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Abstract

Neuropsychologists often need to estimate the abnormality of an individual patient’s test score, or test score discrepancies, when the
normative or control sample against which the patient is compared is modest in size. Crawford and Howell [The Clinical Neuropsychologist
12 (1998) 482] and Crawford et al. [Journal of Clinical and Experimental Neuropsychology 20 (1998) 898] presented methods for obtaining
point estimates of the abnormality of test scores and test score discrepancies in this situation. In the present study, we extend this work
by developing methods of settingconfidence limitson the estimates of abnormality. Although these limits can be used with data from
normative or control samples of any size, they will be most useful when the sample sizes are modest. We also develop a method for
obtaining point estimates and confidence limits on the abnormality of a discrepancy between a patient’s mean score onk-tests and a test
entering into that mean. Computer programs that implement the formulae for the confidence limits (and point estimates) are described and
made available. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Estimating the rarity or abnormality of an individual’s test
score is a fundamental part of the assessment process in neu-
ropsychology. The procedure for statistical inference in this
situation is well known. When it is reasonable to assume that
scores from a normative sample are normally distributed,
the individual’s score is converted to az score and evalu-
ated using tables of the area under the normal curve [20,23].
Thus, if a neuropsychologist has formed a directional hy-
pothesis concerning the individual’s score prior to testing
(e.g. that the score will be below the normative mean), then
azscore which fell below−1.64 would be considered statis-
tically significant (using the conventional 0.05 level). More
generally, and it could be argued more usefully (given that
any significance level is an arbitrary convention that does
not address the issue of severity), the probability forz pro-
vides the neuropsychologist with information on the rarity
or abnormality of the individual’s score. Thus, for example,
if a patient obtained az score of−1.28 on a given test, then
a table of the normal curve will tell us that approximately
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10% of the population would be expected to obtain a score
lower than this.

Many tests used in neuropsychology are expressed on
a conventional metric such as an IQ scale (mean= 100,
S.D. = 15), or test score (mean= 50, S.D. = 10). In such
cases it is clearly often not necessary to convert the score to
z to arrive at the estimate of abnormality. For example, a pa-
tient obtaining a score of 85 on the Working Memory Index
of the WAIS-III [41,42] is exactly 1 S.D. below the mean.
Most neuropsychologists will know that therefore approxi-
mately 16% of the population would be expected to obtain
a score as low or lower than this. However, the principle in
this latter example is identical, i.e. the score is referred to
the normal curve.

In the standard procedure just described the normative or
control sample is treated as if it was a population; i.e. the
mean and standard deviation are used as if they werepa-
rametersrather thansample statistics. When the normative
sample is reasonably large this is justifiable. However, Craw-
ford and Howell [10] point out that there are a number of
reasons why neuropsychologists may wish to compare the
test scores of an individual with norms derived from a small
sample. For example, although there has been a marked im-
provement in the quality of normative data in recent years,
there are still many useful neuropsychological instruments
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that have modest normative data. Even when the overallN
for a normative sample is reasonably large, the actual sample
size (n) against which an individual’s score is compared can
be small when the sample is broken down by demographic
characteristics. Secondly, many clinical neuropsychologists
have gathered local norms for neuropsychological instru-
ments, but because of the time and expense involved, the
size of the normative samples are often modest.

Finally, in recent years there has been an enormous resur-
gence of interest within academic neuropsychology in sin-
gle case studies [3,4,16,21,25,33]. In many of these studies
the theoretical questions posed cannot be addressed using
existing instruments and therefore novel instruments are de-
signed specifically for the study. The sample size of the con-
trol or normative group recruited for comparison purposes
in such studies is typically<10 and often<5.

Crawford and Howell [10] have described and illustrated
the use of a method that can be used to compare an individ-
ual with normative or control samples that have modestN.
Their approach uses a formula given by Sokal and Rohlf [37]
that treats the statistics of the normative or control sample as
statistics rather than as population parameters and uses the
t-distribution (withN − 1 degrees of freedom (d.f.)), rather
than the standard normal distribution, to evaluate the abnor-
mality of the individual’s scores. Essentially, this method is
a modified independent samplest-test in which the individ-
ual is treated as a sample ofM = 1, and therefore does not
contribute to the estimate of the within group variance. The
formula for this test is presented in Appendix A.1.

The disadvantage of the standard (zscore) method is that,
with small samples, it exaggerates the rarity/abnormality of
an individual’s score. This is because the normal distribution
has “thinner tails” thant-distributions. Intuitively, the less
that is known, the less extreme should be statements about
abnormality/rarity. Thezscore method treats the variance as
being known, when it is not, and consequently makes state-
ments that are too extreme. A fuller illustration of this will
be provided in a worked example, but in the interim, sup-
pose that an individual obtains a score of 20 on a test and
that the mean and S.D. for this test in a control sample are
40 and 10, respectively. If theN of the control sample was
10, then the estimate provided by the modifiedt-test pro-
cedure is that approximately 4.4% of the population would
obtain a score lower than the individual’s score. Thez score
method exaggerates the rarity of the individual’s score as
the estimate it provides is that approximately 2.3% of the
population would obtain a lower score.

Up to this point we have been concerned with the simple
case of comparing a single test score obtained from an indi-
vidual with a normative or control sample. However, in the
assessment of acquired neuropsychological deficits, simple
normative comparison standards have limitations because of
the large individual differences in premorbid competencies.
For example, an average score on a test of mental arithmetic
would represent a marked decline from the premorbid level
in a patient who was a qualified accountant. Conversely, a

score that fell well below the normative mean does not nec-
essarily represent an acquired deficit in an individual who
had modest premorbid abilities [5,15,28].

Because of the foregoing, considerable emphasis is
placed onintra-individual comparison standards when at-
tempting to detect and quantify the severity of acquired
deficits [6,24,39]. In the simplest case, the neuropsycholo-
gist may wish to compare an individual’s score on two tests;
a fundamental consideration in assessing the importance
of any discrepancy between scores on the two tests is the
extent to which it is rare or abnormal. Payne and Jones [29]
developed a formula for this purpose. The method requires
the mean and S.D. of the two tests in a normative sample
and the correlation between them. The two tests must be on
the same metric, or they must be converted to a standard
metric (z scores are normally used). The formula provides
an estimate of the percentage of the population that would
exhibit a discrepancy that equals or exceeds the discrepancy
observed for a patient.

