
of surviving for a period of one year, if they are alive at the start of that
year, than patients on the placebo. Finally, the values of 1 — Pi(t,t + h)
are approximate estimates of the probability of death within each interval,
conditional on a patient being alive at the start. Summing these estimates
over all 12 patients leads to the values 0.02, 2.46, 5.64, 6.53, 3.16, for each
of the five intervals, respectively. These can be compared to the observed
numbers of deaths in each interval, which are 1, 2, 3, 1 and 1, respectively.
There is therefore a tendency for the model to overestimate the numbers of
deaths, but because of the small size of the data set, this does not provide a
very reliable assessment of the predictive power of the model.

8.6 Further reading

The possibility of incorporating time-dependent variables in a proportional
hazards model was raised by Cox (1972). The appropriate partial likelihood
function was given in his paper, and discussed in greater detail in Cox (1975).
Kalbfleisch and Prentice (2002) include a detailed account of the construc-



272 TIME-DEPENDENT VARIABLES

tion of the partial likelihood function. The classification of time-dependent
variables outlined in Section 8.1 is due to Prentice and Kalbfleisch (1979),
who amplify on this in Kalbfleisch and Prentice (2002). Andersen (1992) re-
views the uses of time-dependent variables in survival analysis and includes
an example on which the hypothetical study of Example 8.3 is loosely based.

A number of practical problems encountered in the analysis of survival data
with time-dependent variables are discussed by Altman and De Stavola (1994),
who include a review of software available at that time. A comprehensive
analysis of data on primary biliary cirrhosis, which includes an assessment of
conditional survival probabilities is also provided. See Christensen (1986) for
a further illustration. Klein and Moeschberger (1997) give the full data set
on survival following bone marrow transplantation, part of which was used in
Example 8.1, and use this in a number of detailed illustrative examples.

The model described in Section 8.4 in connection with organ transplantation
was presented by Crowley and Hu (1977) and Cox and Oakes (1984) in an
analysis of the “Stanford heart transplant data”. This famous data set is given
in Crowley and Hu (1977) and an update is provided by Cox and Oakes (1984).
See also Aitkin, Laird and Francis (1983) and the ensuing discussion.

Relatively little work has been done on incorporating time-dependent vari-
ables in a fully parametric model for survival data. However, Petersen (1986)
shows how a parametric model with time-dependent variables can be fitted.

CHAPTER 9

Interval-censored survival data

In many studies where the response variable is a survival time, the exact time
of the event of interest will not be known. Instead, the event will be known
to have occurred during a particular interval of time. Data in this form are
known as grouped or interval-censored survival data.

Interval-censored data commonly arise in studies where there is a non-lethal
end-point, such as the recurrence of a disease or condition. However, most
survival analyses are based on interval-censored data, in the sense that the
survival times are often taken as the nearest day, week or month. In .this
chapter, some methods for analysing interval-censored data will be described
and illustrated. Models in which specific assumptions are made about the form
of the underlying hazard function are considered in Sections 9.1 to 9.4, and
fully parametric models are discussed in Section 9.5.

9.1 Modelling interval-censored survival data

In this chapter, a number of methods for the analysis of interval-censored sur-
vival data will be discussed in the context of a study on disease recurrence.
In the management of patients who have been cured of ulcers, carcinomas. or
other recurrent conditions, the patients are usually provided with medication
to maintain their recovery. These patients are subsequently examined at reg-
ular intervals in order to detect whether a recurrence has occurred. Naturally,
some patients may experience symptoms of a recurrence and be subsequently
diagnosed as having had a recurrence at a time other than one of the scheduled
screening times.

Now suppose that the study is designed to compare two maintenance ther-
apies, a new and a standard treatment, say, and that a number of explanatory
variables are recorded for each individual when they are recruited to the study.
The vector x; will be used to denote the set of values of p explanatory vari-
ables, X1, X2,...,X,, for the ith individual in the study. The first of these
variables, X1, will be taken to be an indicator variable corresponding to the
treatment group, where X; = 0 if an individual is on the standard treatment
and X; = 1 if on the new treatment.

Clearly, one way of analysing such data is to ignore the interval censoring.
A survival analysis is then carried out on the times of a detected recurrence.
However, the data set used in this analysis will be based on a mixture of
recurrences detected at scheduled screening times, known as screen-detected
recurrences and recurrences diagnosed following the occurrence of symptoms
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or interval-detected recurrences. This leads to a difficulty in interpreting the
results of the analysis.

To illustrate the problem, consider a study to compare two treatments for
suppressing the recurrence of an ulcer, a new and a standard treatment, say.
Also suppose that both treatments have exactly the same effect on the recur-
rence time, but that the new treatment suppresses symptoms. The recurrence
of an ulcer in a patient on the new treatment will then tend to be detected later
than that in a patient on the standard treatment. Therefore, interval-detected
recurrences will be identified sooner in a patient on the standard treatment.
The interval-detected recurrence times will then be shorter for this group of
patients, indicating an apparent advantage of the new treatment over the
standard.

If the time interval between successive screenings is short, relative to the
average time to recurrence, there will be few interval-detected recurrences.
The standard application of methods for survival analysis will not then be
inappropriate.

Example 9.1 Recurrence of an ulcer

In a double blind clinical trial to compare treatments for the inhibition of
relapse after primary therapy has healed an ulcer, patients are randomised
to receive one or other of two treatments, labelled A and B. Regular visits
to a clinic were arranged for the patients, and endoscopies were performed
6 months and 12 months after randomisation. A positive endoscopy result
indicates that an ulcer has recurred in the time since the last negative result.
Information is therefore obtained on whether or not an ulcer has recurred
in the interval from 0 to 6 months or in the interval from 6 to 12 months.
Additionally, some patients presented at the clinic between scheduled visits,
suffering from symptoms of recurrence. These patients had endoscopies at
these times in order to detect if a recurrence had in fact occurred.

At entry to the trial, the age of each person, in years, and the duration of
verified disease (1 = less than five years, 2 = greater than or equal to five
years) was recorded, in addition to the treatment group (A or B). There are
two variables associated with ulcer detection in the data set, namely the time
of the last visit, in months, and the result of the endoscopy (1 = no ulcer
detected, 2 = ulcer detected). Those with times other than 6 or 12 months
had presented with symptoms between scheduled visits.

The study itself was multinational and the full set of data is given in White-
head (1989). In this example, only the data from Belgium will be used, and
the relevant data are given in Table 9.1.

Once an ulcer is detected by endoscopy, a patient is treated for this and
is then no longer in the study. There were some patients who either did not
have an endoscopy six months after trial entry, or who dropped out after a
negative unscheduled endoscopy in the first six months. These patients have
been omitted from the data set on the grounds that there is no information
about whether an ulcer has recurred in the first six months of the study. This

.
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Table 9.1 Data on the recurrence of an ulcer following treatment for

the primary disease.

Patient Age Duration Treatment Time of last visit Result
1 48 2 B 7 2
2 73 1 B 12 1
3 54 1 B 12 1
4 58 2 B 12 1
5 56 1 A 12 1
6 49 2 A 12 1
7 71 1 B 12 1
8 41 1 A 12 1
9 23 1 B 12 1

10 37 1 B 5 2
11 38 1 B 12 1
12 76 2 B 12 1
13 38 2 A 12 1
14 27 1 A 6 2
15 47 1 B 6 2
16 54 1 A 6 1
17 38 1 B 10 2
18 27 2 B 7 2
19 58 2 A 12 1
20 75 1 B 12 1
21 25 1 A 12 1
22 58 1 A 12 1
23 63 1 B 12 1
24 41 1 A 12 1
25 47 1 B 12 1
26 58 1 A 3 2
27 74 2 A 2 2
28 75 2 A 6 1
29 72 1 A 12 1
30 59 1 B 12 2
31 52 1 B 12 1
32 75 1 B 12 2
33 76 1 A 12 1
34 34 2 A 6 1
35 36 1 B 12 1
36 59 1 B 12 1
37 44 1 A 12 2
38 28 2 B 12 1
39 62 1 B 12 1
40 23 1 A 12 1
41 49 1 B 12 1
42 61 1 A 12 1
43 33 2 B 12 1
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means that those patients in Table 9.1 whose last visit was greater than 6
months after randomisation would have had a negative endoscopy at 6 months.
In modelling the data from this study, duration of disease is denoted by an
indicator variable Dur, which is zero when the duration is less than 5 years
and unity otherwise. The treatment effect is denoted by a variable Treat,
which takes the value zero if an individual is on treatment A and unity if on
treatment B. The patients age is reflected in the continuous variate Age.

We first analyse the recurrence times in Table 9.1 ignoring the interval
censoring. The recurrence times of those patients who have not had a detected
recurrence by the time of their last visit are taken to be censored. The data
are now analysed using the Cox proportional hazards model, described in
Chapter 3.

Table 9.2 Values of —2log L on
fitting @ Coz regression model to
data on the time to recurrence of

an ulcer.
Variables in model —2log L
None 79.189
Dur 79.157
Age 78.885
Age + Dur 78.872
Age + Dur + Treat 78.747
Treat 79.097

From the values of the —2log L statistic for different models, given in Ta-
ble 9.2, it is clear that neither age nor duration of disease are important
prognostic factors. Moreover, the reduction in —2log L on adding the treat-
ment effect to the model, adjusted or unadjusted for the prognostic factors,
is nowhere near significant.

The estimated coefficient of Treat in the model that contains Treat alone
is 0.189, and the standard error of this estimate is 0.627. The estimated haz-
ard of a recurrence under treatment B (Treat = 1), relative to that under
treatment A (Treat = 0), is therefore exp(0.189) = 1.21. The standard error
of the estimated hazard ratio is found using equation (3.12) in Chapter 3,
and is 0.758. The fact that the estimated hazard ratio is greater than unity
gives a slight indication that treatment A is superior to treatment B, but not
significantly so.

9.2 Modelling the recurrence probability in the follow-up period

Suppose that patients are followed up to time ts, at which time the last sched-
uled screening test is carried out. Information on whether or not a recurrence
was detected at any time up to and including the last screen is then recorded.
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Let p;(ts) be the probability of a recurrence up to time ¢, for the ith patient,
1 =1,2,...,n, with explanatory variables x;. We now adopt a Cox propor-
tional hazards model, according to which the hazard of a recurrence at ¢, for
the ith patient, is given by

hi(ts) = exp(n:)ho(ts),

where 7; = B'x; = Biz1 + Boos + -+ + Bpzpi, and ho(ts) is the baseline
hazard function at %,.

The probability that the ith individual experiences a recurrence after time
ts is the survivor function S;(ts), so that S;(ts) = 1 — pi(ts). Now, from
equation (3.22) in Section 3.8 of Chapter 3,

Sits) = {So(ts)}7*, (9-1)

where Sy(ts) is the value of the survivor function at ¢, for an individual on
the standard treatment for whom all the other explanatory variables are zero.
The probability of a recurrence up to time ¢, under this model is therefore

pi(ts) =1— {So(ts)}em(m),
and so

log[—log{1 — pi(ts)}] = n; + log{—log So(ts)}-
Writing £y = log{— log So(ts)}, the model can be expressed as

log[—log{1 — pi(ts)}] = Bo + rz1i + Pawai + - + Bpps. (9.2)

This is a linear model for the complementary log-log transformation of the
probability of a recurrence up to time t,. The model can be fitted to data on
a binary response variable that takes the value zero for those individuals in
the study who have not experienced a recurrence before tg, the time of the
last screen, and unity otherwise.

As in modelling survival data, models fitted to data on a binary response
variable can be compared on the basis of the statistic —2log L. Here, L is
the maximised likelihood of the binary data, and —2log Lis generally known
as the deviance. Differences in the deviance for two nested models have an
asymptotic chi-squared distribution, and so models fitted to binary data can
be compared in the same manner as the models used in survival analysis.

When the model in equation (9.2) is fitted to the observed data, the estimate
of the constant, (o, is an estimate of log{— log So(t,)}, from which an estimate
of the baseline survivor function at t, can be obtained. Also, the ratio of the
hazard of a recurrence for an individual on the new treatment, relative to
one on the standard, is exp(f3:1). This can be estimated by exp(fB), where
By is the parameter estimate corresponding to X, the indicator variable that
corresponds to the treatment group. Values of the hazard ratio less than unity
suggest that the risk of a recurrence at any time is smaller under the new
treatment than under the standard. A confidence interval for the hazard ratio
may be obtained from the standard error of 1 in the usual manner.

This method of estimating the hazard ratio from interval-censored survival
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data is not particularly efficient, since data on the times that a recurrence is
detected are not utilised. However, the method is appropriate when interest
simply centres on the risk of a recurrence in a specific time period. It is also the
method that would be adopted in modelling quantities such as the probability
of a relapse in the first year of treatment, or the probability of no recurrence
in a five-year period after trial entry.

Ezample 9.2 Recurrence of an ulcer
We now model the probability of an ulcer recurring in the 12 months following
recruitment to the study described in Example 9.1. Of the 43 patients in the
data set, 11 of them had experienced a recurrence in this 12-month period,
namely patients 1, 10, 14, 15, 17, 18, 26, 27, 30, 32 and 37. A binary response
variable is now defined, which takes the value unity if a patient has experienced
a recurrence and zero otherwise. A model in which the complementary log-
log transformation of the recurrence probability is related to age, duration of
disease and treatment group is then fitted to the binary observations.

Table 9.3 gives the deviances on fitting complementary log-log models with
different terms to the binary response variable. All the models fitted include
a constant term.

Table 9.3 Deviances on fitting complementary log-log mod-
els to data on the recurrence of an ulcer in 12 months.

Variables in model Deviance d.f.
Constant 48.902 42
Dur 48.899 41
Age 48.573 41
Treat 48.531 41
Dur + Age 48.565 40
Dur + Treat 48.531 40
Age + Treal 48.175 40
Dur + Age + Treat 48.172 39
Dur + Age + Treat + Treat x Age 47.944 38
Dur + Age + Treat + Treat x Dur 48.062 38

In this example, the effects of age, duration of disease and treatment group
have been modelled using the variates Age, Dur, and Treat, defined in Example
9.1. However, factors corresponding to duration and treatment could have
been used in conjunction with packages that allow factors to be included
directly. This would not make any difference to the deviances in Table 9.3,
but it may have an effect on the interpretation of the parameter estimates.
See Sections 3.2 and 3.7 for fuller details.

