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A method of constructing interactions in multiple regression models is described which 
produces interaction variables that are uncorrelated with their component variables and 
with any lower-order interaction variables. The method is, in essence, a partial Gram-
Schmidt orthogonalization that makes use of standard regression procedures, requiring 
neither special programming nor the use of special-purpose programs before proceeding 
with the analysis. Advantages of the method include clarity of tests of regression 
coefficients, and efficiency of winnowing out uninformative predictors (in the form of 
interactions) in reducing a full model to a satisfactory reduced model. The method is 
illustrated by applying it to a convenient data set.  

PRELIMINARIES 

In a linear model representing the variation in a dependent variable Y as a linear function 
of several explanatory variables, interaction between two explanatory variables X and W 
can be represented by their product: that is, by the variable created by multiplying them 
together. Algebraically such a model is represented by Equation [1]: 

Y = a +b1X + b2 W + b3 XW + e . [1]  

When X and W are category systems, Eq. [1] describes a two-way analysis of variance 
(AOV) model; when X and W are (quasi-)continuous variables, Eq. [1] describes a 
multiple linear regression (MLR) model. 

In AOV contexts, the existence of an interaction can be described as a difference between 
differences: the difference in means between two levels of X at one value of W is not the 
same as the difference in the corresponding means at another value of W, and this not-
the-same-ness constitutes the interaction between X and W; it is quantified by the value 
of b3. 

In MLR contexts, an interaction implies a change in the slope (of the regression of Y on 
X) from one value of W to another value of W (or, equivalently, a change in the slope of 
the regression of Y on W for different values of X): in a two-predictor regression with 
interaction, the response surface is not a plane but a twisted surface (like "a bent cookie 
tin", in Darlington's (1990) phrase). The change of slope is quantified by the value of b 3. 



 

INTRODUCTION 

In attempting to fit a model (like Eq. [1]) to a set of data, we may proceed in either of two 
basic ways: 

1. Start with a model that contains all available candidates as predictors, then 
simplify the model by discarding candidates that do not contribute to explaining 
the variability in the dependent variable; or  

2. Start with a simple model and elaborate on it by adding additional candidates.  

In either case we will wish (at any stage in the analysis) to compare a "full model" to a 
"reduced model", following the usage introduced by Bottenberg & Ward, 1963 (or an 
"augmented model" to a "compact model", in Judd & McClelland's (1989) usage). If the 
difference in variance explained is negligible, we will prefer the reduced model and may 
consider simplifying it further. If the difference is large enough to be interesting, we 
suspect the reduced model to be oversimplified and will prefer the full model; we may 
then wish to consider an intermediate model, or a model even more elaborate than the 
present full model.  

In our context, the "full model" will initially contain as predictors all the original 
variables of interest and all possible interactions among them.  

Traditionally, all possible interactions are routinely represented in AOV designs (one 
may of course hope that many of them do not exist!), and in computer programs designed 
to produce AOV output; while interactions of any kind are routinely not represented in 
MLR designs, and in general have to be explicitly constructed (or at least explicitly 
represented) in computer programs designed to produce multiple regression analyses. 
This may be due in part to the fact that values of the explanatory variables (commonly 
called "factors") in AOV are constrained to a small number of nicely spaced values, so 
that (for balanced AOV designs) the factors themselves are mutually orthogonal, and 
their products (interaction effects) are orthogonal to them.  

Explanatory variables (commonly called "predictors") in MLR, on the other hand, are 
usually not much constrained, and are seldom orthogonal to each other, let alone to their 
products. One consequence of this is that product variables (like XW) tend to be 
correlated rather strongly with the simple variables that define them: Darlington (1990, 
Sec. 13.5.6) points out that the products and squares of raw predictors in a multiple 
regression analysis are often highly correlated with each other, and with the original 
predictors (also called "linear effects"). This is seldom a difficult problem with simple 
models like Eq. [1], but as the number of raw predictors increases the potential number of 
product variables (to represent three-way interactions like VWX, four-way interactions 
like UVWX, and so on) increases exponentially; and the intercorrelations of raw product 
variables with other variables tend to increase as the number of simple variables in the 
product increases. 



As a result, more complex models tend to exhibit multicollinearity, even though the idea 
of an interaction is logically independent of the simple variables (and lower-order 
interactions) to which it is related. This phenomenon may reasonably be called spurious 
multicollinearity . The point of this paper is that spurious multicollinearity can be made 
to vanish, permitting the investigator to detect interaction effects (if they exist) 
uncontaminated by such artifacts. 

These high intercorrelations lead to several difficulties: 

1. The set of predictors and all their implied interactions (in a "full model") may 
explain an impressive amount of the variance of the dependent variable Y, while 
none of the regression coefficients are significantly different from zero.  

2. The regression solution may be unstable, due to extremely low tolerances (or 
extremely high variance inflation factors (VIFs)) for some or all of the predictors.  

3. As a corollary of (2.), the computing package used may refuse to fit the full 
model.  

An example illustrating all of these characteristics is displayed in Exhibit 1. 