A number of authors have commented on the usefulness
of this formula in neuropsychology [7,23,26,32,34], and it
has been applied to the analysis of differences on a variety
of tests [1,19,27]. However, just as was the case for the stan-
dard method of comparing a single score with a normative
sample, the Payne and Jones [29] formula treats the statistics
of the normative or control sample as if they were popula-
tion parameters. This limits the valid use of the method to
comparisons of an individual with a large normative sample.

Crawford et al. [11] developed a method that treats the
normative statistics as statistics. Like the Payne and Jones
[29] method, it requires that the normative or control sample
mean are converted to a common metric (z scores). The
patient’s difference is divided by the standard error of the
difference, yielding a quantity that is distributed ast with
N − 1 d.f. (whereN is the sample size, i.e. it does not
include the individual). Essentially then this is a modified
paired samplest-test. The formula for this test is presented
in Appendix A.2.

Technically, this method is more appropriate than the
Payne and Jones [29] method for comparison of an
individual’s test score difference with differences fromany
size of normative or control sample (i.e. our test norms are
always obtained from a sample rather than a population).
However, its usefulness lies in its ability to deal with com-
parisons involving normative or control samples that are
modest in size; the Payne and Jones [29] method systemat-
ically overestimates the abnormality of an individual’s test
score difference in such comparisons.

Crawford et al. [11] suggest that their method is particu-
larly useful in single case studies where, as noted, the con-
trol samples against which a patient is compared usually has
a smallN. A common aim in neuropsychological case stud-
ies is to fractionate the cognitive system into its constituent
parts and it proceeds by attempting to establish the presence
of dissociations of function. Typically, if a patient obtains a
score in the impaired range on a test of a particular function
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and is within the normal range on a test of another func-
tion, this is regarded as evidence of a dissociation. However,
a more stringent test for the presence of a dissociation is
to also compare thedifferencebetween tests observed for
the patient with the distribution of differences in the control
sample. For example, a patient’s score on the “impaired”
task could lie just below the cut point for defining impair-
ment and the performance on the other test lie just above it.

Crawford et al. [11] method can be used in such studies to
test if the difference observed in the patient is significantly
different from the differences in the controls. Their method
is also useful in the converse situation where a patient’s
scores are within the impaired range on both tasks. When
this pattern is observed, the researcher can still test whether
the magnitude of the difference between the two tasks is
abnormal; i.e. evidence can be sought for the presence of a
differentialdeficit on the test of one of the functions.

The above methods are designed to yieldpoint estimates
of the rarity or abnormality of either an individual’s single
test score, or the difference between an individual’s scores
on two tests. In the present paper, we extend this work by
providing methods for obtainingconfidence limitson the ab-
normality of test scores and test score differences. This is in
keeping with the contemporary emphasis in statistics, psy-
chometrics, and biometrics on the use of confidence limits
[14,18,44]. Gardner and Altman [18] for example, in dis-
cussing the general issue of the error associated with sample
estimates note that, “these quantities will be imprecise esti-
mates of the values in the overall population, but fortunately
the imprecision itself can be estimated and incorporated into
the findings” (p. 3).

Neuropsychologists are aware that estimates of the rar-
ity/abnormality of a test score or score difference are subject
to sampling error and will have an intuitive appreciation that
less confidence should be placed in them whenN for the
normative sample is small. However, the advantage of the
procedures to be outlined is that theyquantifythe degree of
confidence that should be placed in these pestimates.

In the following sections, we present the methods for ob-
taining confidence limits on the abnormality of a single test
score and the difference between a pair of test scores. These
methods and their applications are illustrated with examples
relevant to academics who pursue single case research and
to clinical neuropsychologists. We also include a method for
obtaining confidence limits on the abnormality of the dif-
ference between an individual’s mean score onk-tests and
a test score entering into that mean. The existing method of
obtaining apoint estimate of the abnormality of such a dif-
ference [35,36] treats the normative sample against which
the individual is compared as if it were a population. There-
fore, we also develop a method for obtaining a point estimate
of the abnormality of the difference that treats the norma-
tive sample statistics as statistics rather than as parameters.
This is achieved by a straightforward extension of Crawford
et al. [11] method for obtaining a point estimate of the ab-
normality of a pair of test scores.

The methods to be described for obtaining confidence lim-
its require non-centralt-distributions. As readers may not be
familiar with such distributions a brief description is pro-
vided before formally presenting the methods. Both thet
and non-centralt-distributions are derived from a ratio of the
distribution of sample means and that of sample variances
drawn from a normal population. The sampling distribution
of the mean is normal (and symmetrical), while the sampling
distribution of the variance is skewed (and follows aχ2 dis-
tribution). When the sampling distribution of the mean has a
mean of 0 (i.e. when the population distribution has a mean
of 0) sample variances are combined equally often with pos-
itive and negative sample means. Effectively the asymmetry
of the sampling distributions of the variance occurs equally
often facing in positive and negative directions and so the
resulting centralt-distribution is symmetrical.

When the sampling distribution of the mean has a
non-zero mean (i.e. when the population distribution itself
has a non-zero mean) then the asymmetry of the sampling
distribution of the variance is not balanced equally between
positive and negative sample means and so the resulting
non-centralt-distribution is asymmetrical. The extent of its
skew depends upon the mean and variance of the population
distribution. The upshot for calculating confidence intervals
is that one cannot simply shift at-distribution along an axis
in order to find a confidence interval around a mean, one
has to find and use non-centralt-distributions with specified
properties.

