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Meta-Analysis of Experiments With Matched Groups or
Repeated Measures Designs

William P. Dunlap, Jose M. Cortina, Joel B. Vaslow, and Michael J. Burke

Tulane University

Tests for experiments with matched groups or repeated measures designs use
error terms that involve the correlation between the measures as well as the
variance of the data. The larger the correlation between the measures, the
smaller the error and the larger the test statistic. If an effect size is computed
from the test statistic without taking the correlation between the measures
into account, effect size will be overestimated. Procedures for computing
effect size appropriately from matched groups or repeated measures designs

are discussed.

The purpose of this article is to address issues
that arise when meta-analyses are conducted on
experiments with matched groups or repeated
measures designs. It should be made clear at the
outset that although this article pertains to meta-
analyses of experiments with correlated measures,
it does not pertain to meta-analyses of correla-
tions. Such experimental designs, often called
matched groups designs or designs with repeated
measures, we call correlated designs (CDs), and
their analysis is decidedly different from that of the
independent groups designs (IGDs). The matched
groups design in its simplest form occurs when
subjects are matched on some variable and then
randomly assigned by matched pairs to experimen-
tal and control conditions. The correlation for this
type of CD is the correlation between experimen-
tal and control scores across matched pairs. The
second type of CD is the repeated measures de-
sign, which in its simplest form tests the same sub-
ject under both experimental and control condi-
tions, usually in random or counterbalanced orders
to minimize carryover. The correlation of impor-
tance here is the correlation that commonly occurs
between the repeated measures, and this correla-
tion is often quite high in human research.
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CDs are common in many areas of psychology
including motivation (e.g., Bartol, 1976; Parker &
Dyer, 1976; Sheard, 1970), social perception (e.g.,
Mullen & Hu, 1988, 1989), employment discrimi-
nation (e.g., Crew, 1984; Rosen & Jerdee, 1976),
and training and development (e.g., Clark, 1960;
Egstrom, 1964). When the correlation between
measures is large in such experiments, the corre-
lated designs have a power advantage in compari-
son with that of 1GDs; the advantage appears in
the form of larger values for the computed test
statistic. The problem is that if the test statistic is
converted directly to an effect size measure for
purposes of meta-analysis, the estimates obtained
from the correlated designs will be too large, un-
less an equation that eliminates the influence of
the correlation is used.

These CDs stand in marked contrast to 1GDs
in which subjects are assigned at random to either
the experimental or control condition. Because of
random assignment, the order of scores within a
group is entirely arbitrary; therefore the correla-
tion between scores would be meaningless. Hence
the term independent groups design.

To make the argument more concrete, consider
the artificial data provided in Table 1. For pur-
poses of meta-analysis, an effect size must first be
computed. An effect size is simply an index of the
relationship between treatment and outcome that
can be compared across studies. The effect size
for data such as those in Table 1 is defined by
Cohen’s (1977) “‘d statistic” to be

d = (Mz — Mc)/SD, (1)
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Table 1

Artificial Data to Illustrate the Difference Between
Independent Groups Designs and Correlated Designs
in Computing Effect Size

Experimental  Control
(E) ©) Difference (E — C)
27 21 6
25 25 0
30 23 7
29 26 3
30 27 3
33 26 7
31 29 2
35 31 4
M 30 26 4
SD 3.162 3.162 2.507

Note. Effect size: d = (Mg — M¢)/SD = (30 — 26)/3.162 =
1.265;t for independent groups: 1,(14) = 2.530; d calculated from
n: d = 4(2/n)"* = 2.530(2/8)"" = 1.265. Correlation between
measures, r = .6857; 1 for correlated measures: /(7) = 4.513;
d calculated from ¢, incorrectly, d = (2/n)'? = 4513
(2/8)'? = 2.256, and correctly, d = ([2(1 — r)/n]'" = 4.513
[2(1 — .6857)/8]" = 1.265.

where M and M. are the means of the experimen-
tal and control groups, respectively, and SD is the
common standard deviation. For the data in Table
1 the difference between means is 4.0, which when
divided by the common standard deviation gives
an effect size of 1.265. Note that this is the appro-
priate standardized level of effect regardless of
whether the design was IGD or CD.