EXHIBIT 1 

In this example four raw variables (P1, G, K, S) and their interactions (calculated as the 
raw products of the corresponding variables) are used to predict the dependent variable 
(P2). P1 and P2 are continuous variables (pulse rates before and after a treatment); G, K, 
and S are dichotomies coded [1,2]: G indicates treatment (1 = experimental, 2 = control); 
K indicates smoking habits (1 = smoker, 2 = non-smoker); S indicates sex (1 = male, 2 = 
female). 

These computations were carried out in Minitab. (Similar results occur in other statistical 
computing packages.) The first output from the regression command (calling for 15 
predictors) was * P1.G.S.K is highly correlated with other X variables * P1.G.S.K has 
been removed from the equation followed by * NOTE * P1 is highly correlated with 
other predictor variables and a similar message for each of the other predictors remaining 
in the equation. The values of the regression coefficients, their standard errors, t-ratios, p-
values, and variance inflation factors (VIF) are displayed in the table below, followed by 
the analysis of variance table. 



 

                    Standard   
      Predictor   Coefficient       error        t        p       VIF    
 
      Constant         131.7        111.7        1.18    0.242 
 
      P1                -1.345        1.537     -0.87    0.385     440.6 
      G                -38.51        51.12      -0.75    0.454     957.6 
      K                -79.86        65.49      -1.22    0.226    1412.1 
      S                 19.63        63.00       0.31    0.756    1454.4 
      G.S              -26.29        38.88      -0.68    0.501    2906.0 
      G.K               21.96        24.36       0.90    0.370    1230.8 
      S.K               22.49        31.64       0.71    0.479    1953.4 
      G.S.K              1.542        9.798      0.16    0.875     842.6 
      P1.G               0.8671       0.6807     1.27    0.207    1101.9 
      P1.K               1.2570       0.9498     1.32    0.190    1845.6 
      P1.S               0.3258       0.7536     0.43    0.667    1673.4 
      P1.G.S             0.0113       0.3787     0.03    0.976    1784.3 
      P1.G.K            -0.4236       0.3788    -1.12    0.267    1663.1 
      P1.S.K            -0.2912       0.4085    -0.71    0.478    2078.3 
 
 
               Source     DF      SS        MS       F       p    
 
             Regression    14    22034.0   1573.9   26.60   0.000 
             Error         77     4556.0     59.2 
             Total         91    26590.0 
 
                                2                2 
               s = 7.692       R  = 82.9%       R  (adj) = 79.8%/ 

ORTHOGONALIZED PREDICTORS 

These difficulties can be avoided entirely by orthogonalizing the product and power 
terms with respect to the linear effects from which they are constructed. This point is 
discussed in some detail (with respect to predictors in general) in Chapter 5 of Draper and 
Smith (1966, 1981), and the Gram-Schmidt orthogonalizing procedure is described in 
their Sec. 5.7. Because that discussion is couched in matrix algebra, it is largely 
inaccessible to anyone who lacks a strong mathematical background. Also, they write in 
terms of orthogonalizing the whole X matrix; but in fact a partial orthogonalization will 
often suffice. 

In presenting the Gram-Schmidt procedure Draper and Smith (ibid.) observe that the 
predictors can be ordered in importance, as least in principle -- that is, the investigator 
may be interested first in the effect attributable to X1 , then to the additional variance that 
can be explained by X2 , then to whatever increment is due to X3, and so on. For the 
example with which they illustrate the procedure (generating orthogonal polynomials), 
this assumption is reasonable.  

However, the investigator may not always have (or be willing to impose) a strict a priori 
ordering on all the predictors. Suppose that we have four predictors U, V, W, X, which 
are moderately intercorrelated; and that we are interested in a model that includes all the 
two-way interactions between them, all the three-way interactions, and the four-way 
interaction. Now a natural ordering begins to emerge, but only a partial one: we will wish 
to see what effects are attributable to the linear terms alone, then what additional effects 
are due to the two-way interactions terms, then the three-way terms, and so on. In 



general, we are unlikely to be interested in retaining (e.g.) two-way interactions in the 
final model unless they provide an improvement over a model containing the original 
variables alone. 

A sequence of non-orthogonalized models. 

One way of proceeding in such a case is to fit several models in a hierarchical sequence 
of formal models, using as predictors: 

1. The original variables only.  
2. The original variables and the two-way interactions.  
3. The original variables and the two- and three-way interactions.  
4. The original variables and all interactions.  

Then make the usual comparison between models (change in sum of squares divided by 
change in degrees of freedom, and that ratio divided by the residual mean square for the 
more elaborate model, for an F-test of the hypothesis that the additional terms did not 
explain any more of the variance in the dependent variable). 

One drawback to proceeding thus is that not all statistical packages will perform this F-
test automatically, leaving the investigator to work it out on his own. Another drawback 
is that, if the three-way interaction terms (for example) do add significantly to the 
variance explained, it is then necessary to remove them (or add them, depending on the 
starting model used) one at a time in successive models, to find out precisely which of 
them is (or are) producing the effect. 

This procedure, which is recommended by many authors (e.g., Aiken & West 1991), 
requires a series of regression analyses. If, as may well be expected, the interactions are 
strongly correlated with the linear effects (the original variables) or with each other, there 
still may be some lurking ambiguity in interpreting the regression coefficients. 

A single orthogonalized model. 