2. Obtaining confidence limits for the abnormality
of a test score

Letting P1 denote the percentage of the population that
will fall below a given individual’s score (X0), we suppose
we require a 100(1 − α)% confidence interval forP1. Let
(X0 − X̄) represent the difference between the individual’s
score and the mean score of the normative or control sample,
let Sbe the standard deviation in the normative sample, and
let N be the size of the normative sample. We assume scores
for the control population are normally distributed. If we put

c1 = X0 − X̄

S
, (1)

thenc1 is an observation from a non-centralt-distribution on
N − 1 d.f. Non-centralt-distributions have a non-centrality
parameter that affects their shape and skewness. We find
a value of this parameter,δU say, such that the resulting
non-centralt-distribution hasc1

√
N as its 100α/2 percentile.

Then we find the valueδL such that the resulting distribution
hasc1

√
N as its 100(1 − α/2) percentile. From tables for

a standard normal distribution we obtain Pr(Z < δL/
√

N)

and Pr(Z < δU/
√

N). These probabilities are multiplied by
100 to express them as percentages. They depend uponα,
c1 andN and we denote the percentages byh(α/2; c1; N)
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andh(1 − α/2; c1; N), respectively. Then a 100(1 − α)%
confidence interval for the percentageP1 may be written as

(h(α/2; c1; N), h(1 − α/2; c1; N)). (2)

Details of the derivation ofh are given in Appendix B.
As a worked example, suppose that a neuropsychologist

has administered a new measure of spatial short-term mem-
ory to a patient and the patient obtains a score of 30. The
control or normative sample for this test has anN of 15 and a
mean and standard deviation of 50 and 10, respectively. Us-
ing Crawford and Howell’s [10] method, thepoint estimate
of the percentage of the population that would be expected
to obtain a score lower than the patient (P1) is 3.7%. To
obtain 95% confidence limits onP1 we proceed as follows:

c1 = X0 − X̄

S
= 30.0 − 50.0

10
= −2.0

c1
√

N = −2
√

15 = −7.746

We want a non-centralt-distribution onN − 1 = 14 d.f.
that has−7.746 as its 0.025 quantile. This determines the
non-centrality parameter to be−4.252 so we putδU =
−4.252. We also want a non-centralt-distribution on 14
d.f. that has−7.746 as its 0.975 quantile. This givesδL =
−11.151. A graphical representation of the two non-central
t-distributions and the process of obtaining the non-centrality
parameters is provided in Fig. 1. Then

Pr

(
Z <

−11.151√
15

)
× 100= 0.2

Fig. 1. Graphical illustration of the non-centralt-distributions used in the worked example.

and

Pr

(
Z <

−4.252√
15

)
× 100= 13.6.

Hence, the 95% lower confidence limit for the percentage
P1 is 0.2% and the upper limit is 13.6%.

As a further illustration, Table 1 records confidence lim-
its on the percentage of the population falling below a given
observed score as a function of bothN in the normative or
control sample, and the extremity of the observed score. The
scores (c) for which limits are tabulated are all below the
sample mean. Confidence limits on the equivalent positive
values ofc can be obtained by subtracting the percentages
from 100 in which case the upper and lower limits are re-
versed. Table 1 also presentspoint estimates of the percent-
age falling below the score; these estimates were obtained
using Crawford and Howell’s [10] method. The 95% confi-
dence interval of (0.02%, 13.6%) for the last example may
be read from the middle of the third row of the table.

As noted, the confidence limits quantify the degree of un-
certainty surrounding the estimate of the abnormality (i.e.
rarity) of a given test score. It can be seen from Table 1
that the limits are wide with small sample sizes. However,
even with more moderateNs the limits are not insubstantial
and thus serve as a useful reminder of the fallibility of nor-
mative data. The table also illustrates that the limits are not
symmetrical around the point estimate; the point estimate is
nearer the lower limit whenc is negative. This happens be-
cause, as noted, a non-centralt-distribution is skew. It can
also be seen that the limits become more asymmetric about



1200 J.R. Crawford, P.H. Garthwaite / Neuropsychologia 40 (2002) 1196–1208

Table 1
Point estimates and 95% confidence limits on the percentage of the population falling below a given observed score as a function ofN in the normative
sample and the extremity of the score

N c = −2.5 c = −2.0 c = −1.0

Point Lower Upper Point Lower Upper Point Lower Upper

5 4.2 0.00 27.2 7.1 0.02 35.2 20.7 1.94 55.5
10 2.0 0.01 11.6 4.5 0.10 18.8 18.3 4.00 41.5
15 1.4 0.02 7.4 3.7 0.20 13.6 17.5 5.33 35.8
20 1.2 0.03 5.6 3.3 0.29 11.1 17.1 6.28 32.6
25 1.1 0.05 4.6 3.1 0.37 9.6 16.8 7.00 30.5
30 1.0 0.06 3.9 2.9 0.44 8.5 16.7 7.57 30.0
50 0.8 0.11 2.7 2.7 0.66 6.5 16.3 9.06 25.6
70 0.8 0.15 2.2 2.6 0.81 5.6 16.2 9.94 23.9

125 0.7 0.22 1.6 2.4 1.07 4.5 16.1 11.3 21.7
250 0.7 0.30 1.2 2.4 1.34 3.7 16.0 12.5 19.8
500 0.6 0.37 1.0 2.3 1.57 3.2 15.9 13.4 18.6

the point estimate as the extremity of the scores (measured
by c) increases in magnitude.

Although not the primary focus of the present paper, it is
apparent from Table 1 that the point estimates of the rarity
of the score are markedly different as a function ofN. For
example, with anN of 5 the estimated percentage of the pop-
ulation that would fall below a value of−2 for c is approxi-
mately 7%; this is more than twice the point estimate (2.3%)
obtained with a normative sample of 500. If, as is commonly
done in single case studies, the patient’s score was evalu-
ated using a table of the normal curve (i.e. the statistics from
the normative samples were treated as parameters), the point
estimate of the abnormality of the score would be 2.28%.
This is essentially the same as the estimate obtained with a
sample size of 500 (because at-distribution on large d.f. is
virtually indistinguishable from a normal distribution). The
important point to reiterate here is that, in the majority of
cases, the commonly used (z score) method willexagger-
ate the rarity of an observed score; when the normative or
control sample is small this effect can be substantial.