It is clear from Table 9.3 that no variable reduces the deviance by a signifi-
cant amount. For example, the change in the deviance on adding Treat to the
model that only contains a constant is 0.371, which is certainly not significant
when compared to percentage points of the chi-squared distribution on 1 d.f.
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Approximately the same change in deviance results when Treat is added to
the model that contains Age and Dur, showing that the treatment effect is of
a similar magnitude after allowing for these two variables. Moreover, there is
no evidence whatsoever of an interaction between treatment and the variables
Age and Dur.

On fitting a model that contains Treat alone, the estimated coefficient of
Treat is 0.378, with a standard error of 0.629. Thus the ratio of the hazard of a
recurrence before 12 months in a patient on treatment B (Treat = 1), relative
to that for a patient on treatment A (Treat = 0), is exp(0.378) = 1.46. The
risk of a recurrence in the year following randomisation is thus greater under
treatment B than it is under treatment A, but not significantly so. This hazard
ratio is not too different from the value of 1.21 obtained in Example 9.1. The
standard error of the estimated hazard ratio, again found using equation (3.12)
in Chapter 3, is 0.918, which is also very similar to that found in- Example
9.1.

A 95% confidence interval for the log-hazard ratio has limits of 0.378 &
1.96 x 0.629, and so the corresponding interval estimate for the hazard ratio
itself is (0.43,5.01). Notice that this interval includes unity, a result which was
foreshadowed by the non-significant treatment effect.

The estimated constant term in this fitted model is —1.442. This is an
estimate of log{—log Sp(12)}, the survivor function at 12 months for a patient
on treatment A. The estimated probability of a recurrence after 12 months for
a patient on treatment A is therefore exp(—e~144?) = 0.79. The corresponding
value for a patient on treatment B is 0.79P(0-378) — (.71. The probabilities of
a recurrence in the first 12 months are therefore 0.21 for a patient on treatment
A, and 0.29 for a patient on treatment B. This again shows that patients on
treatment B have a slightly higher probability of the recurrence of an ulcer
in the year following randomisation.

9.3* Modelling the recurrence probability at different times

In this procedure for analysing interval-censored survival data, information
about whether or not a recurrence is detected at different examination times
is taken into account.

Suppose that patients enter a study at time 0 and are followed up to time
tr. During the course of this follow-up period, the individuals are screened
on a regular basis in order to detect a recurrence of the disease or condition
under study. Denote the examination times by #1,¢s,...,tx, which are such
that t; <ty < --- < tg. Further, let ¢, denote the time origin, so that ¢ty = 0
and let tp41 = 0.

For each individual, information will be recorded on whether or not a recur-
rence has occurred at times £1,%9,...,¢x. It can then be determined whether
a given individual has experienced a recurrence in the jth time interval from
tj_1 to t;. Thus a patient who has a recurrence detected at time ¢; has an
actual recurrence time of ¢, where ¢;_; <t < #;, j = 1,2,...,k. Note that
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the study will not provide any information about whether a recurrence occurs
after the final screening time, #.

Now let p;; be the probability of a recurrence being detected in the ith
patient, ¢ = 1,2,...,n, at time #;, so that p;; is the probability that patient i
experiences a recurrence in the jth time interval, § = 1,2,..., k. Also let Tij
be the probability that the ith of n patients is found to be free of the disease at
time ?;_; and has a recurrence in the jth time interval, j = 1,2,..., k. This is
therefore the conditional probability of a recurrence in the jth interval, given
that the recurrence occurs after t; 1. Using 7; to denote the random variable
associated with the recurrence time of the ith individual, we therefore have

pi; =Pt <T; < ty),
and
Tij = P(tj,I <T; < tj | T, > tj—l)»
forj=1,2,...,k.
We now consider individuals who have not had a detected recurrence by
the last examination time, t;. For these individuals, we define 7} to be the
random variable associated with the time to either a recurrence or death, and

the corresponding probability of a recurrence or death in the interval from
time ¢, is given by

Pik+1 =PI 2 1) =1~ sz‘j-

Also, the corresponding conditional probability of a recurrence or death in
the interval (¢, 00) is

Tikr1 =P(T 2 te | T; 2 ty) = 1.
It then follows that

Dij =(1——?Til)(l—Wig)-‘-(l—’fri,j_l)ﬂ'ij, (93)

for j =2,3,...,k+ 1, with p;; = 7.

Now let r;; be unity if the ith patient has a recurrence detected in the
interval from ¢;_; to ¢;, 7 = 1,2,...,k+1, and zero if no recurrence is detected
in that interval, with 7; 11 = 1. Also let s;; be unity if a patient has a detected
recurrence after ¢;, and zero otherwise. Then,

Sij = Tijl T Tigya + o+ 7 g,

for j=1,2,.... k.
The sample likelihood of the n(k + 1) values r;; is

n k+1

1T 1]»7.

=1 j=1

and on substituting for p;; from equation (9.3), the likelihood function be-

MODELLING THE RECURRENCE PROBABILITY AT DIFFERENT TIMES 281

comes
n k+1

H H{(l =) (1= i —a)ma

This function can be written as
Hﬂru 1 — 71-1.1)7”2}7%2 e {(1 — 7Ti1> RN (1 — Wik)wi,k+1}ri’k+l,

which reduces to

H ey H iy (1= i)™ (9.4)
i=1
However, ; r+1 = 1, and so the likelihood function in equation (9.4) be-
comes

n k
TTTT 75 (=g (9.5)

This is the likelihood function for nk observations r;; from a binomial dis-
tribution with response probability 7;;, and where the binomial denominator
is 7;; + 8;5. This denominator is equal to unity when a patient is at risk of
having a detected recurrence after time t;, and zero otherwise. In fact, the
denominator is zero when both r;; and s;; are equal to zero, and the like-
lihood function in expression (9.5) is unaffected by observations for which
7;; + 8i; = 0. Data records for which the binomial denominator is zero are
therefore uninformative, and so they can be omitted from the data set. If
there are m observations remaining after these deletions, so that m < nk, the
likelihood function in expression (9.5) is that of m observations from binomial
distributions with parameters 1 and 7;;, in other words, m observations from
a Bernoulli distribution.
The next step is to note that for the ith patient,

l—my=P(Ti2t; | T = ~1),
so that
Si(t;)
1 -y = )
T St

Adopting a proportional hazards model for the recurrence times, the hazard
of a recurrence being detected at time ¢; in the ¢th individual can be expressed
as
hi(t;) = exp(ni)ho(t;),

where ho(t;) is the baseline hazard at t;, and #; is the risk score for the ith
individual. Notice that this assumption means that the hazards need only
be proportional at the scheduled screening times #;, and not at intermediate
times. This is less restrictive than the usual proportional hazards assumption,
which requires that hazards be proportional at every time.
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Using the result in equation (9.1)

3

L So(tj) exp(n;)
Y So(tj-1) ’

and on taking logarithms we find that

log(l - Wij) = exp(ni) log {Sg(tj)/SO(tj_l)} .
Consequently,

log{—log(1 — m;;)} = n; +log[—log {So(t;)/So(tj—1)}]
= 1 + Y5,
say. This is a linear model for the complementary log-log transformation of
Tij, in which the parameters v;, j = 1,2,...,k, are associated with the &
time intervals. The model can be fitted using standard methods for modelling
binary data.

In modelling the probability of a recurrence in the jth time interval for the
ith patient, 7;;, the data are the values r;;. Data records for which both Tij
and s;; are equal to zero are omitted, and so the binomial denominator is
unity for each remaining observation. The parameters «; are incorporated in
the model by fitting terms corresponding to a k-level factor associated with the
period of observation, or by including suitable indicator variables as described
in Section 3.2. Note that a constant term is not included in the model. The
estimates of the [-coefficients in 7;, obtained on fitting this model, can again
be interpreted as log-hazard ratios. Also, estimates of the v; can be used to
obtain estimates of the m;;. This process is illustrated in Example 9.3 below.

Ezample 9.3 Recurrence of an ulcer

The data on the time to detection of an ulcer recurrence, given in Example
9.1, are now analysed using the method described above. To prepare the data
set for analysis using this approach, the two additional variables, Period and
R, are introduced. The first of these, Period, is used to signify the period,
and the variable is given the value unity for each observation. The second
variable, R, contains the values r;1, ¢ = 1,2,...,43, and so R is equal to unity
if an ulcer is detected in the first period and zero otherwise. For these data,
patients 10, 14, 15, 26 and 27 experienced a recurrence in the interval from 0
to 6 months, and so the value of R is unity for these five individuals and zero
for the remaining 38.

We then add a second block of data to this set. This block is a duplication
of the records for the patients who have not had a recurrence at the six-
month mark and for whom the last visit is made after 6 months. There are
38 patients who have not had a recurrence at six months, but three of these,
patients 16, 28 and 34, took no further part in the study. The second block of
data therefore contains 35 records. The variable Period now takes the value
2 for these 35 observations, since they correspond to the second time period.
The variable R contains the values ;s for this second block of data. Therefore,
R takes the value unity for patients 1, 17, 18, 30, 32 and 37 and zero otherwise,
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since these are the only six patients who have a detectable recurrence at 12
months.

The combined set of data has 43 + 35 = 78 rows, and includes the variable
Period, which defines the period in which an endoscopy is performed (1 = 0-6
months, 2 = 6-12 months), and the variable R, which defines the endoscopy
result (0 = negative, 1 = positive). The value of s;; is unity for all records
except those for which r;; = 1, when it is zero. The binomial denominators
7ij+5:; are therefore equal to unity for each patient, since every patient in the
extended data set is at risk of a detectable recurrence. Instead of giving a full
listing of the modified data set, the records for the combinations of patient
and period, for the first 18 patients, are shown in Table 9.4.

The dependence of the complementary log-log transformation of the proba-
bilities 7;; on certain explanatory variables can now be investigated by fitting
models to the binary response variable R. Fach model includes a two-level
factor, Period, associated with the period, but no constant term. The term in
the model that corresponds to the period effect is v;, j = 1, 2. The deviances
for the models fitted are summarised in Table 9.5.

From this table we see that the effect of adding either Age or Dur to the
model that contains Period alone is to reduce the deviance by less than 0.3.
There is therefore no evidence that the age of a person or the duration of
disease are associated with a recurrence. Adding Treat to the model that
contains Period alone, the reduction in deviance is 0.10 on 1 d.f. This leads us
to conclude that there is no significant difference between the two treatments.
The treatment effect, after adjusting for the variables Age and Dur, is of a
similar magnitude.

To check whether there are interactions between treatment and the two
prognostic factors, we look at the effect of adding the terms Treat x Age and
Treat x Durto that model that contains Period, Age and Dur. From Table 9.5,
the resulting change in deviance is very small, and so there is no evidence of
any such interactions.

In summary, the modelling process shows that 7;;, the probability that the
1th patient has a recurrence in the jth period, does not depend on the patient’s
age or the duration of the disease, and, more importantly, does not depend
on the treatment group.

To further quantify the treatment effect, consider the model that includes
both Treat and Period. The equation of the fitted model can be written as

log{—log(1 — #;)} = 4; + 3 Treat;, (9.6)

where «; is the effect of the jth period, j = 1,2, and Treat; is the value of the
indicator variable Treat, for the ith individual. This variable is zero if that
patient is on treatment A and unity otherwise.

The estimated coefficient of Treat in this model is 0.195 and the standard
error of this estimate is 0.626. The hazard of a recurrence on treatment B at
any given time, relative to that on treatment A, is exp(0.195) = 1.21. Since
this exceeds unity, there is the suggestion that the risk of recurrence is less
on treatment A than on treatment B, but the evidence for this is not statis-
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Table 9.4 Modified data on the recurrence of an ulcer in two periods, for
the first 18 patients.

Patient Age Duration Treat- Time of Result Period R
ment  last visit

1 48 2 B 7 2 1 0
1 48 2 B 7 2 2 1
2 73 1 B 12 1 1 0
2 73 1 B 12 1 2 0
3 54 1 B 12 1 1 0
3 54 1 B 12 1 2 0
4 58 2 B 12 1 1 0
4 58 2 B 12 1 2 0
) 56 1 A 12 1 1 0
) 56 1 A 12 1 2 0
6 49 2 A 12 1 1 0
6 49 2 A 12 1 2 0
7 71 1 B 12 1 1 0
7 71 1 B 12 1 2 0
8 41 1 A 12 1 1 0
8 41 1 A 12 1 2 0
9 23 1 B 12 1 1 0
9 23 1 B 12 1 2 0
10 37 1 B 5 2 1 1
11 38 1 B 12 1 1 0
11 38 1 B 12 1 2 0
12 76 2 B 12 1 1 0
12 76 2 B 12 1 2 0
13 38 2 A 12 1 1 0
13 38 2 A 12 1 2 0
14 27 1 A 6 2 1 1
15 47 1 B 6 2 1 1
16 54 1 A 6 1 1 0
17 38 1 B 10 2 1 0
17 38 1 B 10 2 2 1
18 27 2 B 7 2 1 0
18 27 2 B 7 2 2 1

tically significant. The standard error of the estimated hazard ratio is 0.757.
For comparison, from Example 9.2, the estimated hazard ratio at 12 months
was found to be 1.46, with a standard error of 0.918. These values are very
similar to those obtained in this example. Moreover, the results of analyses
that accommodate interval censoring are comparable to those found in Ex-
ample 9.1, in which the Cox proportional hazards model was used without
taking account of the fact that the data are interval-censored.

The model in equation (9.6) can be used to provide estimates of the r;;. The
estimates of the period effects in this model are 41 = —2.206, 4, = —1.794,
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Table 9.5 Deviances on fitting complementary log-log models that
do not include a constant to the variable R.

Terms fitted in model Deviance d.f.
Period 62.982 76
Period + Age 62.685 75
Period + Dur 62.979 75
Period + Age + Dur 62.685 74
Period + Age + Dur + Treat 62.566 73

Period + Age + Dur + Treat + Treat x Age 62.278 72
Period + Age + Dur + Treat + Treat x Dur 62.552 72
Period + Treat 62.884 75

and so the estimated probability of a recurrence in the first period, for a
patient on treatment A, denoted 741, is given by

log{—log(l —7ta1)} =% + 3 % 0.

Therefore,
log{—log(1 — 7t41)} = —2.206,

and from this, 741 = 0.104. Other fitted probabilities can be calculated in a
similar manner, and the results of these calculations are shown in Table 9.6.
The corresponding observed proportions of individuals with a recurrence for
each combination of treatment and period are also displayed. The agreement
between the observed and fitted probabilities is good, which indicates that
the model is a good fit.