However, if all of the interactions have been orthogonalized with respect to the lower-
order terms, one need only fit the full model. Then the standard t-tests of the regression 
coefficients will indicate directly which predictors (original variables and interactions) 
contribute significantly to explaining variance in Y, and which do not, and which (if any) 
are borderline cases for which some further investigation may be useful. 

By "orthogonalized with respect to the lower-order terms" I mean that each interaction 
variable (originally the raw product of the corresponding original variables) is 
represented by the residual part of that product, after the original variables and any lower-
order interaction variables have been partialed out of it. Consequently every such variable 
correlates zero with all the lower-order variables, and may be thought of as a "pure 
interaction" effect at its own level. 



A procedure for orthogonalizing interactions.  

We may proceed as follows: 

1. Two-way interactions (UV, UW, ..., WX): Form the simple product (U.V = U*V, 
e.g.), regress it on the two original variables (fit the regression model U.V = a + 
b1 U + b2 V + residual), and save the residual as a new variable UV. Use UV to 
represent the interaction between U and V; and proceed similarly for each pair of 
original variables. (Notice that UV has mean zero, and correlates zero with both U 
and V, because it is a residual.) 

2. Three-way interactions (UVW, UVX, ..., VWX):  
after the two-way interactions have been constructed, form either the simple 
product (e.g., U.V.W="U*V*W)" of the three original variables, or multiply the 
interaction term for two of them by the third (e.g., U.V.W="UV*W," or 
U.V.W="U*VW," etc.). Regress this product on the three original variables and 
the three two-way interactions: that is, fit the model U.V.W="a" + b1 U + b 2V + 
b3 W + b4 UV + b5 UW + b 6VW + residual, and save the residual as a new 
variable UVW. Use this to represent the three-way interaction between U, V, and 
W; and proceed similarly for all other three-way interactions. 

3. Four-way interactions (UVWX):  
After the two- and three-way interactions have been constructed, form a suitable 
four-way product (e.g., U.V.W.X="U*V*W*X" or U.V.W.X="[UV]*[WX]" or 
U.V.W.X="U*[VWX]" or ...). Regress this product on 14 variables the four 
original variables, the six two-way interactions, and the four three-way 
interactions and use the residual UVWX from this regression to represent the 
four-way interaction between U, V, W, and X. 

4. Higher-way interactions:  

If higher-way interactions are to be modeled, the extension of this procedure is 
straightforward. For five-way interactions the initial product is regressed on 30 
variables (five original, ten two-way, ten three-way, and five four-way). For six-
way interactions 62 variables are involved (six original, 15 two-way, 20 three-
way, 15 four-way, and six five-way).  

5. Curvilinear terms:  

If curvilinear functions of one or more of the original variables are to be modeled, 
these too can be orthogonalized. For quadratic and cubic terms in X, for example, 
we would construct X(2), regress it on X(3), and use the residual XSQ to 
represent the quadratic component of X; then construct X , regress it on X and 
XSQ, and use its residual XCUB to represent the cubic component. Interactions 
between these components and any other original predictors (U, V, W) would 
then be constructed and orthogonalized in the same general manner. 

Now a single regression analysis of the full model (the original variables and all their 
interactions) will produce unambiguous results, in the sense that any interaction that 



explains a significant amount of the variance of the dependent variable Y will have a 
significant regression coefficient, and any interaction whose regression coefficient is not 
significant can be discarded in arriving at a suitable reduced model. (For the relevant 
output from Minitab for the example presented in Exhibit 1, see Exhibit 2, Method D.) 

Orthogonalizing may produce some useful side effects, as well. As Darlington (1990, 
Sec. 13.3.2; and cited in Aiken & West, 1991) also points out, it is sometimes possible 
for interaction and curvilinear effects to be confused for each other. But if all lower-order 
predictors have been partialed out of the interaction and curvilinear terms, it becomes 
possible to tell whether the distribution of the data permits them to be distinguished from 
each other, and if so whether one or the other, or both, belong in the model. 

A COMPARISON OF METHODS 

We continue by illustrating the results of multiple regression analyses carried out by four 
parallel procedures. The data set used for illustration is the PULSE data supplied with 
Minitab (the data set used in Exhibit 1): 

"Students in an introductory statistics course participated in a simple experiment. The 
students took their own pulse rate .... They then were asked to flip a coin. If their coin 
came up heads, they were to run in place for one minute. Then everyone took their own 
pulse again. The pulse rates and some other data [were recorded.] (Ryan, Joiner, & Ryan, 
1985, 318-319)" 

The variables used in these analyses are P1 (first pulse rate), P2 (second pulse rate; the 
dependent variable), G (group: 1 = ran in place, 2 = did not run in place), K (smoker: 1 = 
smokes regularly, 2 = does not smoke regularly), S (sex: 1 = male, 2 = female). The 
sample size is 92. 

Defining the four methods. 

• A. In Method A, the four original variables are used in their raw form, and the 
interactions are constructed by multiplying together the relevant original 
variables.  

• B. The three dichotomies are recoded from [1,2] to [0,1]. (For G and K, 0 = those 
who did not; for S, 0 = male.) The fourth (continuous) variable is left in its 
original form. Interaction variables are constructed by multiplying together the 
relevant variables.  