3. Confidence limits for the abnormality of
a difference between pairs of tests

The methods of the previous section may be used, with
slight modification, to obtain lower and upper limits for the
percentage of the population that will fall below a given
difference score between two tests. In many situations, the
means and S.D. of the two tests in the normative or control
sample will differ, and the scores need to be converted to
a common metric. We will usez scores and we assume
that differences in scores are normally distributed in the
normative population. We letX0 andY0 denote the original
scores of an individual on the two tests and we letXz0

and Yz0 denote their values inz score form. A 100(1 −
α)% confidence interval is required forP2, the percentage
of the population whose difference in scores will fall below

−|Xz0 −Yz0|. We suppose a sample of sizeN has been taken
and summary statistics from these data are available in one
of the following forms.

(a) A differenceDz = Xz − Yz has been calculated for
each individual in the normative or control sample and
the standard deviation of this difference (SDz ) has been
obtained.

(b) The summary statistics are the sample mean scores for
each test,X̄ and Ȳ , the sample standard deviationsSX

andSY , and the sample correlationrXY . It will be ap-
preciated that, by providing a formula for dealing with
summary data in this form, it will be possible to use the
method with data reported by other researchers (i.e. the
raw data are not required).

For (a) put

c2 = −|Xz0 − Yz0|
SDz

, (3)

and for (b) put

c2 = −|((X0 − X̄)/SX) − ((Y0 − Ȳ )/SY )|√
2 − 2rXY

. (4)

These two formulae are equivalent: in (4) the observed
scores of the patient are converted toz scores (whereas in
(3) they are already in this form), and the difference be-
tween thesez scores divided by the standard deviation of
the difference (the correlation between two measures pro-
vides sufficient information to calculate the standard devi-
ation of the difference when scores have been expressed in
z score form). It is also worth making explicit that, in the
numerator of both (3) and (4), we are actually subtracting
the mean difference in the controls from the patient’s differ-
ence. However, as the mean difference between the scores
in the control sample will be zero (we are usingz scores)
there is no need to include this term.

It will also be noted that in both (3) and (4) the absolute
value of the difference betweenz scores is taken and then
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set to be negative. This is because which test should be des-
ignated asX, and which asY, is arbitrary. By setting the
difference to be negative (or, more precisely, non-positive)
the confidence limits will be on the percentage of the pop-
ulation that will obtain a difference more extreme than the
patient’s and in the same direction.

In Appendix B.2, it is shown that the 100(1 − α)% con-
fidence interval forP2 is

(h(α/2; c2; N), h(1 − α/2; c2; N)), (5)

whereh is the same function used earlier. Hence, we find
two non-centralt-distributions onN−1 d.f., such thatc2

√
N

is the 100(1 − α/2) percentile for one of the distributions
and the 100(α/2) percentile for the other. We denote their
non-centrality parameters byδL and δU, respectively, and
then

h(α/2; c2; N) = Pr(Z < δL/
√

N) × 100 (6)

and

h(1 − α/2; c2; N) = Pr(Z < δU/
√

N) × 100 (7)

whereZ has a standard normal distribution.
To illustrate the calculation of these confidence limits,

suppose that a patient has been administered novel tests of
spatial and verbal short-term memory. In the interest of gen-
erality we will work with data that are in form (b); i.e. we
will work with summary data rather than assuming that we
have access to the scores for individual’s in the normative or
control sample. Suppose that these tests have been adminis-
tered to a control sample ofN = 20, that the mean and S.D.
of the verbal memory task are 50 and 10, respectively (we
will designate this task as testX), and that the mean and S.D.
of the spatial task (testY) are 40 and 7, respectively. Further
suppose that the correlation between these tests in the con-
trol sample is 0.7 and that the patient obtained a score of 40
on testX and 44 on testY. Using Crawford et al.’s method
[11], the point estimate of the abnormality of this differ-
ence (i.e. the point estimate of the percentage of the popu-
lation that would exhibit a difference more extreme than the
patient’s difference (P2) is 3.1%. We now obtain confidence
limits on the abnormality of the difference (P2):

c2 = −|((40− 50)/10) − ((44− 40)/7)|√
2 − 1.4

= −|(−1.0) − (+0.5714)|
0.7746

= −| − 1.5714|
0.7746

= −2.029.

c2
√

N = −2.029
√

20 = −9.074

We want a non-centralt-distribution onN − 1 = 19 d.f.
that has−9.074 as its 0.025 quantile. This determines
the non-centrality parameter to be−5.565 so we put
δU = −5.565. We also want a non-centralt-distribution

on 19 d.f. that has –9.074 as its 0.975 quantile. This gives
δL = −12.504 Then,

Pr

(
Z <

−12.504√
20

)
× 100= 0.26

and

Pr

(
Z <

−5.565√
20

)
× 100= 10.7.

Hence, the 95% lower confidence limit forP2 is 0.26% and
the upper limit is 10.7%.

4. Point estimates of the abnormality of a difference
between an individual’s mean score on k-tests and
score on a test entering into that mean

Up to this point we have been concerned with point esti-
mates and confidence limits on the abnormality of a single
test score, or difference between scores on two tests. How-
ever, in neuropsychology there is an emphasis on examining
an individual’s relative strengths and weaknesses across a
wide range of cognitive domains [13,24]. This necessitates
using a large number of neuropsychological tests; as a result,
there is a problem of how to reduce the number of potential
comparisons between scores to a manageable proportion.
For example, if a neuropsychologist administers a total of
12 tests to a patient, then there are 66 potential pairwise
comparisons between tests. It is clearly difficult to assimi-
late such a large amount of information when attempting to
arrive at a formulation of the patient’s difficulties. Against
this must be set the need to retain theoretically (and/or
clinically) significant attributes of the patient’s profile [9].