Table 9.6 Fitted and observed probabilities of an ulcer
recurring in the two time periods.

Period Treatment A Treatment B
Fitted Observed Fitted Observed

(0, 6) 0.104 0.158 0.125 0.083

(6,12)  0.153 0.077 0.183 0.227

If desired, probabilities of a recurrence in either period 1 or period 2 could
also be estimated. The probability that a patient on treatment A has a recur-
rence in either period 1 or period 2 is

P{recurrence in (0, 6)} + P{recurrence in (6,12) and no recurrence in (0, 6)}.

The joint probability of a recurrence in (6, 12) and no recurrence in (0, 6) can
be expressed as

P{recurrence in (6, 12) | no recurrence in (0,6)} x P{no recurrence in (0,6)},
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and so the required probability is estimated by

far + faz(l —Fa1) = 0.104 4+ 0.153 x 0.896 = 0.241.
Similarly, that for treatment B is

#p1+ 7pe(l —7p1) = 0.125 + 0.183 x 0.875 = 0.285.

This again indicates the superiority of treatment A, but there is insufficient
data for this effect to be declared significant.

9.4* Arbitrarily interval-censored survival data

The methods of analysis described in the previous sections may be adopted
when different individuals have the same observation times. In this section,
we consider a more general form of interval censoring, where the observation
times differ between individuals. Then, each individual may have a different
time interval in which the event of interest has occurred, and data in this form
are referred to as arbitrarily interval-censored data. A method for analysing
such data, assuming proportional hazards, that is based on a non-linear model
for binary data, proposed by Farrington (1996), is now developed.

9.4.1 Modelling arbitrarily interval-censored data

Suppose that the event time for the ith of n individuals is observed to occur
in the interval (a;,b;], where the use of different types of bracket indicates
that the actual event time is greater than a;, but less than or equal to b;. In
other words, the event has not occurred by time a;, but has occurred by time
bi, where the values of a; and b; may well be different for each individual in
the study. We will further suppose that the values of a number of explanatory
variables have also been recorded for each individual in the study.

When the values of both a; and b; are observed for an individual, the
interval-censored observation is said to be confined. If the event time for an
individual is left-censored at time b;, so that the event is only known to have
occurred some time before b;, then a; = 0. Similarly, if the event time right-
censored at time a;, so that the event is only known to have occurred after
time a;, the upper limit of the interval, b;, is then effectively infinite.

The survivor function for the ith individual will be denoted by S;(¢), so that
the probability of an event occurring in the interval (ay, b;] is S;(a;) — Si(b;)-
The likelihood function for the n observations is then

n
[T {Sita) = Si(v)} - (9-7)

i=1
Now suppose that the n observations consist of / left-censored observations, r
right-censored observations, and ¢ observations that are confined, with n = [+
r+-c. For the purpose of this exposition, we will assume that the data have been
arranged in such a way that the first [ observations are left-censored (a; = 0),
the next r are right-censored (b; = c0), and the remaining ¢ observations are

ARBITRARILY INTERVAL-CENSORED SURVIVAL DATA 287

confined (0 < a; < b; < 00). Since S;(0) = 1 and S;(c0) = 0, the contributions
of a left- and right-censored observation to the likelihood function will be
1 — S;(b;) and Si(a;), respectively. Consequently, from equation (9.7), the
overall likelihood function can be written as
1 I+r n

[T = sy I Sias) I1 {Sias) = Si(ba)},

i=1 i=l+1 i=lrtl
and a re-expression of the final product in this function gives

l I+r n
[ -siea} T Sia) II Si(a){1 = Si(b:)/Si(ai)}. (9.8)
i=1 i=l+1 i=l4r41
We now show that this likelihood is equivalent to that for a corresponding
set of n + ¢ independent binary observations, y1,¥z,. -, ¥n+c, Where the ith
is assumed to be an observation from a Bernoulli distribution with response
probability p;, i = 1,2,...,n+c. The likelihood function for this set of binary

data is then

n-tc
[ et —pot—, (9.9)
i=1

where y; takes the value O or 1, fori=1,2,...,n+c.

To see the relationship between the response probabilities, p;, in expres-
sion (9.9), and the values of the survivor function in expression (9.8), consider
first the left-censored observations. Suppose that each of these [ observations
contributes a binary observation with y; = 1 and p; = 1-S;(b;), i = 1,2,..., 1.
The contribution of these I observations to expression (9.9) is then

l l
[Ip: = [T - Sie)),

which is the first term in expression (9.8). For a right-censored obseﬁvatiQn,
we take y; = 0 and p; = 1 — Si(a;) in expression (9.9), and the contribution
to the likelihood function in expression (9.9) from r such observations is

l+r I+r
H (1-pi)= H Si(ai),
i=l+41 i=l+1

and this is the second term in expression (9.8). The situation is a little more
complicated for an observation that is confined to the interval (a;, b;], since
two binary observations are needed to give the required component of expres-
sion (9.8). One of these is taken to have y; = 0, p; = 1 — S;(a;), while the other
is such that yer: = 1, Povi = 1—={S3(b;)/Si(ai) }, for i = I+r+1,14+7+2,...,n.
Combining these two terms leads to a component of the likelihood in expres-
sion (9.9) of the form

n

H (1 - pi)pc+i>

de=lr41
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which corresponds to

n
II Sit@ {1 S:(b:)/Si(a:)}
i=l+r+1
in expression (9.8).

This shows that by suitably defining a set of n + ¢ binary observations,
with response probabilities expressed in terms of the survivor functions for
the three possible forms of interval-censored observation, the likelihood func-
tion in expression (9.9) is equivalent to that in expression (9.8). Accordingly,
maximisation of the log-likelihood function for n + ¢ binary observations is
equivalent to maximising the log-likelihood for the interval-censored data.

9.4.2 Proportional hazards model for the survivor function

The next step in the development of a procedure for modelling arbitrarily
interval-censored survival data is to construct expressions for the survivor
functions that make up the likelihood function in expression (9.8). A propor-
tional hazards model will be assumed, so that from equation (9.1),

Si(t) = So(t)y BT, (9.10)
where So(t) is the baseline survivor function and @; is the vector of values of
p explanatory variables for the ith individual, 7 = 1,2, ..., n, with coefficients

that make up the vector 3.

The baseline survivor function will be modelled as a step function, where
the steps occur at the k ordered censoring times, t)ste2)s - - by, where 0 <
Ly <t(gy <--- < iy, which are a subset of the times at which observations
are interval-censored. This means that the ty, J = 1,2,...,k, are a subset
of the values of a; and b;, i = 1,2,...,n. Exactly how these times are chosen
will be described later in Section 9.4.3.

We now define

So(t(j-1))

So(t ()
where t(g) = 0, so that §; > 0, and at times t(;), we have

So(t(;)) = e % So(t-1)), (9.11)

0; =log

forj=1,2,... k.

Since the first step in the baseline survivor function occurs at ta1y, So(t) =1
for 0 <t < t(y). From time t(1y, the baseline survivor function, using equa-
tion (9.11), has the value So(t(1)) = exp(—6;)So(t()), which, since tqy = 0,
means that So(t) = exp(—#6;), for tay <t < toy. Similarly, from time ¢(),
the survivor function is exp(—62)So(t(1)), that is So(t) = exp{—(8; + 62)},
t2) <t < (s, and so on, until So(t) = exp{—(f1 + 62 + -+ 6x)}, t > tix)-
Consequently,

So(t) = exp (— S 9r> ; (9.12)
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for t(;y <t < t(j41), and so the baseline survivor function, at any time ¢;, is
given by

k
So(ts) =exp | — Z 0 dij | (913)
j=1

where L {1 1) < o
Y10 if Ly > ts,

for j = 1,2,...,k. The quantities d;; will be taken to b(.e the values of k

indicator variables, D1, Ds, ..., Dy, for the ith observation in the augmented

data set. Note that the values of the Dy, j = 1,2,...,k, will differ at each

observation time, ;. . '
Combining the results in equations (9.10) and (9.13), the survivor function
for the ith individual, at times a;, b;, can now be obtained. In particular,

) k exp(,@’-'Ei)
Si(a;) = So(ai)exp(ﬁ T = {exp <_ ijl ; dij) } ’

which can be expressed in the form

Si(a;) = exp {— exp(8'xz;) Zj‘:1 6, dij} ,

where d;; = 1if £(;y < a;, and di; = 0, otherwise. An expression for S;(b;) can
be obtained in a similar way, leading to

Si(b;) = exp {— exp(B'z;) ijl 6; dij} ,

where d;; = 1 if ¢(;y < b, and di; = 0, otherwise. .

From these expressions for S;(a;) and S;(b;), the response probabilities, p;,
used in expression (9.9), can be expressed in terms of the unknown par.amete.rs
01,0,,...,0k, and the unknown coeflicients of the p explanatory variables in
the model, A1, Bs, ..., Bp. Specifically, as in Section 9.4.1, for a left-censored
observation, p; = 1 — S;(b;), and for a right-censored observation, p; = 1-
Si(a;). In the case of a confined observation, p; = 1 — Si(a;) for one of the
two binary observations. For the other,

Deys = 1 — Si(bi)/si(&i)v
exp {— exp(B'x;) lezl 0; dlij}
exp {— exp(B'@:) 221 6 dzij}

where the values di;; in the numerator are equal to unity if ¢¢;) < b,;,. an‘d
zero otherwise, and the values dg;; in the denominator are equal to unity if
t(jy < a;, and zero otherwise. Consequently, thg f-terms in thﬁe numerator for
which ) < i cancel with those in the denominator, and this leaves

k
Peti = L — €Xp {— exp(8'xz;) ijl 0 dij} )

=1
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where here d; = 1 if a; < ty < b
It then follows that in each case, the response probability can be expressed
in the form

k
pi=1-exp {— exp(8'z;) ijl 0 dij} : (9.14)

where
dor — 1 if £(;) is in the interval A;,
7710 otherwise,
for j =1,2,...,k, and the intervals A; are as shown in Table 9.7.

Table 9.7 Definition of intervals, A;, used for constructing indicator variables.

Type of observation Value of y; Interval, A;

Left-censored Joil, i=1,2,...,1

(0
Right-censored (0,a:], i =1+1,01+2,....l+7r
(0
(

—_Oo O

sai, t=l4+r+1,0l+7r+2,...,n

Confined .
Gi—c,bic], i=n+1,n+2,...,n+c

This leads to a non-linear model for a set of binary response variables,
with values y;, and corresponding response probabilities p;, found from equa-
tion (9.14), for ¢ = 1,2,...,n + ¢. The model contains k + p unknown pa-
rameters, namely 61,0,,...,0; and £, 5, ..., B8p. This model is known as a
generalised non-linear model, since it is not possible to express a simple func-
tion of p; as a linear combination of the unknown parameters, except in the
case where there are no explanatory variables in the model. The model can be
fitted using computer software for generalised non-linear modelling, such as
SAS proc nlmixed. Note that in the fitting process, the §-parameters should
be constrained to be non-negative.

After fitting a model, the value of the statistic —2log L can be found, and
this may be used to compare alternative models in the usual manner. The
general procedure is to fit the k terms involving the #-parameters, and to
then examine the effect of adding and subtracting the explanatory variables
in the data set.

Once an appropriate model has been found, the baseline survivor function
in equation (9.12) is estimated using

So(t) = exp <_ > 9) , (9.15)

for ¢y <t <tyyn,J=1,2,...,k, where t(;;1) = 00, and éj is the estimated
value of 6;. The estimated survivor function for the sth individual follows from

S'z(t) — S’o (t)eXp(ﬁlmﬁ
= exp {— exp(ﬁ/:vi) Zi:1 ér} ; (9.16)
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for 2 = 1,2,...,n, where B is the vector of estimated coefficients of the ex-
planatory variables. Furthermore, the estimates of the g-parameters are inter-
pretable as log-hazard ratios, in the usual manner, and their standard errors,
produced during the fitting process, can be used to obtain confidence limits.

9.4.8 Choice of the step times

We have seen that the baseline survivor function is assumed to have steps at
times £(;), j = 1,2,..., k, which are a subset of the observed censoring times,
a; and b;, ¢ =1,2,...,n. It might be considered to be desirable for the ¢ to
be formed from all distinct censoring times, that is all the unique values of a;
and b;. However, this will generally lead to the introduction of far too many
§-parameters in the non-linear model. Instead, a subset of the available times
is chosen.

Each interval used in the binary data model, and denoted by A; in the
preceding section, must include at least one of the times ¢(;). If this is the
case, at least one of the values of d;; in equation (9.14) will be equal to unity

and hence the term Z?:l 0; d;; will be greater than zero. Suppose that the
interval A; is (u;, v;]. This requirement is then achieved by taking ¢(;y to be the
smallest of the values of v;, t(2) to be the smallest v; such that u; > {1y, {(3)
to be the smallest v; such that u; > #(5), and so on, until () is the smallest
value of v; such that u; > ¢ _1).

Once this subset of k times has been identified, the model can be fitted.
Models containing explanatory variables are fitted, and for each model the
estimates of the k f-parameters and the relevant S-parameters are found. The
fitting process will lead to a value of the —2log L statistic, and these values can
be compared for models with the same number of §-parameters, but different
explanatory variables, in the usual way.

Sometimes, it may be desirable to increase the number of steps in the es-
timated baseline hazard function, by the addition of some of the remaining
censoring times. This entails adding a new f-parameter for each additional
time point. One way of doing this is to fit the minimal set of censoring times,
and to then add each additional time point in turn, for the full set of ex-
planatory variables. The time that leads to the biggest reduction in the value
of —2log L is then added to the minimal set. All remaining times are then
added one by one, and again that which reduces —2 logﬁ the most is added
to the set. This process may be continued until the reduction on adding an
additional #-parameter ceases to be significant at some chosen level, and so
long as all the estimated #-parameters remain positive.

It is important to note that this modelling procedure is only valid if the
set of possible censoring times is finite, that is, it does not increase with the
number of observations. Otherwise, the number of #'s increases indefinitely
and asymptotic results used in comparing models will no longer be valid.