• C. In this method, all four variables are centered: represented as deviations from 
their own (sample) means. Interaction variables are constructed by multiplying 
together the relevant variables.  

• D. Here the four variables are used in their raw form. Interaction variables are 
initially constructed by multiplying together the relevant variables, and are then 
orthogonalized as described above.  



In each analysis, the fifteen predictors were specified in the same (hierarchical) order: 
linear terms, then two-way interactions, three-way interactions only after the relevant 
two-way interactions, and the four-way interaction last. 

EXHIBIT 2 

Values of the regression coefficients, their standard errors, t-ratios, p-values, variance 
inflation factors (VIF), and sequential sums of squares (SEQ SS) for a full model (15 
predictors), for each of four different methods for constructing interaction variables. 

The analysis of variance, displayed at the end of the table, is identical for all four 
methods. 

     Method A   (Raw variables and products) 
 
                             Standard  
     Predictor  Coefficient    error      t       p       VIF      SEQ SS  
 
     Constant    149.9        228.5       0.66   0.514 
 
     P1           -1.577        2.976    -0.53   0.598    1629.6   10096.1 
     G           -51.6        152.3      -0.34   0.735    8389.8    7908.0 
     K           -91.0        138.3      -0.66   0.513    6219.3     116.7 
     S             5.3        168.6       0.03   0.975   10278.6    1087.0 
     G.S         -15.5        124.3      -0.12   0.901   29317.3    2129.0 
     G.K          29.74        88.41      0.34   0.738   16003.6     295.6 
     S.K          30.99        98.14      0.32   0.753   18549.5      62.2 
     G.S.K        -4.67        68.55     -0.07   0.946   40712.3      11.0 
     P1.G          1.032        1.926     0.54   0.594    8712.7     122.4 
     P1.K          1.402        1.846     0.76   0.450    6878.1      51.9 
     P1.S          0.504        2.085     0.24   0.810   12649.2      61.8 
     P1.G.S       -0.121        1.494    -0.08   0.936   27402.2      12.6 
     P1.G.K       -0.523        1.150    -0.45   0.651   15125.2      49.6 
     P1.S.K       -0.399        1.242    -0.32   0.749   18958.3      30.1 
     P1.G.S.K      0.0772       0.8429    0.09   0.927   35106.2       0.5 
 
                  Method B   ([0,1] dichotomies and products) 
 
                              Standard  
      Predictor  Coefficient    error      t       p      VIF     SEQ SS  
 
      Constant       1.25       13.14      0.10   0.925 
 
      P1             0.9716      0.1839    5.28   0.000     6.2   10096.1 
      G             16.99       22.91      0.74   0.461   189.9    7908.0 
      K              9.88       18.13      0.54   0.587   106.8     116.7 
      S             17.65       19.06      0.93   0.357   131.5    1087.0 
      G.S           24.83       33.40      0.74   0.460   180.2    2129.0 
      G.K           25.06       32.23      0.78   0.439   180.8     295.6 
      S.K          -21.65       55.27     -0.39   0.696   372.3      62.2 
      G.S.K         -4.67       68.55     -0.07   0.946   300.0      11.0 
      P1.G          -0.0196      0.3276   -0.06   0.952   218.2     122.4 
      P1.K          -0.1115      0.2543   -0.44   0.662   123.5      51.9 
      P1.S          -0.2264      0.2635   -0.86   0.393   153.7      61.8 
      P1.G.S        -0.0335      0.4512   -0.07   0.941   221.4      12.6 
      P1.G.K        -0.4458      0.4515   -0.99   0.327   211.5      49.6 
      P1.S.K         0.2441      0.6582    0.37   0.712   384.3      30.1 
      P1.G.S.K       0.0772      0.8429    0.09   0.927   314.1       0.5 
 



            Method C   (Centered original variables and products) 
 
     Predictor  Coefficient  Std. error     t       p      VIF    SEQ SS  
 
     Constant     80.919        1.057      76.53   0.000 
 
     P1            0.81929      0.09264     8.84   0.000    1.6   10096.1 
     G           -21.935        2.085     -10.52   0.000    1.6    7908.0 
     K             2.400        2.701       0.89   0.377    2.4     116.7 
     S             8.604        2.400       3.58   0.001    2.1    1087.0 
     G.S         -22.677        4.664      -4.86   0.000    1.8    2129.0 
     G.K          -7.055        4.998      -1.41   0.162    2.0     295.6 
     S.K           3.492        6.497       0.54   0.592    3.0      62.2 
     G.S.K         0.95        11.77        0.08   0.936    2.4      11.0 
     P1.G          0.1590       0.1887      0.84   0.402    1.6     122.4 
     P1.K          0.1771       0.2016      0.88   0.382    2.0      51.9 
     P1.S         -0.1559       0.1927     -0.81   0.421    1.6      61.8 
     P1.G.S        0.0100       0.3814      0.03   0.979    1.7      12.6 
     P1.G.K       -0.4164       0.3893     -1.07   0.288    1.8      49.6 
     P1.S.K       -0.2735       0.4543     -0.60   0.549    2.5      30.1 
     P1.G.S.K      0.0772       0.8429      0.09   0.927    2.2       0.5 
 