A method that strikes an appropriate balance between
these competing demands was developed by Silverstein
[35,36]. This approach provides an estimate of the abnor-
mality of the difference between an individual’s score on
a test and the mean of the individual’s score on a series
of k-tests (including the test of interest). Thus, if 12 tests
are administered, there are 12 comparisons rather than the
66 involved in a full pairwise comparison. Silverstein [36]
presented the following formula to estimate the abnormality
of the difference between an individual’s mean test score
and one of the tests entering into that mean (changes have
been made to the notation to render it consistent with the
rest of this paper):

zDa = Xa − X̄k

SDa
, (8)

where Xa is the individual’s score on test a,̄Xk the
individual’s mean score on thek-tests (including test a),
and SDa the standard deviation of the difference between
individuals’ scores on test a and individuals’ mean scores
on thek-tests;SDa is obtained from the formula below:

SDa = S

√
1 + Ḡ − 2T̄a, (9)
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whereS is the (common) standard deviation of the tests;Ḡ

the mean of all the elements in the test correlation matrix
(including unities in the diagonal) and̄Ta is the mean of the
elements in row a or column a of the matrix (again including
the diagonal). It can be seen from this formula that, if scores
on the tests involved are expressed on different metrics, then
they must be transformed to a common one (i.e. test scores
or z scores) before being entered into formula (8). It will
also be noted that if scores are converted tozscores then the
S term falls out of formula (9) asz scores have a S.D. of 1.

To estimate the percentage of the population that would
obtain a score which is more extreme and in the same di-
rection as that observed for an individual, the probability of
exceeding|zDa| is obtained from a table of the area under
the normal curve and multiplied by 100 [35]; see Silverstein
[36] for a derivation of the formula.

The Silverstein method then provides the clinician or sin-
gle case researcher with a point estimate of the abnormality
of the difference between an individual’s mean score on a
series of tests and his/her score on a single test (in which
the individual test under consideration enters into the mean).
The method has been widely endorsed [8,22,31]; its princi-
pal application has been to the analysis of subtest profiles
on the WAIS-R [40] although it has also been used for the
analysis of test profiles on other instruments such as the Test
of Everyday Attention [12,30].

In Silverstein’s formula the data from the control or nor-
mative sample are treated as population parameters rather
than as sample statistics. This is not problematic if the nor-
mative sample is very large, as in the case of the Wech-
sler scales. However, in the present paper the intention is
to develop methods that are applicable to comparisons of
individual’s with normative or control samples of any size
and, in particular, to comparisons involving small samples.

Therefore, before dealing with confidence limits on the
abnormality of such differences, we modify Silverstein’s ap-
proach to develop a method for obtaining apoint estimate
of the abnormality of the difference that treats sample statis-
tics as sample statistics rather than as population parameters.
The formula for this method is a straightforward extension
of Crawford et al. [11] formula (see Appendix A) and is
presented below:

t = Xa − X̄k

SDa
√

(N + 1)/N
, (10)

whereN is the size of the normative or control sample and
all other terms are as defined in formula (8). In Appendix
B.3, we show that the quantity obtained in formula (10) has
a t-distribution withN −1 d.f. (rather than the standard nor-
mal distribution). If |t| obtained from formula (10) exceeds
the critical value for a specified significance level (e.g. 0.05)
then the patient’s discrepancy is significantly different from
the mean discrepancy in the normative or control sample. In
addition, if the precise probability oft is obtained, then mul-
tiplying this probability by 100 yields the percentage of the
population that would be expected to obtain a discrepancy

larger and in the same direction as that observed for the
patient.

Silverstein’s original formula, and the modified version
presented here, use summary statistics from the normative
sample (i.e. the common S.D. of thek-tests, and the cor-
relations between thek-tests). This approach was adopted
to allow maximum flexibility; i.e. the formulae can be used
when only the summary statistics are available. However, if
the researcher or clinician has the raw data for the norma-
tive or control sample in a spreadsheet or statistics package,
then it would be easier to calculate the standard deviation of
the difference between thek-tests and each of the individual
tests directly from the raw data. That is, assuming that the
scores have already been converted to a common metric, the
normative sample’s scores on an individual test should be
subtracted from the normative sample means on thek-tests
and the standard deviation of this new variable (the standard
deviation of the difference) entered into formula (10).

A worked example for this method will illustrate the steps
involved. In the interest of generality the example is based on
the use of summary statistics from the normative or control
sample. Suppose that a research group has developed tests
of the ability to recognise emotions from facial expressions.
For each of five basic emotions (anger, happiness, sadness,
fear, and disgust) they have prepared tests consisting of 20
photographs of faces displaying the relevant emotion. Sup-
pose also that, within each test, the difficulty level is suf-
ficient to avoid ceiling effects in healthy participants (e.g.
the sets contain mild expressions of the relevant emotion or
ambiguous poses). This scenario is based on one of a series
of related studies in which the aim has been to identify se-
lective or differential deficits in the processing of emotion
from facial expression [2]. In Calder et al.’s [2] study of
single cases who had suffered amygdala lesions, 10 healthy
participants were recruited as a control group. We will take
this as the sample size for the current example.

The first step is to convert the scores on each test to a
common metric; for simplicity suppose thatz scores are
used. Secondly, the matrix of correlations between the five
tests is used to obtain the standard deviation of the difference
between a test and the mean of the five tests; we will illustrate
the calculations for test a (disgust). The correlation matrix
is presented as Fig. 2.

The standard deviation of the difference is calculated from
formula (9). The mean of the elements in the correlation
matrix (Ḡ), including the unities in the diagonal, is 0.616.
The mean of the elements in the row or column of the matrix
that records the correlation between the test and all other
tests (̄Ta) is 0.640. The common standard deviation of the
scales is 1 asz scores are used. Entering these values into
formula (9) gives the following result:

SDa = 1
√

1 + 0.616− (2 × 0.640) =
√

0.336= 0.580.