If these data were obtained from 16 subjects
randomly assigned to two groups of 8 each, this
would constitute an IGD, and the ¢ statistic for
independent groups (1) would equal 2.530. The
effect size d can be directly determined from ¢ by

d = t2/n)"? 2)

(Glass, McGaw, & Smith, 1981, p. 126, Equation
5.37), where n is the sample size per group.
Alternatively, if these data were obtained in an
experiment in which the subjects were first
matched on some variable prior to assignment to
groups (or in which each subject was tested under
both conditions), then the appropriate significance
test would be a r for correlated observations, ¢,
which is calculated from the difference scores be-
tween matched pairs. The statistic ¢ equals 4.513,

which is clearly larger than ¢ above. The ¢ is larger
than f because the existence of correlation be-
tween measures reduces the standard error of the
difference between the means, making the differ-
ence across conditions more identifiable. If, how-
ever, Equation 2 is used to compute effect size
from ¢, the result will be 2.256, nearly twice the
size of the d = 1.256, as defined by Equation 1.
What makes ¢ larger than # is the correlation
between these measures, which is .6857 for the
data in Table 1. This correlation does not change
the size of the effect; it simply makes the effect
more noticeable by reducing the standard error.
Table 2 shows what will happen to d if it is esti-
mated by inserting ¢ in place of t; in Equation 2.
Therefore, the effect of ignoring the correlation
between measures when computing an effect size
from ¢ computed from a CD can be seen in Table
2. When the correlation equals .75, the effect size
computed using Equation 2 will be double the
effect size as defined by Equation 1. Correlations
in the neighborhood of .75 are to be expected
as the test—retest reliabilities of psychometrically
sound measurements (cf. Anastasi, 1988;
Pearlman, Schmidt, & Hunter, 1980); thus it is not
unreasonable to expect this level of overestimation
if the effect size is not estimated properly.

The error term for t- is the standard error of
the mean difference, which is inversely related to
the correlation between measures. The correct for-
mula for estimating effect size from ¢ is

d = t2(1 — r)in]"?, 3)

where r is the correlation across pairs of measures.
Clearly, Equation 3 applied to these data correctly
estimates d. Because we were unable to find Equa-
tion 3 in textbooks on meta-analysis (e.g., Glass
et al., 1981; Hedges & Olkin, 1985; Hunter &
Schmidt, 1990), it is derived in Appendix A. The
derivations are entirely consistent with those of
McGaw and Glass (1980, p. 332, Equations 14 &
15), although these authors did not show how to
go directly from 1 to d. The problem, however, is
that the correlation between measures is almost
never reported when CDs are used, so Equation
3 can almost never be used. Instead, for such de-
signs, d must ordinarily be estimated directly from
the means and standard deviations.

To examine the relative accuracy of estimates
of d from Equations 1 and 3, we performed a
Monte Carlo study simulating a matched groups
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Table 2
Overestimates of Effect Size if Correlation Between Measures in Correlated Designs Is Ignored in Computation of d

Correlation between measures

Actual

effect 0 1 2 3 4 5 6 i 8 9
03 0.30 0.32 0.34 0.36 0.39 0.42 0.47 0.55 0.67 0.95
0.6 0.60 0.63 0.67 0.72 0.77 0.85 0.95 1.10 1.34 1.90
0.9 0.90 0.95 1.01 1.08 1.16 1.27 1.42 1.64 2.01 2.85
12 1.20 1.26 1.34 143 1.55 1.70 1.90 2.19 2.68 3.79
1.5 1.50 1.58 1.68 1.79 1.94 2.12 237 2.74 3.35 474
1.8 1.80 1.90 2.01 2.15 232 2.54 2.85 3.29 4.02 5.69
2.1 2.10 221 235 251 271 297 332 3.83 4.70 6.64
24 2.40 253 2.68 2.87 3.10 3.39 3.79 438 537 7.59

¢ When the correlation between measures is zero, the effect size is not overestimated.

correlated design, the results of which are pre-
sented in Table 3. For the simulation, two random
normal samples, n(0, 1), were generated by a FOR-
TRAN program using the RNNOF random nor-
mal generator from the International Mathematics
Subroutine Library run on an IBM AIX RISC
System/6000 computer. The two samples were in-
tercorrelated by the method of Knapp and Swoyer

Table 3

Monte Carlo Simulation (10,000 Iterations) of
Estimated Effect Size (d) and Effect Size Variance
(Var) and Becker’s (1988, Equation 6) Variance
Estimate as Functions of Sample Size per Group (n)
and Population Correlation Between Measures (p)
Where Population Effect Size Equals 1.0

Equation 1 Equation 3 Becker (1988)

p d Var d Var Equation 6
n =20

0 1.024 119 1.023 119 126

1 1.023 109 1.021 .109 116

3 1.023 .092 1.017 091 .096

5 1.029 073 1.018 072 .076

7 1.027 .054 1.011 .054 .056

9 1.036 040 1.012 .040 .036
n =50

.0 1.011 .046 1.011 046 .050

1 1.010 043 1.010 .043 .046

3 1.006 .035 1.004 .035 038

5 1.011 .027 1.007 .027 030

i 1.013 020 1.007 020 .022

9 1.014 014 1.005 .013 .014

“ Presented in the text as Equation 4.