              Method D   (Raw variables and orthogonal products) 
 
      Predictor  Coefficient  Std. error     t       p     VIF    SEQ SS  
 
      Constant     43.134       7.516        5.74   0.000 
 
      P1            0.76401     0.08419      9.08   0.000   1.3   10096.1 
      G           -20.846       1.732      -12.04   0.000   1.1    7908.0 
      K             2.015       1.902        1.06   0.293   1.2     116.7 
      S             8.358       1.853        4.51   0.000   1.2    1087.0 
      G.S         -22.819       4.108       -5.55   0.000   1.4    2129.0 
      G.K          -7.308       3.797       -1.92   0.058   1.1     295.6 
      S.K           2.208       4.852        0.46   0.650   1.6      62.2 
      G.S.K         1.542       9.862        0.16   0.876   1.6      11.0 
      P1.G          0.2262      0.1794       1.26   0.211   1.4     122.4 
      P1.K          0.1848      0.1777       1.04   0.302   1.4      51.9 
      P1.S         -0.1366      0.1826      -0.75   0.457   1.4      61.8 
      P1.G.S        0.0113      0.3811       0.03   0.976   1.4      12.6 
      P1.G.K       -0.4236      0.3813      -1.11   0.270   1.6      49.6 
      P1.S.K       -0.2912      0.4111      -0.71   0.481   1.4      30.1 
      P1.G.S.K      0.0772      0.8429       0.09   0.927   1.0       0.5 
 
 
                            Analysis of variance. 
 
                Source    DF      SS       MS       F       p    
 
              Regression   15   22034.5   1469.0   24.51   0.000 
              Error        76    4555.5     59.9 
              Total        91   26590.0 
 
                                2                2 
               s = 7.742       R  = 82.9%       R  (adj) = 79.5% 

Results from the full model. 

Exhibit 2 displays the regression coefficients and related statistics for each analysis. The 
sequential sum of squares ("SEQ SS") accounted for by each variable remains the same 
across all four methods: this is partly due to specifying the variables in the same order for 
each method, and partly to specifying them in hierarchical order: linear effects first, 
followed by successively higher-order interactions. 

Notice the instability of the coefficients reported for Method A: the coefficients 
themselves differ, sometimes wildly, from the corresponding coefficients reported for the 
other methods, and the variance inflation factors (VIF) are all quite high. (Since VIF = 



1/tolerance, all the tolerance values are quite low. Forcing in the 15th predictor has 
increased all the VIF values by an order of magnitude: compare Exhibit 1.) None of the 
coefficients, in the presence of the other 14, differs significantly from zero. 

Merely recoding the dichotomies from [1,2] to [0,1] for Method B has reduced the VIF 
values by two orders of magnitude. But apart from P1, whose coefficient is now 
significant, it is hard to see one's way to a reasonable reduced model by examining the 
coefficients and their t values. (Good indirect information is available from the sequential 
sums of squares, but not all regression packages produce these or, equivalently, the 
sequential changes in 2 R .) 

Centering the original variables (Method C) has had the effect of reducing all VIFs to 
values less than 4. Five regression coefficients are now reported as significant. 

In partialling out lower-order terms (Method D) all VIF values are less than 2. They 
would all be 1.0 if P1 had been partialled out of G, P1 and G out of K, and so on, for a 
complete orthogonalization. Five regression coefficients are reported with p<0.0005 
(these are the same five as those reported in Method C), and a sixth one has p < 0.06. 

The results that are invariant across all methods -- the analysis of variance summary 
table, s (the standard error of estimate, equal to the square root of the error mean square), 
and R**2 -- are displayed at the bottom of Exhibit 2. 

Exhibit 3 shows the correlation matrices for each method. Notice particularly the 
differences between Method A (for which five correlations exceed .9) and Method D (for 
which no correlations exceed .4 among the predictors). 

EXHIBIT 3. CORRELATION MATRIX FOR EACH METHOD 

Correlation Matrix for Method A : Raw products. 

    P2     P1      G      K      S    G.S    G.K    S.K  G.S.K   P1.G   P1.K   P1.S  P1.G.S  
P1.G.K  P1.S.K 
P1            616 
G            -577   -052 
K            -046   -129    066 
S             309    285    107    129 
G.S          -189    147    667    155    783 
G.K          -453   -114    749    681    182    590 
S.K           180    112    139    640    821    691    522 
G.S.K        -198    041    574    533    707    897    785    862 
P1.G         -255    399    884    005    211    672    627    165    536 
P1.K          259    347    038    874    248    206    582    656    518    192 
P1.S          488    601    055    045    929    688    086    704    576    306    321 
P1.G.S       -003    415    591    093    789    953    491    644    815    733    276    802 
P1.G.K       -247    200    713    631    250    614    940    540    777    749    697    258     
611 
P1.S.K        354    382    100    554    830    660    436    951    791    250    716    824     
702     
550 
P1.G.S.K     -053    259    540    487    735    891    727    851    967    611    589    689     
884     
803     857 
 
 



Correlation Matrix  for  Method B :    [0,1] dichotomies. 
 