This procedure for modelling arbitrarily interval-censored data is now illus-
trated.
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Ezample 9.4 Occurrence of breast retraction

In the treatment of early breast cancer, a tumourectomy, followed by radiation
therapy, is often used as an alternative to mastectomy. Chemotherapy may
also be used in conjunction with the radiotherapy in order to enhance its effect,
but there is evidence that this adjuvant chemotherapy increases the effect of
the radiation on normal tissue. This in turn leads to breast retraction, which
has a negative impact on the appearance of the breast. In a retrospective study
to assess the effect of this type of treatment on breast cosmesis, 46 women
who had been treated with radiotherapy alone were compared with 48 who
had received a combination of radiotherapy and chemotherapy. Patients were
observed every 4 to 6 months, but less frequently as their recovery progressed.
On these occasions, the cosmetic effect of the treatment was monitored, with
the extent of breast retraction being measured on a four-point scale: none,
minimal, moderate, severe. The event of interest was the time in months
to the first appearance of moderate or severe retraction. The exact time of
occurrence of breast retraction will be unknown, and the only information
available will concern whether or not retraction is identified when a patient
visits the clinic. Moreover, since the visit times were not the same for each
patient, and a number of patients failed to keep appointments, the data are
regarded as arbitrarily interval-censored. The data obtained in this study were
included in Finkelstein and Wolfe (1985), and are given in Table 9.8.

Table 9.8 Data on the time in months to breast retraction in patients with
breast cancer.

Radiotherapy Radiotherapy and Chemotherapy

(45, ] (25,37 (37, *] (8, 12] (0, 5] (30, 34]
(6,10 (46,%] (0,5 0,22 (5,8  (13,%]
(0, 7] (26, 40] (18, ) (24,31 (12,20] (10, 17]
(46, %] (46, %] (24, %] (17,27 (11, %] (8, 21]
(46, *] (27, 34] (36, *] (17, 23] (33, 40] 4, 9]

(7, 16] (36,44] (5, 11] (24,30] (31, %] (11, %]
(17, ] (46, %] (19, 35] (16,24] (13,39 (14, 19]
(7, 14] (36, 48] (17, 25] (13, =] (19,32] (4, §

(37,44] (37, *] (24, *) (11,13] (34, ] (34, *)
0, 8] (40, x| (32, ] (16,20] (13, %] (30, 36]
(4, 11] (17, 25] (33, *] (18,25]  (16,24] (18, 24]
(15, x| (46, %] (19, 26] (17,26] (35, x] (16, 60]
(11,15]  (11,18] (37, %] (32, ] (15,22] (35, 39]
(22, *] (38, *] (34, *] (23, *] (11, 17] (21, *]
(46, *] (5, 12] (36, *] (44, 48]  (22,32] (11, 20]
(46, *] (14,17]  (10,35] (48, ]

In this data set, there are five patients for whom breast retraction had
occurred before the first visit. For each of these patients, the start of the
interval is set to zero, that is a; = 0, and the observed times are left-censored,
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so that | = 5. There are 38 patients who had not experienced retraction by
their final visit. The upper limit of the time interval that includes the event
time is then shown as an asterisk (x) in Table 9.8. The observations for these
patients are therefore right-censored and so r = 38. The remaining ¢ = 51
patients experience breast retraction within confined time intervals, and the
total number of observations is n =14 c+r = 94.

The first step in fitting a model to these arbitrarily interval-censored data
is to expand the data set by adding a further 51 lines of data, repeating that
for the patients whose intervals are confined, so that the revised data base has
n + ¢ = 145 observations. The values, y;, of the binary response variable, Y,
are then added. These are such that ¥ = 1 for a left-censored observation, and
Y = 0 for a right-censored observation. For confined observations, where the
data, are duplicated, one of the pairs of observations has Y = 0 and the other
Y = 1. The treatment effect will be represented by the value of a variable
labelled Treat, which will be zero for a patient on radiotherapy and unity for
a patient on radiotherapy and chemotherapy. For illustration, the values of
the binary response variable, Y, are shown for the first three patient treated
with radiotherapy alone, in Table 9.9.

Table 9.9 Augmented data set for the first
three patients on radiotherapy.

Patient A B U V  Treat

6 10 O 6 0
6 10 6 10 0
0 0

Y

45 x 0 45 0 0
0

1

7 1

W NN =

0o 7

In this table, the variables A and B refer to the times of the start and end of
each interval, and so their values are a;, b;, and the variables U and V contain
the values of u;, v; that form the limits of the intervals, A4;, in the binary data
model.

We now determine the time points, t(;y, that are to be used in calculating
the baseline survivor function, using the procedure described in Section 9.4.3.
The first of these is the smallest of the values v;, which form the variable V' in
the data set. This is found for the observation (0, 4], for which V' = 4, so that
t(1) = 4. The smallest value of V' for which U > 4 occurs for the observation
(4,8], and so t(2) = 8. Next, the smallest value of V' with U > 8 occurs for the
observation (8,12], giving #(3y = 12. There are six other times found in this
way, namely 17, 23, 30, 34, 39, and 48, and so the minimal subset of times
has k = 9 in this example.

Variables with values d;;, that correspond to each of the k censoring times,
t(j), are now added to the data base that has 145 records. Since k = 9 in this
case, nine variables, D1, D2, ..., Dy, are introduced, where the values of D;,
j=1,2,...,9, are dij, for i = 1,2,...,145. These values are such that d;; = 1
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if u; < £(;y < v;, and zero otherwise, and so they can straightforwardly be ob-
tained from the variables U and V' in Table 9.9. The values of Dy, Ds, ..., Do,
for the three patients included in Table 9.9, are shown in Table 9.10.

Table 9.10 Data base for binary data analysis, for the first three patients
on radiotherapy.

Patient Treat Y Dl D2 D3 D4 D5 DG D7 Dg Dg
1 0 0 1 1 1 1 1 1 1 1 0
2 0 0 1 0 0 0 0 0 0 0 0
2 0 1 0 1 0 0 0 0 0 0 0
3 0 1 1 0 0 0 0 0 0 0 0

We now have the data base to which a non-linear model for the binary
response data in Y is fitted. The model is such that we take Y to have a
Bernoulli distribution with response probability as given in equation (9.14),
that is a binomial distribution with parameters 1, p;. The SAS procedure proc
nlmixed has been used to fit the non-linear model to the binary data.

On fitting the null model, that is the model that contains all 9 D-variables,
but not the treatment effect, the value of the statistic —2log L is 285.417. On
adding Treat to the model, the value of —2log L is reduced to 276.983. This
reduction of 8.43 on 1 d.f. is significant at the 1% level (P = 0.0037), and
so we conclude that the interval-censored data do provide strong evidence
for a treatment effect. The estimated coefficient of Treat is 0.8212, with a
standard error of 0.2881. The corresponding hazard ratio for a patient on
the combination of radiotherapy and chemotherapy, relative to a patient on
radiotherapy alone, is exp(0.8212) = 2.273. The interpretation of this is that
patients on the combined treatment have just over twice the risk of breast
retraction, compared to patients on radiotherapy. A 95% confidence interval
for the corresponding true hazard ratio has limits exp(0.821241.96 x 0.2881),
which leads to the interval (1.29,4.00).

The minimal subset of times at which the estimated baseline survivor func-
tion is estimated can be enlarged by adding additional censoring times from
the data set. However, there are no additional times that lead to a signifi-
cant reduction in the value of the —2log L statistic, with the estimated 6-
parameters remaining positive. A

The estimated values of the coefficients of the D-variables are the values 6;,
for j = 1,2,...,9, and these can be used to provide an estimate of the sur-
vivor function for the two treatment groups. Equation (9.15), gives the form
of the estimated baseline survivor function, which is the estimated survivor
function for the patients on radiotherapy alone. The corresponding estimate
for the patients who receive adjuvant chemotherapy is obtained using equa-
tion (9.16), and is just {S’O(t(]-))}e"pw), with 3 = 0.8212. On fitting the model
that contains the treatment effect and the 9 D-variables, the estimated values
of 6;, for j = 1,2,...,9, are 0.0223, 0.0603, 0.0524, 0.0989, 0.1620, 0.0743,

ARBITRARILY INTERVAL-CENSORED SURVIVAL DATA 295

0.1098, 0.2633 and 0.4713, respectively. From these values, the baseline sur-
vivor function, at the times t¢;), j = 1,2,...,9, can be estimated, and this
estimate is given as S’o(t(j)) in Table 9.11. Also given is the estimated survivor

function for patients on the combined treatment, denoted S1(f(j))-

Table 9.11 Estimated survivor
functions for a patient on radio-
therapy alone, S’p(t), and adjuvant
chemotherapy, S1(t).

Time interval So(t) S1(t)

0~ 1.000 1.000

4- 0.978 0.951

8~ 0.921 0.829
12— 0.874 0.736
17— 0.791 0.588
23~ 0.673 0.407
30— 0.625 0.343
34— 0.560 0.268
39— 0.430 0.147
48— 0.269 0.050

These functions are also plotted in Figure 9.1.

0]

0.8 A

0.6

0.4 1

Estimated survivor function

0.2 4

0.0 ‘ .
0 10 20 30 40 50

Time to retraction

Figure 9.1 Estimated survivor functions for a patient on radiotherapy (—) and the
combination of radiotherapy and chemotherapy (---).

From the estimated survivor functions, the median time to breast retrac-
tion for patients on radiotherapy is estimated to be 39 months, while that
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for patients who received adjuvant chemotherapy is 23 months. More precise
estimates of these median times could be obtained if a greater number of
censoring times were used in the analysis.

9.5 Parametric models for interval-censored data

The methods described for modelling interval-censored data that have been
described in previous sections are based on the Cox proportional hazards
model. In fact, it is much more straightforward to model such data assuming a
parametric model for the survival times. In Section 9.4, the likelihood function
for n arbitrarily interval-censored observations consisting of [ that are left-
censored at time a;, r that are right-censored at b;, and ¢ that are confined
to the interval (a;,b;), was given as

l I+r n
[T =500y T] Sia) [ {Si(as) — Si(oa)}. (9.17)
=1 1=l+1 i={+r+1

If a parametric model for the survival times is assumed, then S;(¢) has a fully
parametric form. For example, if the survival times have a Weibull distribution
with scale parameter A and shape parameter v, from equation (5.37) in Section
5.5 of Chapter 5, the survivor function for the ith individual is

Si(t) = exp {—exp(B'x;) A7},

where x; is the vector of values of explanatory variables for that individual,
with coefficients 3. Alternatively, the accelerated failure time form of the
survivor function, given in equation (6.17) of Section 6.5 of Chapter 6, may
be used. The Weibull survivor function leads to expressions for the survivor
functions in expression (9.17), for any values of a; and b;. The corresponding
log-likelihood function can then be maximised with respect to the parameters
A, v and the #’s. No new principles are involved. The same procedure can be
adopted for any other parametric model described in Chapter 6.

In some situations, the data base may be a combination of censored and un-
censored observations. The likelihood function in expression (9.17) may then
be further extended to allow for the uncensored observations. This is achieved
by including an additional factor of the form [], f(¢;), which is the product
of the density functions at the event times, over the uncensored observations.
A number of software packages include facilities for the parametric modelling
of interval-censored data, including the SAS procedure proc lifereg.

Example 9.5 Occurrence of breast retraction

The interval-censored data on the times to breast retraction in women being
treated for breast cancer, given in Example 9.4, are now used to illustrate
parametric modelling for interval-censored data.

If a common Weibull distribution is assumed for the data in both treatment
groups, the value of —2log L is 297.585. If the treatment effect is added to
this model, and the assumption of proportional haAzards is made, so that the
shape parameter is constant, the value of —2log L reduces to 286.642. This
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reduction of 10.943 on 1 d.f. is highly significant (P = 0.001). Comparing this
with the results of the analysis in Example 9.4, we find that the significance
of the treatment effect is a little greater under the assumed Weibull model.
Furthermore, the estimated hazard ratio for a patient on radiotherapy with
adjuvant chemotherapy, relative to a patient on radiotherapy alone, is 2.501,
and a corresponding 95% confidence interval is (1.44,4.35). These values do
not differ much from those found in Example 9.4.

9.6 Discussion

In many situations, the method for analysing interval-censored survival data
that has been presented in Section 9.4, or the fully parametric approach of
Section 9.5, will be the most appropriate. Even when studies are designed to
be such that the examination times are the same for each patient in the study,
missed, postponed or cancelled appointments may lead to observation times
that do differ across the patients. In this case, and for studies where this is a
natural feature, methods for handling arbitrarily interval-censored data will
be required.

When the observation times are the same for each patient, the method
for analysing interval-censored data that has been presented in Section 9.3
will generally be the most suitable. However, this approach is not optimal,
since recurrences detected between scheduled examinations, that is, interval-
detected recurrences, are only counted at the next examination time. If the
intervals between successive examination times are not too large, the difference
between the results of an analysis based on the model in Section 9.3, and one
that uses the actual times of interval-detected recurrences, will be negligible.
In fact, if the number of intervals is not too small, and the time between
successive examinations not too large, the results will not be too different
from an analysis that assumes the recurrence times to be continuous, outlined
in Section 9.1.

As mentioned earlier, the model described in Section 9.3 only requires haz-
ards to be proportional at scheduled screening times. This means that the
model is useful when the hazards are not necessarily proportional between
screening times. Furthermore, the model could be relevant in situations where
although actual survival times are available, the hazards can only be taken to
be proportional at specific times. On the other hand, the method for analysing
arbitrarily interval-censored data in Section 9.4, requires hazards to be propor-
tional at each of the times used in constructing the baseline survivor function,
which is more restrictive. Further comments on methods for analysing survival
data where hazards are non-proportional are included in Chapter 10.

9.7 Further reading

Much of Sections 9.1 to 9.3 of this chapter are based on the summary of
methods for processing interval.-censored survival data given by Whitehead
(1989). The approach described in Section 9.3 is based on Prentice and Gloeck-
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ler (1978). A method for fitting the proportional hazards model to interval-
censored data was proposed by Finkelstein (1986), but the method for mod-
elling arbitrarily interval-censored data in Section 9.4 is due to Farrington
(1996), who also develops additive and multiplicative models for such data.

A number of approaches to the analysis of interval-censored data involve
the analysis of binary observations. Collett (2003) describes a model-based
approach to the analysis of binary data. This book includes a description
of the facilities available for modelling binary data in the major software
packages. Other books that include material on the analysis of binary data
include Hosmer and Lemeshow (2000), Dobson (2001) and Morgan (1992).

The use of the complementary log-log transformation in the analysis of
interval-censored data was described by Thompson (1981). Becker and Melbye
(1991) show how a log-linear model can be used to obtain an estimate of the
survivor function from interval-censored data, assuming a constant hazard in
each interval. Whitehead (1997) shows how the log-rank test for comparing
two treatment groups can be adapted for use in processing interval-censored
survival data. However, since this approach does not allow other explanatory
variables to be taken account of, details are not given here.