(1967) to have a population correlation of the de-
sired amount. A population effect size of 1 was
produced by adding 1 to the second sample. For
each pair of samples the means, standard devia-
tions, correlation, and fc were computed, from
which d was estimated from the means and stan-
dard deviations as in Equation 1 or was estimated
from - using Equation 3. For each combination
of sample size and correlation the simulation was
iterated 10,000 times.

As can be seen in Table 3, the estimated d values
slightly overestimate the true population value,
which was 1.0, as is predicted by Hedges and Olkin
(1985, p. 79, Equation 5). Of the two estimators,
Equation 3 is consistently slightly more accurate
than is Equation 1, although the differences are
quite small and are trivial for the sample size of
50. The variance of these estimates, however, is
clearly a function of the population correlation
between measures and appears to be fairly well
estimated by an equation derived by Becker (1988,
p. 261, Equation 6), which after some change in
notation to conform to that used here is

Var (d) = [2(1 — r)/n] + [d2/(2n —2)]  (4)

(see the last column of Table 3). Becker (1988)
recommended computing effect sizes directly from
the means and standard deviations with CDs, as
in our Equation 1, and therefore does not provide
Equation 3, which the Monte Carlo results show
is very slightly more accurate.

Past Treatment of Problem

One would expect that the problem of estimat-
ing effect size from CDs would be carefully and
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correctly treated in most textbooks on meta-
analytic procedures, but this is decidedly not the
case. Some sources ignore the difference between
designs completely (e.g., Hedges & Olkin, 1985),
whereas others provide incorrect suggestions for
dealing with CDs. For example, Rosenthal (1991,
p. 17) claimed that if we use effect size expressed
as a correlation “we need not make any special
adjustment in moving from t tests for indepen-
dent to those for correlated observations.” Thus,
he recommended converting any ¢ first to an r by

r=[21(# + df)]"A 5)

where df is the degrees of freedom on which the
t is based. The r value is then converted to d by

d=[4r1(1 - r)]" (6)

These equations provide the basis for the pro-
grams for meta-analysis described by Mullen and
Rosenthal (1985). Applying Rosenthal’s (1991)
procedure to #- from Table 1, we would get an
r=.8627andad = 3.412, even a worse overestima-
tion of effect size than that of the incorrect proce-
dure described earlier. If Rosenthal’s procedure
is applied to ¢, the resulting r = .5601 and d =
1.352. The slight overestimation of effect size seen
here is a result of inaccuracies in Equation 6. The
r estimated by Equation 5 is not the r between
measures used in Equation 3, but instead it is the
point-biserial correlation between the dependent
variable under both experimental and control con-
ditions with a binomial dummy predictor indicat-
ing the condition, which is .5601 for the data in
Table 1. The inaccuracy of Equation 6 is pointed
out in Appendix B.

Therefore, if Rosenthal’s (1991) procedure was
applied to an independent-groups ¢ computed
from a CD, even though it is not the appropriate
statistic for that design, it would yield a better
estimate of effect size. Of course, studies that use
CDs would not report £, so this possible solution
is essentially moot. Failure to carefully distinguish
among design types has led to incorrect determina-
tions of effect size by users of Mullen and Rosen-
thal’s (1985) software for meta-analysis (e.g.,
Anthony, Copper, & Mullen, 1992; Driskell, Cop-
per, & Moran, 1994; Driskell, Willis, & Copper,
1992; Lord, Saenz, & Godfrey, 1987; Mullen,
Brown, & Smith, 1992; Mullen & Hu, 1988, 1989,
Skinner & Mullen, 1991; Viduluch, 1988). To illus-

trate the extent of overestimation of effect size
from the application of Mullen and Rosenthal’s
software, we describe three studies used in the
Driskell et al. (1994) meta-analysis, which re-
ported a total of 16 effects from correlated designs,
in Table 4. As Table 4 shows, in every case the
reported effect size was larger than the effect size
computed by Equation 1. The correctness of the
latter effect sizes can be confirmed by applying
Equation 1 to the means and pooled standard devi-
ation provided. In many cases the overestimation
is striking, with the reported effect size often being
more than double the more consistently defined
effect size. Furthermore, there were at least six
studies used by Driskell et al. (1994) in which CDs
were used but for which either the means or stan-
dard deviations were not reported. In such cases
effect size cannot be correctly estimated. Such
studies should not have been used in the meta-
analysis.