               P2     P1      G      K      S    G.S    G.K    S.K  G.S.K   P1.G   P1.K   P1.S  
P1.G.S 
P1.G.K  P1.S.K 
P1            616 
G             577    052 
K             046    129    066 
S             309    285   -107   -129 
G.S           711    271    470    047    470 
G.K           234    111    494    586   -038    255 
S.K           275    328    076    467    394    362    339 
G.S.K         335    178    272    322    272    579    550    691 
P1.G          645    173    982    083   -055    536    511    110    316 
P1.K          116    264    072    978   -078    073    584    540    358    105 
P1.S          382    400   -079   -089    983    501   -019    449    296   -012   -027 
P1.G.S        726    333    464    051    464    986    257    363    579    548    085    514 
P1.G.K        262    182    487    577   -016    282    985    369    591    525    597    011     
296 
P1.S.K        279    366    066    462    390    344    322    990    662    109    547    457      
359    
365 
P1.G.S.K      344    221    268    318    268    570    542    681    985    325    366    305     
589    
602     673 
 
 
Correlation Matrix  for  Method C :    Centered variables. 
 
               P2     P1      G      K      S    G.S    G.K    S.K  G.S.K   P1.G   P1.K   P1.S  
P1.G.S 
P1.G.K  P1.S.K 
P1            616 
G            -577   -052 
K            -046   -129    066 
S             309    285    107    129 
G.S          -290   -110   -054    117    054 
G.K          -065    031   -032   -055    114    066 
S.K          -110   -128    119   -114    066    115    000 
G.S.K        -078   -115    074    009    125   -009   -123   -070 
P1.G         -093   -050    025    031   -107    347   -138   -109   -063 
P1.K         -091   -295    028    097   -110   -090   -062    376    003    002 
P1.S          184    177   -108   -124    140   -138   -130   -234   -058   -145    075 
P1.G.S       -346   -152    317   -106   -099    195   -057   -010   -158    233    091   -093 
P1.G.K       -017    007   -126   -069   -099   -064    126   -014    351   -289   -042    100    
-007 
P1.S.K        070    042   -098    338   -164   -010   -003    285   -063    100    092   -236     
045   
-199 
P1.G.S.K      078    103   -057   -010   -020   -141    334   -061    305   -015   -209    085    
-278  
198    -147 
 
 



Correlation Matrix  for  Method D :    Orthogonal interactions. 
 
               P2     P1      G      K      S    G.S    G.K    S.K  G.S.K   P1.G   P1.K   P1.S  
P1.G.S 
P1.G.K  P1.S.K 
P1            616 
G            -577   -052 
K            -046   -129    066 
S             309    285    107    129 
G.S          -344   -131    000    114   -000 
G.K          -084    023   -000    000    124    063 
S.K          -142   -170    120   -000    000    134   -013 
G.S.K        -104   -167    000   -000    000    000    000    000 
P1.G         -050   -000   -000    023   -095    350   -135   -108   -091 
P1.K          093   -000    009    000   -038   -132   -052    369   -000   -016 
P1.S          063   -000   -112   -119   -000   -137   -158   -243   -093   -128    147 
P1.G.S       -017    000   -000   -162    000   -000   -029   -077   -204   -000    078   -000 
P1.G.K       -094    000   -000    000   -120    028   -000   -018    393    000   -000    077     
089 
P1.S.K        115   -000   -166   -000   -000   -109    038   -000    046    121   -000   -000     
193   
-235 
P1.G.S.K      004    000    000   -000    000   -000   -000   -000   -000   -000   -000    000     
000   
000    -000 

Selecting a reduced model. 

From Exhibit 2 we can see from any of the methods that the four-way interaction can be 
discarded (b = .077, t = .09, p > .9). (From Exhibit 1, where the four-way interaction was 
omitted, we can see that all the three-way interactions can also be discarded.) Method A 
provides no insight into further reducing the model: all p values are > .4, all but one are > 
.5. 

In Method B the full model shows that P1 should be retained, but doesn't help identify 
other useful predictors (except by using the sequential sums of squares, which some 
statistical packages do not report). 

When the original variables are centered (Method C), four coefficients are significant in 
the full model: P1, G, S, G.S. (This may not be the best reduced model, because one or 
more of the other predictors might be significant in the absence of the rest.) 

When the interaction terms have been orthogonalized (Method D), the same four 
predictors should clearly be retained; in addition, the G.K interaction (p <.06) may be 
significant when the other predictors are absent, and this possibility should be examined 
directly. 

If the G.K interaction is included as a predictor, so should be the K linear effect, for 
hierarchical completeness; particularly for Methods A, B, and C. Results for this 
hierarchical six-predictor model (P1, G, K, S, G.S, G.K) are displayed in Exhibit 4, for 
each method. 

• Using the original variables and their raw products for interactions (Method A), 
all six predictors are significant.  



• When the dichotomies are recoded to [0,1] (Method B), the two linear terms S and 
K are not significant. (When they are discarded, the four-predictor reduced model 
yields the results displayed in Exhibit 5a.)  

• For centered original variables, and for orthogonalized interactions (Methods C 
and D), the linear term K is not significant. 

Exhibit 4  

Reduced (hierarchical) model fitted by each method: predicting P2 from P1, G, S, G.S, 
G.K, and K. 