There are a number of other approaches to the analysis of interval-censored
data, some of which are described in the tutorial provided by Lindsey and
Ryan (1998). Lindsey (1998) reviews the use of parametric models for the
analysis of interval-censored data. Pan (2000) suggests using multiple impu-
tation, based on the approximate Bayesian bootstrap, to impute values for
censored observations. Farrington (2000) provides a comprehensive account
of diagnostic methods for use with proportional hazards models for interval-
censored data.

CHAPTER 10

Sample size requirements for a
survival study

There are many aspects of the design of a clinical trial that must be considered
when the response variable is a survival time. These include all the usual
matters, such as patient eligibility, definition of the treatments, the method
of randomisation to be employed in allocating patients to treatment group,
and the use of blinding. In addition, care must be taken to define both the time
origin and the end-point of the study in a clear and unambiguous manner.
Consideration might also be given to whether the study should be based on a
fixed number of patients, or whether a sequential design should be adopted,
in which the study continues until there is a sufficient number of events to
be able to distinguish between two treatments. The desirability of performing
interim analyses might also need to be addressed.

In a book of this nature, there is insufficient space to be able to go into any
of these topics in detail. Fortunately there are a number of excellent books
that include material on the design of clinical trials, some of which include
material on the design of trials for survival analysis, such as Pocock (1983).

However, there is one matter in the design of fixed sample size studies that
will be discussed here. This is the crucial issue of the number of patients that
are required in such studies. If too few patients are recruited, there may be
insufficient information available in the data to enable a treatment difference
to be pronounced significant. On the other hand, it is unethical to waste
resources in studies that are unnecessarily large.

10.1 Distinguishing between two treatment groups

Many survival studies are concerned with distinguishing between two alter-
native treatments. For this reason, a study to compare the survival times of
patients who receive a new treatment with those who receive a standard will
be used as the focus for this chapter.

Suppose that in this study, there are two groups of patients, and that the
standard treatment is allocated to the patients in Group I, while the new
treatment is allocated to those in Group II. Assuming a proportional hazards
model for the survival times, the hazard of death at time ¢ for a patient on
the new treatment, hn(t), can be written as

hn(t) = Yhs(t),

where hg(t) is the hazard function at ¢ for a patient on the standard treatment
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and ® is the unknown hazard ratio. We will also define 8 = log 1 to be the log-
hazard ratio. If 8 is zero, there is no treatment difference. On the other hand,
negative values of # indicate that survival is longer under the new treatment,
while positive values of § indicate that patients survive longer on the standard
treatment.

In order to test the null hypothesis that § = 0, the log-rank test described in
Section 2.6 can be used. As was shown in Section 3.9, this is equivalent to using
the score test of the null hypothesis of equal hazards in the Cox regression
model. In this chapter, sample size requirements will be based on the log-rank
test statistic, but the results will naturally apply when an analysis based on
the Cox regression model is envisaged.

In a survival study, the occurrence of censoring means that it is not usu-
ally possible to measure the actual survival times of all patients in the study.
However, it is the number of actual deaths that is important in the analysis,
rather than the total number of subjects. Accordingly, the first step in deter-
mining the number of patients in a study is to calculate the number of deaths
that must be observed. We then go on to determine the required number of
subjects.

10.2 Calculating the required number of deaths

To determine the sample size requirement for a study, we calculate the num-
ber of subjects needed for there to be a certain chance of declaring 6 to be
significantly different from zero when the true, but unknown, log-hazard ratio
is 0. Here, 0p is the reference value of 6. It will be a reflection of the magni-
tude of the treatment difference that it is important to detect, using the test
of significance. In a study to compare a new treatment with a standard, there
is likely to be a minimum worthwhile improvement and a maximum envisaged
improvement. The actual choice of §r will then lie between these two values.
In practice, #r might be chosen on the basis of the increase in the median
survival time that is to be detected, or in terms of the probability of survival
beyond some time. This is discussed further and illustrated later in Example
10.1.

More formally, the required number of deaths is taken to be such that there
is a probability of 1— 3 of declaring the observed log-hazard ratio to be signifi-
cantly different from zero, using a hypothesis test with a specified significance
level of o, when in fact § = 0. The quantity 1 — 3 is the probability of re-
jecting the null hypothesis when it is in fact false, and is known as the power
of the test. The term (3 is the probability of not rejecting the null hypothesis
when it is false and is sometimes known as the type II error. Both « and 3 are
taken to be small. Typical values will be a = 0.05 and 3 = 0.1, and with these
values there would be a 90% chance of declaring the observed difference be-
tween two treatments to be significant at the 5% level. The exact specification
of @ and /8 will to some extent depend on the circumstances. If it is important
to detect a difference as being significant at a lower level of significance, or if

CALCULATING THE REQUIRED NUMBER OF DEATHS 301

there needs to be a higher chance of declaring a result to be significant, o and
£ will need to be modified accordingly.

The required number of deaths in a survival study, d, can be obtained from
the equation
_ 4(za/2 + 2,3)2
6% ’
where 2,2 and zs are the upper /2- and upper f-points, respectively, of the

standard normal distribution. It is convenient to write c(c, 8) = (24 /2 + z8)?
in equation (10.1), giving

d (10.1)

d = 4c(a, B)/0%. (10.2)

The values of ¢(a, #) for commonly chosen values of the significance level a
and power 1 — 3 are given in Table 10.1.

Table 10.1 Values of the function c(«, B3).

Value of « Value of 1 — 3
0.80 090 095 0.99
0.10 6.18 856 10.82 15.77
0.05 7.85 10.51 13.00 18.37
0.01 11.68 14.88 17.81 24.03

0.001 17.08  20.90 24.36 31.55

Calculation of the required number of deaths then requires that a value
for fr be identified, and appropriate values of o and 3 chosen. Table 10.1 is
then used in conjunction with equation (10.2) to give the number of deaths
required in a study.

The derivation of the result in equation (10.2) assumes that the same num-
ber of individuals is to be assigned to each treatment group. If this is not
‘the case, a modification has to be made. In particular, if the proportion of
individuals to be allocated to Group I is 7, so that a proportion 1 — 7 will be
allocated to Group II, the required total number of deaths becomes

N
d= (1l —m)h%’

Notice that an imbalance in the number of individuals in the two treatment
groups leads to an increase in the total number of deaths required. The deriva-
tion also includes an approximation, which means that the caleulated number
of deaths could be an underestimate. Some judicious rounding up of the cal-
culated value is therefore suggested to compensate for this.

The actual derivation of the formula for the required number of deaths is
important and so details are given below in Section 10.2.1. This section can be
omitted without loss of continuity. It is followed by an example that illustrates
the calculations.
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10.2.1* Derivation of the required number of deaths

An expression for the required number of deaths is now derived on the basis of
a log-rank test to compare two treatment groups. As in Section 2.6, suppose
that there are r distinct death times, t(1) < f(p) < --- < t(), among the
individuals in the study, and that in the ith group there are d;; deaths at the
Jth ordered death time ¢(;), for ¢ = 1,2 and j = 1,2,...,r. Also suppose that
the number at risk at ¢(;) in the ith group is n;;, and write n; = ny; 4+ ng; for
the total number at risk at #(;) and d; = dy; + dg; for the number who die at
t(;y- The log-rank statistic is then

U=) (dy —ey),
J=1

where e1; is the expected number of deaths in Group I at £(;), given by e;; =
n1;d;/n;, and the variance of the log-rank statistic is

r Nodi(n: — d
v=>" ”1”;2;( (0 —dy), (10.3)
j=1 J

H(n; — 1)

When using the log-rank test, the null hypothesis that § = 0 is rejected
if the absolute value of U is sufficiently large, that is, if |{U| > k, say, where
k > 0 is a constant. We therefore require that

P(|U| > k;0 = 0) = a, (10.4)
and
P(U| > k;0 =0r)=1-4. (10.5)
for a two-sided 100a% significance test to have a power 1 — 3 .

We now quote without proof a result given in Sellke and Siegmund (1983),
according to which the log-rank statistic, U, has an approximate normal dis-
tribution with mean 6V and variance V, for small values of 4. Indeed, the
result that U ~ N(0,V) under the null hypothesis # = 0, is used as a basis
for the log-rank test. Then, since

P(lU| > k;0 =0)=PU > k;0 =0)+P(U < —k;6 = 0),
and U has an N(0,V) distribution when 6 = 0, a distribution that is sym-
metric about zero,
P(U>Fk;0=0)=PU < —k;0=0).
It then follows from equation (10.4) that
P(U > k;0 = 0) = % (10.6)

Next, we note that
P(U| > k;0 =0r) =P(U > k;0 = ) + P(U < —k; 0 = 0g).

For the sort of values of k that are likely to be used in the hypothesis test,
either P(U < —k;8 = g) or P(U > k; 0 = 6r) will be negligible. For example,
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if the new treatment is expected to increase survival so that 6 is taken to be
less than zero, the probability of U having a value in excess of k, k& > 0, will
be small. So without loss of generality we will take

P(U| > k;0 = 0p) ~ P(U < —k; 0 = Op).

We now denote the upper 100p% point of the standard normal distribu-
tion by z,. Then ®(z,) = 1 — p, where ®(-) stands for the standard normal
distribution function. The quantity ®(z,) therefore represents the area under
a standard normal density function to the left of the value z,. Now, since
U~ N(0,V) when 6 = 0,

P(U>l<:;9:0):14P(U<k;9:O):1~@<%V)),

and using equation (10.6) we have that

o (Q%/S) =1-(a)2).

k j—
W = Za /2,

where 2z, /o is the upper «/2-point of the standard normal distribution, and
so k can be expressed as

Therefore,

k=2z2q/0v/(V). (10.7)
In a similar manner, since U ~ N(0gV,V) when ¢ = 0p,
~k — 0V
P(U< —k;60=20 =<I><———> ~1-3,
( W=t m)

and so we take
—k—0rV

—_—— = ZB’
V(V)
where z3 is the upper 3-point of the standard normal distribution. If we now
substitute for k from equation (10.7), we get

~Zzay2y/ (V) = ORV = 25/(V),
and so V needs to be such that
V = (2072 + 25)% /0%, (10.8)

to meet the specified requirements.
When the number of deaths is few relative to the number at risk, the ex-
pression for V in equation (10.3) is approximately

A nljng‘d‘
> (10.9)
j=1 J

Moreover, if 4 is small, and recruitment to each treatment group proceeds at
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a similar rate, then ni; &~ ngj, for j=1,2,... r, and so
2
nijN2; n1;N2; - nlj - 1
2 ] N2 N2 o4
5 (n1j + nay) (2n15) 4

Then, V is given by
V> di/4=d/4,
j=1

say, where d = }7._, d; is the total number of deaths among the individuals
in the study.
Finally, using equation (10.8), we now require d to be such that
é B (Za/g + Zﬂ)Q

1 T

which leads to the required number of deaths being that given in equa-
tion (10.1).

At later death times, that is, when the values of j in expression (10.9) are
close to r, the numbers of subjects at risk in the two groups will be small.
This is likely to mean that ni; and ny; will be quite different at the later
death times, and so n;n9; /n? will be less than 0.25. This in turn means that
V < d/4 and so the required number of deaths will tend to be underestimated.

Exzample 10.1 Survival from chronic active hepatitis

Patients suffering from chronic active hepatitis rapidly progress to an early
death from liver failure. A new treatment has become available and so a clini-
cal trial is planned to evaluate the effect of this new treatment on the survival
times of patients suffering from the disease. As a first step, information is
obtained on the survival times in years of patients in a similar age range
who have received the standard therapy. The Kaplan-Meier estimate of the
survivor function derived from such data is shown in Figure 10.1.

From this estimate of the survivor function, the median survival time is 3.3
years, and the survival rates at two, four and six years can be taken to be
given by S(2) = 0.70, S(4) = 0.45, and S(6) = 0.25.

The new treatment is expected to increase the survival rate at five years
from 0.41, the value under the standard treatment, to 0.60. This information
can be used to calculate a value for 6. To do this, we use the result that if
the hazard functions are assumed to be proportional, the survivor function
for an individual on the new treatment at time ¢ is

Sn(t) = [Ss(®)]¥, (10.10)

where Sg(t) is the survivor function for an individual on the standard treat-
ment at ¢ and 1) is the hazard ratio. Therefore,

_log Sy (2)
 logSs(?)’

and so the value of 4 corresponding to an increase in S(t) from 0.41 to 0.60
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Figure 10.1 Estimated survivor function for patients receiving a standard treatment
for hepatitis.

is

log(0.60)

YR = o(04D) —

0g(0.41)
With this information, the survivor function for a patient on the new treat-
ment can be estimated by [Sg(¢)]¥®. In particular, Sy(2) = 0.82, Sn(4) =
0.63, and Sy(6) = 0.45. A plot of the two survivor functions is shown in
Figure 10.2.

The median survival time under the new treatment can be estimated from
this estimate of the survivor function. Using Figure 10.2, the median survival
time under the new treatment is estimated to be about six years.

To calculate the number of deaths that would be required in a study to
compare the two treatments, we will take o = 0.05 and 1 — 3 = 0.90.
With these values of o and 8, the value of the function ¢(a, ) from Ta-
ble 10.1 is 10.51. Substituting for ¢(0.05,0.1) in equation (10.2) and taking
0r = logr = log(0.57) = —0.562, the number of deaths required to have
a 90% chance of detecting a hazard ratio of 0.57 to be significant at the 5%
level is then given by

0.57.

4 % 10.51
d= —F
0.5622
Allowing for possible underestimation, this can be rounded up to 140 deaths
in total. This means that approximately 70 deaths would need to be observed
in each treatment group.

= 133.

The calculations described above are only going to be of direct use when a
study is to be continued until a given number of those entering the study have
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Figure 10.2 Estimated survivor functions for individuals on the standard treatment
(—) and the new treatment (---).

died. Most trials will be designed on the basis of the number of patients to be
recruited and so we must now examine how this number can be calculated.

10.3 Calculating the required number of patients

In order to calculate the actual number of patients that are required in a
survival study, we need to consider the probability of death over the duration
of a study. Typically, patients are recruited over an accrual period of length a.
After recruitment is complete, there is an additional follow-up period of length
/. The total duration of a study will therefore be of length « + f. Notice that
if f is small, or even zero, there will need to be correspondingly more patients
recruited in order to achieve a specific number of deaths.