Glass et al. (1981) discussed the difference be-
tween matched pairs designs in comparison with
IGDs but provided an incorrect equation for the
solution of d from ¢ in this case,

d = 1cf2/n(1 = )" ™

(Glass et al., 1981, p. 127, Equation 5.41). Applica-
tion of this incorrect equation to the data in Table
1 results in d = 3.100, an overestimation of effect
size similar in magnitude to the use of Mullen
and Rosenthal’s (1985) procedure. As one can see
from Equation 6, larger correlations between mea-
sures will lead to even greater overestimation of
effect size. Rather than correcting for the correla-
tion between measures, Equation 7 will only make
the estimate more inaccurate.

Finally, Hunter and Schmidt (1990) did not dis-
cuss the matter of designs with correlated mea-
sures in general, although they did include a dis-
cussion of the analysis of gain scores. While the
analysis of gain scores is related to the issues dis-
cussed in this article and is worthwhile in its own
right, it does not speak directly to the general
problem of the proper meta-analysis of studies
with correlated designs.

Discussion

Again the reader is reminded that there are
other types of meta-analyses, such as meta-analy-
ses of correlations, in which the questions ad-
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Table 4

Effect Sizes Reported by Driskell, Copper, and Moran (1994) Incorrectly Calculated
From ¢ Statistic From Correlated Designs Together With Correct Effect Size
Computed Directly From Means and Standard Deviations

Study and Test Reported  Correct Mean Mean SD
type? statistic d Experimental control  pooled

Kelsey

(1961)
M t(11) = 2.92 1.761 0.58 45.0 379 12.3
P 1(11) = 3.61 21717 1.72 1474 379 63.8

Perry

(1939)
M 1(30) = 1.49 0.544 0.39 51.8 49.0 7.1
P 1(30) = 2.91 1.063 0.96 54.8 49.0 6.0
M t(30) = 3.81 1.391 0.78 38.7 339 6.2
P 1(30) = 7.70 2.812 125 443 339 8.3
M 1(22) = 5.70 2.430 1.29 16.3 11.5 37
P 1(22) = 4.00 1.706 1.32 15.3 11.5 2.9
M #(28) = 5.50 2.079 1.52 44.0 324 7.6
P 1(28) = 8.56 3.235 2.20 49.6 324 7.8
M 1(26) = 2.27 0.890 0.51 16.5 13.0 6.9
P 1(26) = 4.29 1.683 1.22 22.8 13.0 8.1

Weinberg

& Jackson

(1985)
M H69) = 2.34 0.564 0.30 48.5 46.1 8.0
M H69) = 2.26 0.543 0.32 33.7 30.3 10.5
M 169) = 2.75 0.662 0.24 8.1 7.2 3.8
M H69) = 1.18 0.284 0.09 676.0 666.0 105.6

2 P refers to physical practice, M to mental practice.

dressed above are not germane. Also there are
target-independent variables, such as effects of
gender, for which it is unlikely that correlated de-
signs will be used; certainly gender cannot be a
repeated measures variable, and it is unlikely that
male—female pairs would be matched prior to data
collection. However, there are many meta-analy-
ses in which designs with correlated measures are
common, such as a recent study by Driskell et al.
(1994) that combined the findings of both CDs
and IGDs. The Driskell et al. (1994) meta-analytic
study of mental practice, which used the Mullen
and Rosenthal (1985) procedure with Equations
5 and 6 above, is a case in which the distinction
between CDs and IGDs is ignored, and for that
reason, the conclusions reached in that article must
be questioned.

Because effect sizes with CDs are inflated if the

correct formula is not used, any overall assessment
of the effect size will be too large and will exagger-
ate the apparent strength of the manipulation. Fur-
thermore, meta-analyses often search for modera-
tors of effect size (Driskell et al., 1994, tested five
potential moderators). To the extent that the like-
lihood of CDs as opposed to IGDs changes as
a function of the moderator variable, incorrect
estimation of effect size from the former designs
may create an apparent moderator effect where
none in fact actually exists.