 Method        Predictor      Coef        St dev       t       p      VIF    Seq SS  
 
 METHOD  A          Constant      -24.62       13.67       -1.80   0.075 
 
 (Raw)              P1        0.76297     0.07786     9.80   0.000    1.1   10096.1 
 
                           G       21.108       7.556       2.79   0.006   21.2    7908.0 
                           S       42.334       6.074       6.97   0.000   13.7    1177.8 
                           G.S    -20.649       3.510      -5.88   0.000   24.0    2066.5 
                           G.K     -8.030       3.567      -2.25   0.027   26.8      14.4 
                           K       14.891       5.914       2.52   0.014   11.7     369.7 
 
 
 METHOD  B          Constant       16.296       5.610       2.90   0.005 
 
 ( [0, 1] coding)  P1        0.76297     0.07786     9.80   0.000    1.1   10096.1 
 
                           G       15.600       2.392       6.52   0.000    2.1    7908.0 
                           S        1.036       2.137       0.48   0.629    1.7    1177.8 
                           G.S     20.649       3.510       5.88   0.000    2.0    2066.5 
                           G.K     -8.030       3.567      -2.25   0.027    2.3     369.3 
                           K        1.169       2.325       0.50   0.616    1.8      14.8 
 
 
 METHOD  C          Constant       80.6373      0.8024    100.49   0.000 
 
 (Centered)               P1        0.76297     0.07786     9.80   0.000    1.1   10096.1 
                           G      -21.012       1.663     -12.64   0.000    1.0    7908.0 
                           S        8.892       1.769       5.03   0.000    1.2    1177.8 
                           G.S    -20.649       3.510      -5.88   0.000    1.0    2066.5 
                           G.K     -8.030       3.567      -2.25   0.027    1.0     319.1 
                           K        1.886       1.786       1.06   0.294    1.1      65.0 
 
 
 METHOD  D          Constant       42.292       7.045       6.00   0.000 
 
 (Orthogonal)             P1        0.76297     0.07786     9.80   0.000    1.1   10096.1 
                           G      -20.316       1.657     -12.26   0.000    1.0    7908.0 
                           S        8.302       1.764       4.71   0.000    1.2    1177.8 
                           G.S    -20.649       3.510      -5.88   0.000    1.0    2066.5 
                           G.K     -8.030       3.567      -2.25   0.027    1.0     303.4 
                           K        2.096       1.782       1.18   0.243    1.1      80.7 
 
 
 
                       Common results for all methods in Exhibit 4: 
 
                                     2              2 
                      s = 7.637     R  = 81.4%     R  (adj) = 80.0% 
 
                                   Analysis of Variance 
 
                      Source    df      SS       MS       F       p    
 
                    Regression    6   21632.5   3605.4   61.82   0.000 
                    Error        85    4957.5     58.3 
                    Total        91   26590.0 



Exhibit 5  

(A) OPTIMAL REDUCED MODEL, METHOD B 

                 Coefficients 
 
                Predictor     Coef      St dev      t       p      Seq SS  
 
                Constant     16.352      5.556      2.94   0.004 
 
                P1            0.77275    0.07546   10.24   0.000   10096.1 
                G            14.868      2.064      7.20   0.000    7908.0 
                G.S          21.582      2.869      7.52   0.000    3234.2 
                G.K          -6.893      2.707     -2.55   0.013     371.1 
 
 
 
                                   
                      s = 7.566     R**2  = 81.3%     R**2  (adj) = 80.4% 
 
                                   Analysis of Variance 
 
                      Source    df      SS       MS       F       p    
 
                    Regression    4   21609.5   5402.4   94.37   0.000 
                    Error        87    4980.5     57.2 
                    Total        91   26590.0 
        (b)  Intercepts for 
                                   six-predictor model 
 
                          Value         Description          N   
 
                                  Those who ran in place : 
 
                          53.58   Female nonsmokers            7 
                          46.72   Female smokers               4 
                          31.90   Male nonsmokers            16 
                          25.04   Male smokers                 8 
 
                                  Those who did not run : 
 
                          18.50   Female smokers               4 
                          17.47   Male smokers               12 
                          17.33   Female nonsmokers          20 
                          16.30   Male nonsmokers            21 
 
For those who ran in place : 
 
                         
                        P2  = 0.763 P1  + 31.90 + 21.68 S - 6.86 K 
                     
For those who did not run : 
 
                         
                        P2  = 0.763 P1  + 16.30 + 1.036 S + 1.169 K 
                     
 
 
 
                                    (c)  Intercepts for 
                                  four-predictor model 
 
                          Value         Description          N   
 
                                  Those who ran in place : 
 
                          52.80   Female nonsmokers            7 
                          45.91   Female smokers               4 
                          31.22   Male nonsmokers             16 
                          24.33   Male smokers                 8 
 
                                  Those who did not run : 
 
                          16.35   All persons                57 



 
 
 
 
For those who ran in place : 
 
                          
                         P2  = 0.773 P1  + 31.22 + 21.58 S - 6.89 K 
                           
 
For those who did not run : 
                                   
                                  P 2 = 0.773 P1  + 16.35  

INTERPRETATION 

We have seen that if we partial out lower-order terms in constructing interaction 
variables, we can immediately decide on an appropriate reduced model after running only 
one regression, fitting the full model containing all interactions. That model may not be 
quite the optimal or preferred model for describing and interpreting the behavior of the 
variables in the data set, as we shall see; but we will have managed to discard most of the 
variables -- the interactions in particular -- that do not contribute usefully to accounting 
for variance in the dependent variable. 