Once the probability of a patient dying in the study has been evaluated,
the required number of patients will be found from

ne—4 (10.11)

P(death)
where d is the required number of deaths found from equation (10.2). Accord-
ing to a result derived in the next section, the probability of death can be

taken as

P(death) = 1 — %{5‘(}”) +45(0.5a + f) + S(a+ f)}. (10.12)

where
Ss(t) + Sn(t)

S = 22

)
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and Ss(t) and Sy(t) are the estimated values of the survivor functions for
individuals on the standard and new treatments, respectively, at time .

The above result shows how the required number of patients can be calcu-
lated for a trial with an accrual period of a and a follow-up period of f. Of
course, the duration of the accrual period and follow-up period will depend
on the recruitment rate. So suppose that the recruitment rate is expected to
be m patients per month and that d deaths are required. If n patients are
to be entered into the study over a period of @ months, this means that n/a
need to be recruited in each month. In practice, information is likely to be
available on the accrual rate, m, that can be expected. The number recruited
in an accrual period of length a is then ma and so the expected number of
deaths in the study is

ma x P(death).

Values of ¢ and f which make this value close to the number of deaths required
can then be found numerically, for example, by trying out different values of
a and f. This algorithm could be computerised and an optimisation method
used to find the value of a that makes

d — {ma x P(death)} (10.13)

close to zero for a range of values of f. Alternatively, the value of f that yields
the result in equation (10.13) for a range of values of a can be found. A two-
way table giving the required number of patients for different combinations
of values of a and f will be particularly useful in planning a study.

The following section gives details underlying the derivation of the result
in equation (10.12), and can again be omitted without loss of continuity.

10.5.1* Derivation of the required number of patients

We begin with the general result from distribution theory that the marginal
probability of a patient dying during the course of a study can be obtained
from the joint probability of death and entry to the study at time ¢ using

P(death) = / P(death and entry at time ¢) dt. (10.14)
0

The joint probability can in turn be found from the result

P(death and entry at time t) = P(death | entry at ¢) x P(entry at t),
(10.15)
which is simply a version of the result that P(A|B) = P(AB)/P(B).

We now assume a uniform recruitment rate over the accrual period. The
distribution of entry times to the study can then be taken to be uniform
over the time interval (0, a). Therefore, the probability of an individual being
recruited to the study at time ¢ is a~!, for any value of ¢ in the interval (0,a).
From equations (10.14) and (10.15), we have

P(death) = / P(death | entry at t)a~t dt,
0
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so that
1 a
P(death) =1 — - / P(survival | entry at ¢) dt.
0
A patient entering the study at time ¢ who survives for the duration of the
study, that is, to time a+ f, must have been alive for a period of length a+ f—t
after entry. The conditional probability P(survival | entry at ¢) is therefore
the probability of survival beyond a + f — #. This probability is the value of

the survivor function for that individual at a + f — ¢, that is, S(a + f — t).
Consequently,

1 a
P(death) =1 — 5/ Sla+ f—t)dt,
0

and on writing v = a + f — ¢, this result becomes
1 ety
P(death) =1~ © / S(u) du. (10.16)
!

The integral of the survivor function is now approximated using numerical
integration. According to Simpson’s rule,

[ t@aex 5 s v ar (52) + 1

so that
a+f
[ Smaus s 15050+ )+ S(at ),

and hence, using equation (10.16), the probability of death during the study
is given by

P(death) — 1 — % (S(f) +45(0.5a + f) + S(a+ f)} .

From this result, the approximate probability of death for an individual in
Group I, for whom the survivor function is Ss(t), is

P(death; Group T) = 1 — é (Ss(f) +4S5(05a + f) + Ss(a+ f)},

and similarly that for an individual in Group IT is

P(death; Group II) =1 — % {Sn(f) +4Sn(0.5a + f) + Sn(a+ f)}-

On the assumption that there is an equal probability of an individual being
assigned to either of the two treatment groups, the overall probability of death
is the average of these two probabilities, so that

P(death; Group I) + P(death; Group II)

P(death) = : .

On substituting for the probabilities of death in the two treatment groups,
and writing S(¢) = {Ss(¢) + Sn(t)}/2, we get

P(death) =1 — %{S(f) +45(05a+ f)+ S(a+ f)},
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as in equation (10.12).
If the proportion of individuals to be allocated to Group I is 7, the overall
probability of death becomes

7 P(death; Group I) + (1 — 7) P(death; Group II),
and the result for the overall probability of death is modified accordingly.

Ezample 10.2 Survival from chronic active hepatitis

In Example 10.1, it was shown that 140 deaths needed to be observed for the
study on chronic hepatitis to have sufficient power to detect a hazard ratio of
0.57 as significant. Suppose that patients are to be recruited to the study over
an 18-month accrual period and that there is to be a subsequent follow-up
period of 24 months. From equation (10.12), the probability of death in the
42 months of the study will then be given by

P(death) = 1 — é (5(24) + 45(33) + 5(42)} .

Now, using the estimated survivor functions shown in Figure 10.2,
= 55(24) + SN(24) . 0.70 + 0.82

5(24) = 5 5 = 0.76,
. 33)  0.57+0.73

5(33) = 55(33) J; Sn(33) _ ; = 0.65,
S(49) = 55(42)251\,(42) _ 0.45;0,63 054,

and so the probability of death is
1- %{0.76 + (4 x 0.65) + 0.54} = 0.350.

From equation (10.11), the required number of patients is

140

" 0350

and so 400 patients will need to be recruited to the study over the accrual

period of 18 months. This demands a recruitment rate of about 22 patients
per month.

If it is only expected that 18 patients can be found each month, the accrual
period will need to be extended to ensure that there is a sufficient number of
individuals to give the required number of deaths. The number of individuals
that could be recruited in a period of ¢ months would be 18a. Various values
of a can then be tried in order to make this approximately equal to the value
obtained from equation (10.11). For example, if we take a = 24 and continue
with f = 24, the probability of death over the four years of the study is

= 400,

P(death) =1 — é{S’(zzx) +45(36) + S(48)}.

From Figure 10.2, the survivor functions for patients on each treatment at
24, 36 and 48 months can be estimated, and we find that S(24) = 0.76,
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5(36) = 0.65, and S(48) = 0.50. The probability of death then turns out to
be 0.357 and the required number of patients to give 140 deaths is now 393.
This is broadly consistent with an estimated recruitment rate of 18 per month.

Now suppose that it is decided that the study will not have a follow-up
period, so that the accrual period is equal to the duration of the study. If
the accrual period is taken to be 20 months, so that ¢ = 20 and f = 0, the
probability of death is given by

P(death) = 1 — é{S(O) 1 45(10) 1 5(20)).

Now, S(0) = 1.00, S(10) = 0.82, and S(20) = 0.79, and the probability of
death is 0.155. The required number of patients is now 140/0.155 = 903, and
this would just about be met by a recruitment rate of 45 patients per month.
This shows that the absence of a follow-up period leads to an increase in the
number of patients that must be entered into the study.

10.3.2 An approximate procedure

A much simpler procedure for calculating the required number of patients in
a survival study to compare two treatments is outlined in this section. The
basis for this result is that {Ss(7) + Sy (7)}/2 is the average probability that
a patient in the study survives beyond time 7, where Sg(7) and Sy (7) are the
survivor functions at time 7, for patients on the standard and new treatments,
respectively. The probability of death, in the period from the time origin to
T, can then be approximated by

SS(T)‘FSN(T)‘

1-—
2
Using equation (10.11), the required number of patients becomes
2d
n

T 2= Ss(r) — Sn(r)’

where d is the required number of deaths.

A natural choice for the value of 7 to use in this calculation is the average
length of the follow-up period for patients in the study, f + (a/2), where
a is the accrual period and f the follow-up period. This procedure is very
approximate because it does not take account of patient follow-up times that
extend beyond 7. As a consequence, this result will tend to overestimate the
required sample size.

Ezample 10.3 Survival from chronic active hepatitis

The study on chronic active hepatitis is now used to illustrate the approximate
procedure for determining the required number of patients. As in Example
10.2, suppose that patients are recruited over an 18 month period and that
there is a further follow-up period of 24 months. The average length of the
follow-up period for a patient will then be 7 = f + (a/2) = 33 months. From
Figure 10.2, the survivor functions for patients in the two groups are given by
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Ss(33) = 0.57 and Sy(33) = 0.73, respectively. The approximate probability
of death in the period from 0 to 33 months is therefore 0.35 and the number
of patients required to give 140 deaths is 140/0.35 = 400. In this illustration,
the sample size produced by the approximate result is identical to that found
using the more complicated procedure illustrated in Example 10.2, but this
will not usually be the case.

10.4 Further reading

Full details on the issues to be considered when designing a clinical trial are
given in Pocock (1983) and Altman (1991). Whitehead (1997) gives an author-
itative account of sequential methodology for survival trials. The computer
package PEST4 (Planning and Evaluation of Sequential Trials), documented
in MPS Research Unit (2000), includes facilities for the design and analysis
of sequential clinical trials in which the response variable is a survival time.

The formula for the required number of deaths in equation (10.1) appears
in many papers, including Bernstein and Lagakos (1978), Schoenfeld (1981),
Schoenfeld and Richter (1982) and Schoenfeld (1983), although the assump-
tions on which the result is based are different. Bernstein and Lagakos (1978)
obtain equation (10.1) on the assumption that the survival times in each group
have exponential distributions. Lachin (1981), Rubinstein, Gail and Santner
(1981) and Lachin and Foulkes (1986) also discuss sample size requirements
in trials where the survival times are assumed.to be exponentially distributed.
See also the earlier work of George and Desu (1974).

Schoenfeld (1981) obtains the same result as Bernstein and Lagakos (1978)
and others when the log-rank test is used to compare treatments, without
making the assumption of exponentiality. Schoenfeld (1983) shows that equa-
tion (10.1) holds when information on the values of explanatory variables is
allowed for.

Schoenfeld and Richter (1982) give nomograms that enable the required
numbers of patients to be determined on the assumption of exponential sur-
vival times. Dupont and Plummer (1990), in their review of sample size for-
mulae, only give results that assume exponential survival times, although they
do describe a public domain computer program that can be used to determine
sample size requirements. This is easier to use than Schoenfeld and Richter’s
nomograms!

The formulae for the required number of patients in Section 10.3.1 are based
on Schoenfeld (1983). When the assumption of exponential survival times is
made, these formulae do simplify to the results of Schoenfeld and Richter
(1982). Although the resulting formulae are easier to use, it is dangerous to
conduct sample size calculations on the basis of restrictive assumptions about
survival time distributions.

A variant on the formula for the required number of deaths is given by Freed-
man (1982). Freedman’s result has {(1 +4)/(1 — 9)}? in place of 4/(log¢)?
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in equation (10.1). However, for small values of log 1,

{1+ 9)/(1 = 9)}? ~ 4/ (log ¥)*,

and so the two expressions will tend to give similar results. The approximate
formula for the required number of patients, given in Section 10.3.2, is also
due to Freedman (1982).

Lakatos (1988) presented a method for estimating the required number of
patients to compare two treatments which can accommodate matters such
as staggered entry, non-compliance, loss to follow-up and non-proportional
hazards. Lakatos and Lan (1992) show that the Lakatos method procedure
performs well in a variety of circumstances. This approach is based on a
Markov model, and requires a computer program for its implementation; a
SAS macro has been given by Shih (1995).

Extensive tables of sample size requirements in studies involving different
types of response variable, including survival times, are provided by Machin
et al. (1997). This book includes computer software designed to simplify the
use of the tables. A number of commercially available software packages for
sample size calculations, including PASS and nQuery Advisor, also implement
methods for calculating the required number of patients in a survival study.

CHAPTER 11

Some additional topics

In this chapter, a number of additional topics that arise in the practical appli-
cation of the methods of survival analysis described in this book are discussed.
Many analyses are based on a model that assumes proportional hazards, and
so some methods for processing survival data when this assumption is not
satisfied are described in Section 11.1. In Section 11.2, the implications of
informative censoring are outlined, and methods for detecting this feature
are suggested. Models for survival data that contain a random effect, known
as frailty models, are introduced in Section 11.3. Multistate models, used in
modelling the natural progression of a disease, are introduced in Section 11.4.
A number of other issues in survival analysis, namely the effect of adjusting
for explanatory variables, measures of explained variation, modelling a cure
probability, cross-over and sequential designs, are considered in less detail in
subsequent sections. For each of these topics, references to the literature are
given to enable the interested reader to obtain further information on them.

11.1 Non-proportional hazards

Some models that do not require the assumption of proportional hazards have
been considered in previous chapters. These include the accelerated failure
time model and the proportional odds model introduced in Chapter 6, and
the Cox regression model that includes a time-dependent variable, described
in Chapter 8. But often we are faced with a situation where the assumption
of proportional hazards is untenable, and yet none of the above models is
satisfactory.

As an illustration, consider a study to compare a surgical procedure with
chemotherapy in the treatment of a particular form of cancer. Suppose that the
survivor functions under the two treatments are as shown in Figure 11.1, where
the time scale is in years. Clearly the hazards are non-proportional. Death at
an early stage may be experienced by patients on the surgical treatment, as
a result of patients not being able to withstand the surgery or complications
arising from it. In the longer term, patients who have recovered from the
surgery have a better prognosis.

A similar situation arises when an aggressive form of chemotherapy is com-
pared to a standard. Here also, a long-term advantage to the aggressive treat-
ment may be at the expense of short-term excess mortality.

One approach, which is useful in the analysis of data arising from situations
such as these, is to define the end-point of the study to be survival beyond
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Survivor function

Time

Figure 11.1 Long-term advantage of surgery (—) over chemotherapy (---).

some particular time. For example, in the study leading to the survivor func-
tions illustrated in Figure 11.1, the treatment difference is roughly constant
after two years. The dependence of the probability of survival beyond two
years on prognostic variables and treatment might therefore be modelled. This
approach was discussed in connection with the analysis of interval-censored
survival data in Section 9.2. As shown in that section, there are advantages
in using a linear model for the complementary log-log transformation of the
survival probability. In particular, the coefficients of the explanatory variables
in the linear component of the model can be interpreted as logarithms of haz-
ard ratios. The disadvantages of this approach are that all patients must be
followed until the point in time when the survival rates are to be analysed,
and that the death data cannot be used until this time. Moreover, faith in
the long-term benefits of one or other of the two treatments will be needed to
ensure that the trial is not stopped early because of excess mortality in one
treatment group.