Another thought is to separate CDs from IGDs
and analyze the two design types in separate meta-
analyses that use different metrics for the effect
size estimates. This idea is fine for the IGDs; how-
ever, for the CDs there is no reason to expect that
the correlation from study to study would be the
same. Therefore, unless the correlation for each
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CD was known, they would each most likely be
on their own metric, and of course, if the correla-
tion was known, they could be integrated with the
findings of IGDs using Equation 3. Another option
is to estimate the size of the correlation between
measures from previous findings, asis sometimes
done with reliabilities in meta-analysis; such a pro-
cedure would depend on the comfort that the re-
searcher has in the accuracy of the estimated corre-
lation. If the means and standard deviations are
not provided, and if the correlation between mea-
sures is not reported nor can be estimated appro-
priately, then it is best to exclude the study from
the meta-analysis rather than risk incorrectly esti-
mating the effect size.

It should be noted that if one were to compute
a weighted mean effect size or weighted sampling
variance of the mean effect size with weights that
are proportional to the inverse of the sampling
variance of the individual effects (cf. Hedges &
Olkin, 1985, pp. 109-113), then the appropriate
sampling variances for IGDs and CDs should be
used. Although weights of this type are used in
some meta-analyses, often weights based on sam-
ple size alone are used. Researchers might con-
sider alternative sample size—based weights such
as suggested by Hedges and Olkin (1985, p. 110)
or by Finkelstein, Burke, and Raju (1995).

Hunter and Schmidt (1990) pointed out that
meta-analyses provide the empirical building
blocks for theory development and social policy
decisions. If, however, the building blocks are not
constructed correctly, the theory or social policy
they are used to support will be unstable. More-
over, meta-analytic tests of theoretical expecta-
tions based on incorrect estimates of effects may
lead to erroneous conclusions about the tenability
of a theory and thus misguide future research and
practice. Only if care is taken to examine the ex-
perimental design and to compute effect size cor-
rectly can the scientific progress promised by meta-
analysis be realized in the behavioral and social
sciences.

The conclusions to be drawn from this article are
rather clear: (a) In a meta-analysis of experimental
findings, one cannot affort to ignore type of experi-
mental design; instead, CDs must be treated differ-
ently from IGDs. (b) With CDs, most authors do
not report the correlation across matched pairs
or across repeated measures; therefore for most
published CD experiments, effect size cannot be

correctly estimated from the test statistic using
Equation 3. (c) Instead, with CDs the meta-analyst
must use the means and standard deviations to
estimate effect size directly, when the correlation
between measures is not provided.
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Appendix A
Derivation of Equation 3 for Estimating d From #¢

The ¢ test for matched groups is calculated from the
difference scores from the matched pairs (the third col-
umn in Table 1). The formula for this test is

te = Mp/(SDp/n'?) = (Mg — Mc)/(SDp/n'?),
(A1)

where M is the mean of differences that equals the
difference of means, SDy, is the standard deviation of
differences, and » is the sample size for each mean. By
the variance sum law the variance of differences is

SDp? = sg? + s — 2rsgsc, (A2)
where SDg? and SD? are the variances of the experimen-

tal and control groups. Making the common assumption
of homoskedasticity

SDy =252 (1 —r). (A3)

Therefore,

te = (Mg — M)/[25°(1 — r)/n]"? (A4)
= (Me — MO)ISD[2(1 = r)/n]".

By the definition of d (Equation 1 in the text),

te = d/[2(1 — r)/n]*. (AS)
Solving Equation A5 for d, we get

d =121 = r)/n]*?, (A6)

which is Equation 3 in the text.
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Appendix B
Relationship Between d and rpp

t Test for Independent Groups
Let
Wy + ny— 2) = (M; — My)/[s(1/n, + 1/n)"7]
= (M, — My)/s[niny! (ny + ny)]"? (B1)

= d[nlnz/(nl + nz)]ln.

Point-Biserial Correlation

Assuming n, equals n,, the same ¢ can be computed
through a correlation between the data and a dummy
predictor indicating the group variable, rps:

t(nl +n, - 2) = rPB(nl +n, — 2)1/2/(1 - rpBZ)Uz. (B2)

Relationship Between d and rpp

We can now solve for the direct relation between d
and rpp by setting the right side of Equation 1 equal to
the right side of Equation 2 and solving for d:

d = {[res¥(n, + ny; — 2)(n; + n))/{(1 — reg)nyny ]}

(B3)

Rosenthal’s Equation

Again assuming that n, = n, = n, Equation 3 simpli-
fies to

d = {[4reg*(n — D]/[(A — ree?)n]}'~ (B4)

If we further assume that (n — 1)/n is almost equal to
1, then we can write Rosenthal’s approximate formula,

d = [4rp®/(1 — )] (BS)
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