This procedure is repeated for each of the four other tests
to obtain their standard deviation of the difference. These
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Fig. 2. Correlation matrix for the five tests of facial emotion recognition.

standard deviations are recorded in the first row of Table 2.
Up to this point the procedure is identical to that involved
in using Silverstein’s original formula. Now however, we
obtain the standard error of the difference between an
individual and the normative sample by multiplying the
standard deviation of the difference (SD) for each test by√

(N + 1)/N , as in formula (10). In the present case, in
which N is 10, this value is 1.0488. Therefore, for test a
the standard error is 0.608; standard errors for the other
four tests are presented in the second row of Table 2. We
now have the required constants in formula (10) and can
compare a patient’s performance on any of the individual
tests with his/her mean score on the five tests.

Let us suppose that a neuropsychologist wishes to assess
the ability of a patient with Huntington’s disease (HD) to
process emotion from facial expressions. In particular the
neuropsychologist wishes to discover if there is evidence
for a differential deficit in the processing of disgust; such a
deficit has been reported in HD cases [38]. The third row of
Table 2 records the patient’s performance inzscore form for
each of the five tests; the mean of these scores is−1.20. The
discrepancies between the patient’s score on each test and
the patient’s mean are recorded in the fourth row of Table 2.
The fifth row records thet-value obtained when these dis-
crepancies are divided by their respective standard errors.
Multiplying the one-tailed probabilities for eacht recorded

Table 2
Figures for the worked example of assessing the abnormality of the difference between a patient’s mean score onk-tests and a test score entering into
that average

Tests

a, disgust b, anger c, happiness d, sadness e, fear

S.D. of the difference 0.580 0.675 0.704 0.645 0.465
S.E. 0.608 0.708 0.738 0.676 0.488
Patient’sz scores −2.73 −0.76 −0.24 −1.14 −1.23
Discrepancies from patient’s meanz score −1.51 0.46 0.98 0.08 −0.01
The t-values for discrepancies −2.48 0.65 1.33 0.12 −0.02
Estimated %age of population falling

below patient’s discrepancies
1.74 73.4 89.1 54.6 49.2

Lower 95% confidence limits 0.004 48.9 68.7 30.1 26.1
Upper 95% confidence limits 10.5 91.3 98.8 77.1 72.5

in row five by 100 provides the point estimate of the per-
centage of the population that would obtain a difference
score lower than the patient’s (i.e. it estimates the abnormal-
ity of the patient’s difference score). These percentages are
recorded in row six of Table 2.

From the third row of Table 2 it can be seen that the pa-
tient was below the control mean on recognition of all five
emotions and that performance on the disgust task is partic-
ularly poor. Using Crawford and Howell’s [10] method for
comparing a single score against a control sample mean, the
deficit for disgust would be statistically significant. However,
as noted, the patient was below the mean onall facial ex-
pressions and, therefore, the question of whether the deficit
is a differential deficit remains; i.e. is performance on the
disgust task significantly poorer than the patient’s averaged
performance. From row six of Table 2 it can be seen that
only 2.1% of the population would be expected to exhibit
a discrepancy on disgust that was lower than the patient’s.
In addition, the one- and two-tailed 5% critical values fort
with 9 d.f. are 1.83 and 2.26, respectively. It can be seen that
the t-value for disgust (2.37) exceeds these values; thus, the
deficit on disgust is significantly greater than the patient’s
averaged deficits on the other emotions.

In this worked example, the tests were measures of ability
within the same cognitive domain. However, it will be ap-
preciated that the method is just as applicable to analysing
strengths and weaknesses on measures of diverse functions.
Indeed, the original Silverstein formula has typically been
used for this latter purpose, e.g. to compare performance
across the 11 subtests of the WAIS-R [36].

Finally, in this particular example the patient was below
the control sample means on all tasks. However, in a pa-
tient of high premorbid ability, it will often be the case that
scores on a number of thek-tests will be above the norma-
tive mean (particularly if the tests measure diverse functions
and any neurological damage is relatively focal). In these
circumstances, the use of the present method can provide ev-
idence of acquired deficits that would not be apparent using
normative standards. That is, a patient’s score on a partic-
ular test may not be significantly lower than the normative
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sample mean for that test, but the discrepancy between the
patient’s score and her/his mean score on thek-tests would
be statistically significant.

The calculations involved in using this method may ap-
pear somewhat laborious. However, most of the calculations
are those required to obtain the standard error of the differ-
ence. These calculations need only be carried out once, so
that the labour involved to use the method subsequently is
minimal. Furthermore, a computer program that automates
the calculations is available (details are provided in a later
section).

5. Confidence limits on the abnormality of a
difference between an individual’s mean score on
k-tests and score on a test entering into that mean

Having presented the method for obtaining a point es-
timate of the abnormality of the difference between an
individual’s mean test score and the score on a test entering
into that mean, attention can now be turned to obtaining
confidence limits on this estimate of abnormality. LetP3
denote the percentage of the population that will fall below
the difference score observed for the individual. The for-
mula for the confidence limits forP3 are easily obtained
from the results that gave formula (1). We put

c3 = Xa − X̄k

SDa
. (11)

Then a 100(1 − α)% confidence interval forP3 is

(h(α/2; c3; N), h(1 − α/2; c3; N)). (12)

A worked example is not provided because of the similarity
between formulae (11) and (1). Note though, that in (11),
X̄k is the mean of the individual’s scores on thek-tests,
while in (1), X̄ is the mean score of the normative sample
on a single test. A total of 95% confidence limits obtained
using formula (12) are presented in rows seven and eight of
Table 2.

6. Use of the confidence limits in single case studies
and clinical practice

We believe the confidence limits presented in the present
paper will be of benefit to both single case researchers and
clinicians. Firstly, they serve the useful purpose of reminding
us of the fallibility of our normative or control data. As
such they are in keeping with the contemporary emphasis
on using confidence limits in many areas of statistics and
psychometrics.

They will also directly assist neuropsychologists in their
attempts to achieve a valid assessment of a patient’s relative
strengths and weaknesses. Consider the situation in which
an individual patient’s test score is estimated to be rare (e.g.
the point estimate is that only 2.5% of the population would

be expected to obtain a score lower than that observed). If
the upper limit on this percentage is still extreme, then the
neuropsychologist can be confident that the score lies be-
yond the normal range and is likely to represent an acquired
deficit. In contrast, if the upper limit indicates that the ob-
served score may not be uncommon in the healthy popula-
tion, then the neuropsychologist would require more in the
way of convergent evidence from other sources before in-
ferring impairment.