Strictly speaking, an analysis based on the survival probability at a partic-
ular time is only valid when that time is specified at the outset of the study.
In other words, this end-point needs to be defined in the study protocol. This
may be difficult to do. If the data are used to suggest end-points such as
the probability of survival beyond two years, some caution will be needed in
interpreting the results of a significance test.

In the study that leads to the survivor functions shown in Figure 11.1, it
is clear that an analysis of the two-year survival rate will be appropriate.
Now consider a study to compare the use of chemotherapy in addition to
surgery with surgery alone, in which the survivor functions are as shown in
Figure 11.2. Here, the short-term benefit of the chemotherapy may certainly be
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Survivor function
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Time

Figure 11.2 Short-term advantage of chemotherapy and surgery (—) over surgery
alone (---).

worthwhile, but an analysis of the two-year survival rates will fail to establish
a treatment difference. The fact that the difference between the two survival
rates is not constant makes it difficult to use an analysis based on survival
rates at a given time. However, it might be reasonable to assume that the
hazards are proportional over the first year of the study, and to carry out a
survival analysis at that time.

11.1.1 Stratified proportional hazards models

A situation that sometimes occurs is that hazards are not proportional on
an overall basis, but that they are proportional in different subgroups of the
data. For example, consider a situation in which a new drug is being compared
with a standard in the treatment of a particular disease. If the study involves
two participating centres, it is possible that in each centre the new treatment
halves the hazard of death, but that the hazard functions for the standard
drug are different between the subjects recruited by each centre. Then, the
hazards between centres for individuals on a given drug are not proportional.
This situation is illustrated in Figure 11.3.

In problems of this kind, it may be assumed that patients in each of the sub-
groups, or strata, have a different baseline hazard function, but that all other
explanatory variables satisfy the proportional hazards assumption within each
stratum. Suppose that the patients in the jth stratum have a baseline hazard
function hg;(t), for j = 1,2,...,9, where g is the number of strata. The
effect of explanatory variables on the hazard function can then be represented
by a proportional hazards model for h;;(t), the hazard function for the ith
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Figure 11.3 Hazard functions for individuals on a new drug (—) and a standard
drug (---) in two centres.

individual in the jth stratum, where ¢ = 1,2,...,n;, say, and n; is the number
of individuals in the jth stratum. We then have the stratified proportional
hazards model, according to which

hij(t) = exp(B'@i;)ho; (t),

where x;; is the vector of values of p explanatory variables, X1, Xo,..., X,,
recorded on the ith individual in the jth stratum.

As an example of this model, consider the particular case where there are
two treatments being compared in each of g strata, and no other explanatory
variables. Let z;; be the value of an indicator X, which is zero if the ith
subject in the jth stratum is on the standard treatment and unity if on the
new treatment. The hazard function for this individual is then

hij(t) = eP%ii hoj (t)

On fitting this model, the estimated value of § is the log-hazard ratio for
an individual on the new treatment, relative to one on the standard, in each
stratum.

This model for stratified proportional hazards is easily fitted using major
software packages for survival analysis. Models can be compared using the
—2log L statistic and no new principles are involved. When two or more groups
of survival data are being compared, the stratified proportional hazards model
is in fact equivalent to the stratified log-rank test described in Section 2.8 of
Chapter 2.

11.1.2 Non-proportional hazards between treatments

If there are non-proportional hazards between two treatments, misleading
inferences can result from ignoring this phenomenon. To illustrate this point,

L
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suppose that the hazard function for two groups of individuals, on a new and
standard treatment, are as shown in Figure 11.4. If a proportional hazards
model were fitted, the resulting fitted hazard functions are likely to be as
shown in Figure 11.5. Incorrect conclusions would then be drawn about the
relative merit of the two treatments.

Hazard function

Time

Figure 11.4 Non-proportional hazards for individuals on a new treatment (—) and
a standard treatment (- -).

Hazard function

Time

Figure 11.5 The result of fitting a proportional hazards model to the hazard func-

tions in Figure 11.4.
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Non-proportional hazards between treatments can be modelled assuming
proportional hazards in a series of consecutive time intervals. This is achieved
using a piecewise Cox model, which is analogous to the piecewise exponential
model introduced in Chapter 6. To illustrate the use of the model, suppose
that the time period over which the hazard functions in Figure 11.4 are given
is divided into three intervals, namely (0, 1), (t1, t2) and (t2, t3). Within each
of these intervals, hazards might be assumed to be proportional.

Now let X be an indicator variable associated with the two treatments,
where X = 0 if an individual is on the standard treatment and X = 1 if an
individual is on the new treatment. The piecewise Cox regression model can
then be fitted by defining two time-dependent variables, Z5(t) and Z3(t), say,
which are as follows:

N 1ift€(t1,t2) and X =1,
Z(t) = { 0 otherwise;

o lifte(tg,tg) and X =1,
Zs(t) = { 0 otherwise.
In the absence of other explanatory variables, the model for the hazard func-
tion for the ith individual at ¢ can be written as

hi(t) = exp{B1z; + Baz2:(t) + B3z3:(t) tho(t)

where z; is the value of X for the ith individual, and zp;(t) and z3;(t) are
the values of the two time-dependent variables for the ith individual at ¢.
Under this model, the log-hazard ratio for an individual on the new treatment,
relative to one on the standard, is then B for ¢ € (0,%1), 81+ 82 for ¢ € (t1,12)
and By + B3 for t € (t2,t3). This model can be fitted in the manner described
in Chapter 8.

11.1.8 Further reading

Examples of survival analyses in situations where the proportional hazards
model is not applicable have been given by Stablein et al. (1981) and Gore
et al. (1984). Further details on the stratified proportional hazards model can
be found in Kalbfleisch and Prentice (2002) and Lawless (2002), for example.
A review of methods for dealing with non-proportional hazards in the Cox
regression model is included in Schemper (1992). A discussion of strategies for
dealing with non-proportional hazards is included in Chapter 6 of Therneau
and Grambsch (2000).

11.2 Informative censoring

The methods described in this book for the analysis of censored survival data
are only valid if the censoring is non-informative. Essentially, this means that
the censoring is not related to any factors associated with the actual survival
time, as pointed out in Section 1.1 of Chapter 1.

As an example of a situation where censoring is informative, suppose that
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individuals are withdrawn from a survival study to compare two treatments
because they experience life-threatening side effects from one particular treat-
ment. The effect of this will be that the survival rates observed on this partic-
ular treatment will appear greater than they should be, leading to incorrect
conclusions about the extent of the treatment difference.

The assumption of uninformative censoring can be examined in a number
of ways. One possibility is to plot observed survival times against the values
of explanatory variables, where the censored observations are distinguished
from the uncensored. If a pattern is exhibited in the censoring, such as there
being more censored observations at an earlier time on one treatment than
on the other, or if there is a greater proportion of censored survival times in
patients with a particular range of values of explanatory variables, informative
censoring is suggested.

On approach to informative censoring is to examine the sensitivity of in-
ferences of primary interest to the possibility that censored observations are
informative. This is done by carrying out two further analyses. In the first, we
suppose that individuals who contribute censored observations are actually
those at high risk of an event. We therefore assume that individuals for whom
the survival time is censored experience the event immediately after censor-
ing, and replace all censored observations by events that occur at the time
of censoring. In the second analysis, we suppose that the censored individu-
als are those at low risk of an event. We then assume that those individuals
with censored observations experience the event only after the longest survival
time among all individuals in the data set. The censored times are therefore
replaced by the longest event time. The impact of these two assumptions on
the results of the analysis can then be studied in detail. If essentially the same
conclusions arise from the original analysis and the two supplementary analy-
ses, it will be safe to assume that the results are not sensitive to the potential
presence of informative censoring.

More formally, a model could be used to examine whether the probability of
censoring was related to the explanatory variables in the model. In particular,
a linear logistic model could be used in modelling a binary response variable
that takes the value unity if an observed survival time is censored and zero
otherwise. If particular explanatory variables in the data set lead to significant
changes in the deviance when they are included in the model, the assumption
of non-informative censoring may have been violated.

In situations where the reasons for censoring are available, this information
may be used to throw light on differences between alternative treatments. For
example, if there was a greater proportion of patients with censored survival
times on one treatment, and the censoring was due to the occurrence of a
particular side effect, this would give information about the merits of the two
treatments. One method of analysis, useful when censoring does not occur
too early in patient time, is to analyse the survival data at a time before any
censoring has occurred. Alternatively, the probability of survival beyond such
a time could be modelled. However, this approach is unlikely to be useful
when informative censoring occurs early in the study.
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In summary there is no satisfactory way to compare survival times of two or
more groups of patients in the presence of informative censoring. The earlier
warning that great care should be taken to ensure that informative censoring
does not occur is therefore repeated.

11.2.1 Further reading

Models for data with informative censoring have been described by Wu and
Carroll (1988) and Schlucter (1992). More recently, Satten et al. (2001) and
Scharfstein and Robins (2002) have shown how to estimate the survivor func-
tion in the presence of informative censoring.

11.3 Frailty models

In the analysis of survival data, situations where the survival times are not in-
dependent are frequently encountered. Such data tends to arise when different
individuals have some feature in common. As an example, consider a multi-
centre study, in which the survival experience of individuals from the same
centre may be more similar than that for individuals from different centres.
This could be because of different surgical teams in the different centres, or
different nursing practices across the centres. Similarly, in an animal experi-
ment, animals within a litter will be more alike than animals from different
litters, because of genetic and environmental influences.

Some applications lead to repeated event times within an individual, and so
here the event times within an individual will not be independent. Examples of
this type of situation include studies on the times between successive adverse
events, such as migraine or nausea, the times to the failure of tooth fillings
in an individual, and times to the failure of transplanted kidneys in patients
that receive more than one transplant.

When there is some characteristic that is shared by more than one observed
event time, account can be taken of the effects of this characteristic by intro-
ducing a corresponding term into the model. Suppose that the characteristic
of interest is represented by a factor Z, where the effect due to the jth level of
Z is denoted by ¢;. Such effects may then be included in the linear component
of a proportional hazards model, or an accelerated failure time model.

In this book, the effects corresponding to factors of interest have always
been assumed to be fixed. Inference about the effect of the factor on the
hazard of death is then based on estimates of the corresponding fixed effects.
But in the applications envisaged here, the factor Z may have quite a large
number of levels. For example, in a multicentre clinical trial involving 30
different centres, the centre effect would be represented by a factor with 29
levels. It is generally undesirable to include so many unknown parameters in
a model, particularly when there is no structure among the factor levels. We
might therefore represent the effect of the factor Z by a random effect. The
effects (; are then assumed to be observations from a probability distribution
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with zero mean and variance, ag, and this variance is now the only unknown
parameter that needs to be estimated.

In the context of survival analysis, a random effect is often referred to as
a frailty. This is because individuals with a larger value of the effect will in
consequence have a larger value of the hazard function, if the standard propor-
tional hazards model is adopted. They are then more likely to die sooner, and
are therefore deemed to be more frail. Models that include a random effect to
represent a characteristic whose values are shared by groups of individuals,
are referred to as shared frailty models.

There are a number of consequences that follow from the inclusion of a ran-
dom effect to represent a shared characteristic in a survival model. Because
the same realisation of the random component is common to all individuals
in the group that have a given level of the characteristic, there will be some
dependence between the survival times of individuals in the same group. In-
deed, it is because of this that shared frailty models provide a method for
modelling survival data when the survival times are not independent.

Inclusion of a random effect in a Cox regression model can lead to haz-
ards not being proportional, while the introduction of a random effect into a
Weibull proportional hazards model can lead to non-monotonic hazard func-
tion. This means that models that include random effects provide an alter-
native way of modelling data where the hazard function is not monotonic, or
where the hazards are not proportional. As an illustration of this, consider a
group of individuals who have experienced a non-fatal heart attack. For such
individuals, the hazard of death is generally observed to decline with time,
and there are two possible reasons for this. First, the individuals may simply
adjust to any damage to the heart that has been caused by the heart attack.
Alternatively, the hazard of death may be constant, but the observed decrease
in the hazard may be due to frailty; higher risk individuals simply die earlier,
so that at any time, the individuals who remain alive are those that are less
frail. Note that the survival data cannot be used to distinguish between these
two possible explanations for the apparent decline in the hazard of death.

11.3.1* The shared frailty model

To formulate a shared frailty model for survival data, suppose that there are
g groups of individuals with n; individuals per group, j = 1,2,...,g. For
the proportional hazards model, the hazard of death at time ¢ for the ith
individual, i = 1,2,...,n;, in the jth group is then

hij(t) = exp(B'@i; + (;)Ro(t), (11.1)

where x;; is a vector of values of p explanatory variables for the ith individual
in the jth group, ho(t) is the baseline hazard function, and ¢; is the random
group effect. This is assumed to be a value from a probability distribution
with density function f(¢;). The hazard can also be written in the form

hij(t) = fjeﬁlw” ho(t),
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where ¢; = exp((;). The distribution assumed for &; is usually taken to have
unit mean, and the gamma distribution is a popular choice. A lognormal
distribution may also be adopted for &;, in which case (; in equation (11.1)
has a normal distribution.

The general accelerated failure time model that incorporates a shared frailty
component is of the form

hij(t) = e~ ho(t /),

where 7;; = o’x;; +(;. Equivalently, this model can be expressed in log-linear
form as
logTi; = pu+ &/'ij + (G + o€y,

where T;; is the random variable associated with the survival time of the ¢th
individual in the jth group, and €;; has some specified probability distribution.

Models in which hq(t) is fully specified, such as the Weibull proportional
hazards model or the accelerated failure time model, can be fitted using
the method of maximum likelihood. Denote the observed data by the pairs
(tij, 0i5), where d;; is the event indicator, which takes the value zero for a cen-
sored observation and unity for an event. If the random effects (; had known
values, the likelihood function would be

9 Ny
LT 1T P (t5)° S5 (tas),
j=1i=1
in which Sy;(t;;) is the survivor function for the 4th individual in group j.
This function is given by
Sij(ti;) = exp {— exp(B'myj + ;) Holti;) }
for the proportional hazards model, where Ho(t;) is the cumulative hazard
function evaluated at time ¢;;. Expressions for the survivor function of an
accelerated failure time model are given in Section 6.4 of Chapter 6.
However, the (; are not known, but are realisations of a random variable
that has a probability distribution with density f({;). In this situation, we
integrate the likelihood over possible values of the random effects, to give the
likelihood function

g oo M
11 /0 LT 7 (8i3)% S35 (83) £(6) G-
j=1 i=1

Numerical methods are usually needed to maximise this function, or its loga-
rithm. In principle, a similar procedure can be adopted to fit random effects
in the Cox model, but because this is rather more complicated, details will be
omitted.