We have also seen that (at least sometimes) centering the original variables before 
constructing the product terms can do almost as well. 

Neither of these methods, however, may be useful for interpreting the results associated 
with the reduced model that eventually emerges. 

Having discovered that the two-way interactions G.S and G.K ought to be included in an 
initial reduced model, and that the linear terms P1, G, and S appear to be necessary as 
well, we also include K in the first reduced model (because G.K may not be interpretable 
in the absence of K -- in other words, we retain a model that is hierarchical). This model, 
predicting P2 from (P1, G, S, K, G.S, G.K), we fit using each of the four methods, for 
comparison. 

For all four methods, there is only one continuous predictor, P1. All the other predictors 
are categorical variables, whose regression coefficients thus imply a difference in the 
intercept -- that is, a difference in the height between parallel lines -- on a plot of P2 vs. 
P1. (Had P1 interacted with any of the other predictors, some of the lines would have 
different slopes from the others.) Exhibit 6a displays such a plot, for the six-predictor 
models whose coefficients are given in Exhibit 4. Intercepts of the eight regression lines 
are reported in Exhibit 5b, in order from the highest line to the lowest. For the four-
predictor model of Exhibit 5a, the intercepts are reported in Exhibit 5c and the plot 
appears in Exhibit 6b. 

Exhibit 6a and 6b can be found at the end of the document. 

Method B: [0,1] dichotomies. 



In the data used as an example throughout this paper, interpretation is easiest when the 
dichotomies have been scored [0,1] and the interaction terms are the simple products of 
the linear variables (Method B): G.S = 1 when both G = 1 and S = 1, that is for females 
who ran, and is zero otherwise; similarly, G.K = 1 for smokers who ran, and is zero 
otherwise; S.K = 1 for female smokers, and is zero otherwise; and G.S.K = 1 for female 
smokers who ran, and is zero otherwise. For data constructed by this method, the most 
parsimonious model is the one in which the predictors are P1, G, G.S, and G.K, reported 
in Exhibit 5a. 

• For the group that did not run, in this method G = 0, and thus G.K = G.S = 0 : the 
only significant predictor of the final pulse rate is the initial pulse rate, not 
surprisingly.  

• For male non-smokers who ran, G = 1, bG = 14.9 -- that is, the pulse rate in this 
group is 15 beats per minute faster on average than for those who did not run.  

• For females who ran, G = 1 and G.S = 1, bG.S = 21.6 -- pulse rates for females 
who ran averaged 22 beats per minute faster than for males who ran.  

• For smokers who ran, G = 1 and G.K = 1, bG.K = -6.9 -- pulse rates for smokers 
who ran averaged 7 beats per minute slower than for non-smokers who ran.  

Method A: [1,2] dichotomies. 

For Method A, the most parsimonious model includes all six predictors. Interpretation is 
more difficult than for Method B for several reasons: 

• The two interaction variables each have three values (1, 2, 4) instead of two.  
• While for Method B the [0,1] coding and the absence of terms for S and K made it 

clear that for those who did not run there is only one predictor of the second pulse 
rate (namely the initial pulse rate), in Method A this can only be observed by 
computing the effective intercept for each of the four groups who did not run and 
observing that these four intercepts are virtually identical.  

Method C: centered variables. 

Here the most parsimonious model includes five predictors, but we should retain all six 
for hierarchical completeness. Interpretation is even more difficult than for Method A: 

• Initial pulse rate is now expressed as a deviation from the sample mean, rather 
than in straightforward number of beats per minute. It thus depends on 
characteristics of the sample which may not be generalized to other situations: in 
particular, on the sex ratio in the sample.  

• The dichotomies now have the values [-p,+q], where p + q = 1 and p is the 
proportion of cases falling in the category originally scored "2".  

• The two interactions now have four values each; unless p for one dichotomy is 
equal to either p or q for the other, in which case there are three values.  



Method D: orthogonalized interactions. 

Here the most parsimonious model includes five predictors, omitting K; but unlike 
Method C, the non-significant K can be omitted, because the orthogonality of G.K 
implies that K is not useful in its own right, regardless of whether the model includes G.K 
or not. The significant G.K interaction implies that the effect of smoking for those who 
ran differs from the effect for those who did not run; the nonsignificant K effect implies 
that there is no overall effect of smoking. 

Since P1, G, and S are in their original form, the interpretation of their coefficients is 
similar to the interpretation given for Method A. However, the interaction terms are more 
opaque: we need first to find out what their values are for the four cases represented by 
each interaction, before we can interpret the coefficients. These values in turn depend on 
the results of the regression analyses used to orthogonalize the interactions. Interpreting 
the regression coefficients for Method D is therefore more difficult than for the other 
methods. While Method D helps us to arrive rapidly at a reduced model, once we have 
such a model we may prefer to apply one of the other methods if a goal of the enterprise 
is to interpret the regression coefficients obtained. 
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