Although the methods will be of greatest use when used
with normative or control data from small samples, they are
applicable toany normed test, irrespective of sample size.
It was shown in Table 1 that the width of these limits can
be substantial even with moderate sized normative samples.
Furthermore, neuropsychologists typically use tests drawn
from a variety of sources, and hence use norms obtained
from a variety of samples. Therefore, it is as important to
know that the limits on the abnormality of scores obtained on
particular tests in the neuropsychologist’s battery are narrow
(i.e. the point estimates of the abnormality/rarity are liable to
be accurate), as it is to know that, for others, the limits will be
wide. For example, when tests yield conflicting findings, the
width of the confidence limits on the point estimates provide
one source of information when weighting this evidence.

The confidence limits presented in the present paper are
confidence limits on the estimatedrarity or abnormalityof
a given score or difference between scores. As noted, they
allow the user to quantify the effects of error arising from
using a sample in place of the population; i.e. they quan-
tify the fallibility of normative or control sample data. The
methods of obtaining these confidence limits do not factor
in measurement error in the instruments. Indeed, it is im-
portant that these confidence limits are not confused with
confidence limits thatdoquantify the effect of measurement
error in a test instrument (or instruments) on an individual’s
score (or score differences). The latter confidence limits are
obtained by multiplying the standard error of measurement
of a test (or standard error of measurement of the difference
in the case of test score differences) by a value ofz cor-
responding to the desired limits (i.e. 1.96 for 95% limits).
The distinction between the reliability and the abnormality
of test score differences is a particularly important one in
clinical neuropsychology [7,12,13,34,43].

A reliable difference between an individual’s test scores
is one unlikely to have arisen from measurement error in the
tests. However, many healthy individuals will have reliable
differences among their abilities in different cognitive do-
mains and, therefore, a reliable difference cannot be taken
as indicating acquired impairment (e.g. see [8]). Therefore,
for many purposes, particularly assessments conducted for
medico-legal purposes, the abnormality of differences are
more directly relevant to detecting and quantifying impair-
ment. Furthermore, when dealing with control or normative
samples that have smallNs it is not practical to examine the
reliability of differences. The methods for such comparisons
treat the reliability coefficients of the tests as parameters
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whereas such coefficients are, of course, subject to sampling
error [17]; the reliability estimates obtained from samples
that haveNs of the magnitude with which we are concerned
would be very unstable.

Finally, it is important to be aware of caveats attached
to the use of the point estimates and confidence limits
presented in the present paper. The methods for obtaining
point estimates of the abnormality of a test score [10,11],
including the new method presented here for the difference
between a score and the individual’s mean score, involve
assumptions about the underlying distributions from which
the normative data were sampled.1 In the case of the com-
parison of a score with a normative mean, the assumption
is that the control data were sampled from a normal dis-
tribution. For the difference between (a) a pair of tests and
(b) a score and the individual’s mean, it is assumed that the
differences follow a normal distribution. The assumption
holds for (a) if scores on the two tests follow a bivariate
normal distribution and it holds for (b) if scores follow a
multivariate normal distribution, but these conditions are not
essential.

These same assumptions apply to the corresponding meth-
ods for obtaining confidence limits on the abnormality of
scores or score differences. Therefore, these methods should
not be employed when it is known or suspected that the
normative or control data are markedly skewed or platykur-
tic/leptokurtic. When the control or normative samples are
small, the neuropsychologist should also be particularly alert
to the presence of outliers. For example, in elderly control
or normative samples it is not uncommon to observe occa-
sional cases who perform very poorly despite the absence
of any other evidence that suggests the presence of a brain
pathology (e.g. early stage dementia).

7. Computer programs for confidence limits on the
abnormality of test scores and test score differences

Although all of the calculations described in the present
paper could be carried out by hand or calculator it would
clearly be more convenient if the methods were automated.
In addition, tables for the non-centralt-distribution (or a
computer package that contains an algorithm for non-central
t-distributions) would be needed for the calculations and
these may not be readily accessible. Because of these con-
siderations the methods have been implemented in computer
programs for PCs. Aside from their convenience, the use of
these programs reduces the chance of clerical and arithmetic
errors.

The program SINGLIMS.EXE provides confidence limits
on the abnormality of a single test score. The user enters
the mean and S.D. for the test in the normative or control
sample along with the sample size. The individual patient’s

1 The equivalent methods that treat the sample statistics as population
parameters [20,29,36] also make these assumptions.

score on the test is then entered. The output consists of
the point estimate of the percentage of the population that
will fall below the individual’s score, obtained using the
modifiedt-test procedure outlined by Crawford and Howell
[10], and the accompanying 95% confidence limits for this
percentage using the method outlined in the present paper
(formula 2).

The program DIFFLIMS.EXE provides confidence limits
on the abnormality of a difference between a pair of tests.
The user enters the means and S.D. for the tests in the nor-
mative or control sample, along with the sample size and the
correlation between the two tests. The individual patient’s
scores on the two tests are then entered and these are con-
verted by the program toz scores. The output consists of
the point estimate of the percentage of the population that
will fall below the individual’s difference score, obtained us-
ing Crawford et al.’s [11] procedure, and the accompanying
95% confidence limits for this percentage using the method
outlined in the present paper (formula 5).

The program PROFLIMS.EXE provides the point esti-
mate and confidence limits on the abnormality of the differ-
ence between a test and an individual’s mean score onk-tests
(formulae 8 and 10). The user enters the number of tests in-
volved (k) and the size of the normative sample, and then
the sample means and S.D. for the tests. The program then
prompts for entry of the correlations between thek-tests (into
a lower diagonal matrix). The individual patient’s scores on
the tests are then entered.