After fitting a shared frailty model, nested models can be compared using
the statistic —2log L. The estimated coefficients of the explanatory variables
in the model are interpreted in the usual manner, and estimates of the random
effects can be found using what are known as empirical Bayes methods. Such
estimates are particularly useful when the frailty term represents centres in
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a multicentre study, since the rank order of the estimated centre effects pro-
vides information about the merits of the different centres in terms of patient
survival. Estimates of the random effects also lead to estimates of the survivor
function for individuals with given characteristics, and median survival times
can easily be obtained.

11.83.2 Further reading

The excellent book of Hougaard (2000) includes an extensive discussion of
frailty models, and a number of illustrative examples. General review papers
include those of Aalen (1994), Aalen (1998), and Hougaard (1995). Klein
(1992) and Klein and Moeschberger (1997) describe how the Cox regression
model with a shared frailty component can be fitted using the EM algorithm.
More general texts on mixed models include Brown and Prescott (2000), Bryk
and Raudenbush (1992), Longford (1993) and Snijders and Bosker (1999).

11.4 Multistate models

The experience of a patient in a survival study can be thought of as a process
that involves two states. At the point of entry to the study, the patient is
in a state that corresponds to their being alive. Patients then transfer from
this “live” state to the “dead” state at some transition rate h(t), which is the
hazard of death at a given time ¢. The situation is expressed diagrammatically
in Figure 11.6. The dependence of the rate of transition from one state to the
other on explanatory variables is then modelled.

h(t)

Alive Dead

Y

Figure 11.6 A two-state model for survival analysis.

In some studies, the state representing those alive can be partitioned into
two or more states, each of which corresponds to a particular stage in the
natural progression of the disease. To fix ideas, consider a study concerned
with a type of cancer, in which the survival times of patients are recorded from
the surgical removal of a primary tumour. Following removal of the tumour, a
patient is at risk of death, but there is also the competing risk of a recurrence
of the cancer. If the single event of death is used as the end-point of the
study, no distinction is drawn between those patients who have experienced
a recurrence and those who have not.

It is unlikely that the hazard of death in patients who have had a recurrence
will be the same as that in patients who have not. Moreover, the prognostic
factors associated with the hazard of death may be different in these two
groups of patients. This suggests that the hazard of a recurrence should be
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modelled as a function of explanatory variables, in much the same way as the
time to death. However, this analysis cannot by itself shed light on factors
affecting the time from surgery to death. We therefore adopt a three-state
model for the study. The model is illustrated in Figure 11.7.

Alive and hr(t) Alive and
tumour-free "1 tumour present
ho(t) hap(t)

Dead

Figure 11.7 A three-state model for survival analysis.

This model can be specified in terms of three hazard functions. The hazard
of death at ¢ without a recurrence of the disease is denoted hp(t), the hazard
of a recurrence at t is denoted hg(t), and the hazard of death at t after a
recurrence is hpp(t). Notice that although hp(t) and hgp(t) both denote
the hazard of death at time ¢, the latter is conditional on the cancer having
recurred.

Hsieh et al. (1983) have shown that each transition in the multistate model
can be analysed separately, using a Cox proportional hazards model. It is
straightforward to model the hazard of death without recurrence, hp(t), and
the hazard of a recurrence, hz(t). In modelling hp(t), the survival times of
those patients who have suffered a recurrence are taken to be censored at
the recurrence time. Patients who are alive and without a recurrence also
contribute censored survival times. When modelling hg(t), the end-point is
the recurrence time. The survival times of those patients who have not suffered
a recurrence are regarded as censored, irrespective of whether they are still
alive, or have died without experiencing a recurrence.

It is not so straightforward to model the hazard of death in those who have
experienced a recurrence, hrp(t). This is because the set of patients at risk of
death at any time consists of those who have had a recurrence of the disease
and are still alive at that time. Patients who have not yet had a recurrence
cannot be in this risk set.

For example, consider the survival experience of seven patients who have
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had a recurrence, shown schematically in Figure 11.8. In this figure, the re-
currence times are denoted by a “e”, censored survival times are denoted by
a “x” and death is denoted by a “a”. At the time of death of patient number

6, patients 1, 2, 3, 6 and 7 are in the risk set.

Patient
S

Study time

Figure 11.8 Risk set for seven patients who have had a recurrence.

The B-parameters in the hazard function, hrp(t), can be estimated after
restructuring the data set. In the new data set, the record for each individual
who has died after a recurrence is followed by the records for all patients who
are at risk at the death time of the individual who has died. When the data are
expressed in this manner, the data can be envisaged as arising from a matched
case-control study. The “cases” are those who die following a recurrence. For
each case there is a set of “matched controls”, which are the patients in the
risk set at the death time of the case.

In the example shown in Figure 11.8, there are four cases, namely patients
1, 5, 6 and 7. The sets of matched controls for patients 1, 6 and 7 are {3,5, 7},
{1,2,3,7} and {3,5}, respectively. There is no control corresponding to pa-
tient 5.

After this data set has been constructed, the data can be analysed using
the technique of conditional logistic regression. This technique is described in
Collett (2003) and provides a method for estimating the effects of different
explanatory variables on the hazard function hgrp(t). Fuller justification for
this approach is given in the section below.

11.4.1* The likelihood function used in modelling hrp(t)

Suppose that there are 7 individuals who die following a recurrence and that
t; is the death time of the jth such individual, j = 1,2,...,r. Let z; be
the vector of values of p explanatory variables, X, Xs,...,X,, for the jth
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individual, so that x; is the set of values of these explanatory variables for
the case in the restructured data set. Also, let x; be the vector of values of
the explanatory variables for the [th individual in the risk set at t;. This is
the set of individuals who have had a recurrence and are still alive at ¢;, and
is denoted R(¢;). From equation (3.4), the partial likelihood function is

exp(B'z;)
=1 ZlER(tj) exp(ﬁ'ml)

This function can be written in the form

- exp(6';) 11.2
H exp(B'x;) + Zl*eR*(tj) exp(B'@r-)’ ( )

where R*(t;) is the risk set at t;, excluding the jth individual. This risk set is
therefore formed from the matched controls corresponding to the case in the
revised data set. If we now write expression (11.2) as

=1

-1
T

M+ 3 eol@@ -=)| .

j=1 1"€R*(t;)

it can be seen that the likelihood is expressed in terms of differences between
the explanatory variables of the case and those of the controls. This form of the
likelihood function is equivalent to that used in connection with conditional
logistic regression. It therefore follows that computer software for analysing
matched case-control studies using conditional logistic regression can be used
to estimate the S-parameters in the hazard function, hgp(t).

11.4.2 Further reading

A thorough review of multistate models is given by Andersen and Keiding
(2002), and subsequent papers, in an issue of Statistical Methods in Medical
Research that is devoted to this topic. Further examples of the use of mul-
tistate models in medical research have been given by Weiden et al. (1981),
Hougaard and Madsen (1985) and Andersen (1988).

Another form of multistate model is the competing risks model. This model
is relevant when there are several types of failure, corresponding to different
causes of death, for example. The multistate model then has more than one
death state. Crowder (2001) gives a comprehensive account of the methodol-
ogy needed for the analysis of such data.

In order to use the methods presented in this section, the recurrence times
must be known. Multistate models that do not rely on the recurrence times
being known have been considered by many authors in connection with ani-
mal tumourigenicity experiments. In particular, see Dinse (1991), Kodell and
Nelson (1980), and McKnight and Crowley (1984). A useful review of this
literature is included in Lindsey and Ryan (1993).
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11.5" Effect of covariate adjustment

In linear regression analysis, one effect of adding covariates to a model is to
reduce the residual mean square, and hence increase the precision of estimates
based on the model, such as a treatment effect. The estimated treatment ef-
fect, adjusted for explanatory variables, will then have a smaller standard
error than the unadjusted effect. In modelling survival data, the inclusion of
relevant explanatory variables often has a negligible effect on standard errors
of parameter estimates. Indeed, the standard error of an estimated treat-
ment effect, for example, may even be larger after adjusting for covariates.
Essentially, this is because the treatment effect does not have the same inter-
pretation in models with and without covariates, a point made by Ford et al.
(1995). Nevertheless, it is important to include relevant explanatory variables
in the model, and to check that the fitted model is appropriate, in order to
ensure that a proper estimate of the treatment effect is obtained.

To illustrate this in a little more detail, suppose that ¢; is the observed value
of the random variable T;, that is associated with the survival time of the ith
of n individuals, i = 1,2,...,n. We will consider the situation where there
are two treatment groups, with n/2 individuals in each group, and where
there is a further explanatory variable whose values are available for each
individual. The two explanatory variables will be labelled X;, X5, where X;
refers to the treatment effect, and takes the value 0 or 1. The values of X1, X5
for the ith individual will be denoted x1;, z2;, respectively, and we will write
zji = Tj; — &, for j = 1,2, where Z; is the sample mean of the values of
the explanatory variable X;. A proportional hazards model will be adopted
for the dependence of the hazard of death at time ¢, for the ith individual,
on the values z1;, 29;, in which the baseline hazard is a constant value, .
Consequently, the hazard function can be expressed in the form

hi(t) = Aexp(Brz1i + Bazai), (11.3)

and under this model, the survival times are exponentially distributed, with
means {\exp(B121; + B2202:)} ' Using results given in Section 6.5.1 of Chap-
ter 6, this model may also be expressed in accelerated failure time form as

logT; = p — Br21; — Pozoi + €, (11.4)

where = —log A and ¢; has a Gumbel distribution, that is log¢; has a unit
exponential distribution. The model represented in equations (11.3) or (11.4)
will be referred to as Model (1).

Using the results for maximum likelihood estimation given in Appendix A,
it can be shown that the approximate variance of the estimated treatment
effect, 31, in Model (1), is

1
[1 = {corr (21, 20) 2] 30, 22,

where corr (21, z9) is the sample correlation between the values z1; and Z9;.
Since zy; is either —0.5 or 0.5, and there are equal numbers of individuals in

var (1) =
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no 2
each group, Y . 4 zi; = n/4, and so

- 4
var (Br) = n[l — {corr (21, 22)}2]’

Now consider the model that only includes the variable associated with the
treatment effect, X5, so that

hi(t) = Nexp(f1214), (11.6)

(11.5)

or equivalently, :
logT; = p — Prz1i + €, (11.7)
where again loge; has a unit exponential distribution. The model described
by equations (11.6) or (11.7) will be referred to as Model (2). In this model,
the approximate variance of §; is given by

var (1) = %

n

Since the term 1 — {corr (21, 22)}? in equation (11.5) is always less than or
equal to unity, the variance of ,@1 in Model (1) is at least equal to that of
Model (2). The addition of the explanatory variable X3 to Model (1) cannot
therefore decrease the variance of the estimated treatment effect.

The reason for this is that Model (1) and Model (2) cannot both be valid for
the same data set. If Model (1) is correct, and Model (2) is actually fitted, the
residual term in equation (11.7) is not €; but e;—f229;. Similarly, if Model (2) is
correct, but Model (1) is actually fitted, we cannot assume that the logarithm
of ¢; in equation (11.4) has a unit exponential distribution. Moreover, the
parameter () is now estimated less precisely because a redundant parameter,
B2, is included in the model.

More detailed analytic and simulation studies are given in the paper by
Ford et al. (1995), which confirm the general point that the inclusiqn of ex-
planatory variables in models for survival data cannot be expected to increase
the precision of an estimated treatment effect.

11.6 Measures of explained variation

The proportion of variation in a response variable that is explained by a
fitted model is often used in statistical modelling to summarise the fit of
the model. A number of measures of explained variation have been prop(?sgd
for use in modelling survival data, which are analogues of the R?-statistic
that is widely used in linear regression analysis. Many of these have been
reviewed by Schemper and Stare (1996), and Schemper al.ad Henderson (2000)
propose a new measure that has many favourable propertles. The performar}ce
of measures of explained variation in survival analysis has also been stu(.jhe.d
by Schemper and Stare (1996), with the conclusion that no Particular statistic
can be recommended for general use. Moreover, the most satisfactory measures
are more difficult to compute. For this reason, measures of explained variation
are not routinely used in modelling survival data.
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11.7 Modelling a cure probability

In survival analysis, it is generally assumed that all individuals will eventually
experience the end-point of interest, if the follow-up period is long enough.
This is certainly the case if the end-point is death from any cause. However, in
some studies, a substantial proportion of individuals may not have experienced
the end-point before the end of the study. This may be because the treatment
has effectively cured the patient. For example, in a cancer trial, interest may
centre on a comparison of two treatments, where the end-point is death from
a particular type of cancer. If the treatment cures the individual, so that
after a long period of follow-up, a number of patients have not died from
the cancer, there will be a corresponding number of censored observations.
This results in a larger proportion of censored observations than is usually
encountered, referred to as heavy censoring. In this situation, the estimated
survivor function will tend to level off at a value that may be considerably
greater than zero. It may then be assumed that the population consists of a
mixture of individuals, those who are susceptible to the end-point, and those
who are not. The latter then correspond to the “cured” individuals. Standard
methods of survival analysis then need to be adapted, so that the probability
of cure is modelled simultaneously with the time to the event. Some possible
models have been proposed by Farewell (1982), Kuk and Chen (1992), Taylor
(1995), Sy and Taylor (2000) and Peng and Dear (2000).

11.8 Some other designs in survival analysis

One form of design that is often used in clinical trials and animal experimenta-
tion is the cross-over design. In this design, individuals receive each treatment
in the course of an experiment. Use of this design in survival studies with non-
fatal end-points then allows the effect of different treatments to be compared
within the same individual. Jones and Kenward (2003) and Senn (2002) pro-
vide comprehensive accounts of the design and analysis of cross-over studies.
France et al. (1991), Fiengold and Gillespie (1996), and Lindsey et al. (1996)
discuss the analysis of failure time data from such studies.

The procedures described in this book are based on studies that have a fixed
sample size. There is much interest in the development and implementation of
sequential methods, particularly in clinical trials, where the number of individ-
uals is not fixed in advance. Instead, the study continues until the sample size
is sufficient to estimate a particular parameter with a prespecified precision,
or to distinguish between two alternative hypotheses. See Whitehead (1997)
for full details on sequential survival studies, which can be implemented using
the PEST software, documented in MPS Research Unit (2000)
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