For each of thek-tests the output consists of the raw score,
the score expressed as az score, the difference between the
zscore on the test and the individual’s meanzscore, and the
point estimate of the percentage of the population that would
obtain a difference that is lower than the individual’s. Finally,
95% confidence limits on this percentage are provided.

A useful feature of these programs is that the statistics
from the normative sample are saved to a file. Therefore, sub-
sequently, the neuropsychologist can rapidly generate point
estimates and confidence limits on the rarity/abnormality of
test scores, or test score differences, for other patients. Com-
piled versions of these programs can be downloaded from
the first author’s web site at the following address:http://
www.psyc.abdn.ac.uk/homedir/jcrawford/abnolims.htm.

8. Conclusion

The single case approach in neuropsychology has made
a significant contribution to our understanding of the archi-
tecture of human cognition [3,4,16,21,25,33]. However, as
Caramazza and McCloskey [3] notes, if advances in theory
are to be sustainable they “. . . must be based on unimpeach-
able methodological foundations” (p. 619). The statistical
analysis of single case data is an aspect of methodology that
has been relatively neglected. This is to be regretted. Other
methodological (and logical) considerations may have com-
pelled many researchers to abandon group-based research,

http://www.psyc.abdn.ac.uk/homedir/jcrawford/abnolims.htm
http://www.psyc.abdn.ac.uk/homedir/jcrawford/abnolims.htm
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but it is clear that thestatistical problems associated with
drawing inferences from single cases significantly exceed
those of the former approach. Although there remains much
to do, we believe that the methods presented here make
a useful contribution to the process of developing valid,
optimal, and practical statistical methods for single case
research.
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Appendix A

A.1. Formula for modified t-test comparing an individual’s
score with the mean score for a normative or control
sample (see [10,37])

t = X1 − X2

S2
√

(N2 + 1)/N2
,

whereX1 is the individual’s score,X̄2 the mean score in
the normative sample,S2 the standard deviation of scores in
the normative sample, andN2 the number of persons in the
normative sample. The test statistic follows at-distribution
on N2 − 1 d.f. Multiplying the one-tailed probability oft
by 100 gives the point estimate of the abnormality of the
individual’s score (e.g. ifP is 0.03 then the point estimate
is that 3% of the population would obtain scores lower than
that observed for the individual).

A.2. Formula for modified t-test comparing the difference
between an individual’s score on two tests with the mean
difference for a normative or control sample (see [11])

t = ZX − ZY√
(2 − 2rXY)((N2 + 1)/N2)

,

whereZX and ZY are the scores of an individual on tests
X andY expressed asz scores formed using the means and

S.D. of the normative sample,rXY the correlation between
testsX andY in the normative sample andN2 is as defined
above. The test statistic follows at-distribution onN2−1 d.f.
Multiplying the one-tailed probability oft by 100 gives the
point estimate of the abnormality of the individual’s score.
A derivation for the formula can be found in Appendix A
of [11].

Appendix B

B.1. Derivation of h

The confidence intervals given in this paper are derived
from a non-centralt-distribution. This distribution is defined
by

Tν(δ) = (Z + δ)√
Y/ν

,

whereZ has a normal distribution with a mean of zero and
variance 1, andY is independent ofZ with a Chi-square
distribution onν d.f. δ is referred to as the non-centrality
parameter.

For a specified valueX0, let P ∗ = Pr(X < X0) × 100
whereX∼N(µ, σ 2). We require a 100(1− α)% confidence
interval for P∗ based on sample datāX and S2, where
X̄∼N(µ, σ 2/N) and νS2/σ 2∼χ2(ν). (For the methods
given in this paper,ν = N − 1.) Put

c = (X0 − X̄)

S
(B.1)

and let c∗ = (X0 − µ)/σ . Then c is an estimate ofc∗.
Also, tables for the percentage points of a normal distribution
determineP∗ from c∗, so a 100(1−α)% confidence interval
for c∗ will yield the required confidence interval forP∗.
Now,

c
√

N = (µ − X̄)
√

N/σ + (X0 − µ)
√

N/σ√
S2/σ 2

soc
√

N has a non-centralt-distribution with non-centrality
parameterδ = c∗√Na and ν d.f. The 100(α/2)% and
100(1 − α/2)% points of this distribution will depend on
the value ofδ. Let δL denote the value ofδ for which the
100(1 − α/2)% point isc

√
N . Similarly, let δU denote the

value of δ for which the 100(α/2)% point is c
√

N . Then
(δL/

√
N , δU/

√
N ) is a 100(1−α)% confidence interval for

c∗. Defineh(α/2; c; ν + 1) andh(1 − α/2; c; ν + 1) by

h(α/2; c; ν + 1) = Pr(Z < δL/
√

N) × 100

and

h(1 − α/2; c; ν + 1) = Pr(Z < δU/
√

N) × 100

where Z is the standard normal variate (i.e.Z∼N(0, 1)).
Then a 100(1 − α)% confidence interval forP∗ is
(h(α/2; c; ν + 1), h(1 − α/2; c; ν + 1)).
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B.2. Derivations of formulae (2) and (5)

As ν + 1 = N formula (2) is obtained by applying the
result in Appendix B.1. Formula (5) also follows immedi-
ately whenSD is given; we simply putX0 = −|Xz0 − Yz0|,
X̄ = 0 andS = SDz in formula (B.1). When the summary
statistics areX̄, Ȳ , S2

X, S2
Y andrXY, we must show that

S2
D = 2 − 2rXY.

X̄z = Yz = 0 andSXz = SYz = 1 giving

S2
Dz

= �(Xz − Yz)
2

(N − 1)
= (�X2

z + �Y 2
z − 2�XzYz)

(N − 1)

= S2
Xz

+ S2
Yz

− 2rXYSXzSYz = 2 − 2rXY.

B.3. Distribution of tDa in formula (10)

The difference observed for an individual isXa−X̄k. The
average value of this difference over the normative sample
is 0. Silverstein [36] shows that the standard deviation of
the difference isSDa, so the result follows from Eq. (2) in
Crawford et al. [11].
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