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In this article, I present an alternative formula for the calculation of a factorial analysis
of variance (ANOV A), which requires only the mean, standard deviation, and size for
each cell of the design, rather than the individual scores. This new method allows a
modern hand-held calculator to do most of the work, while still giving students the ed-
ucational experience of working directly with data. An example is given, in which the
new method is applied to a published table of data from a two-way unbalanced
ANOVA design. I argue that the new formula is not just easier to use than the tradi-
tional (raw-score) calculation formula (especially when dealing with higher order
factorial designs), but that it is a better teaching tool, and it conveniently allows esti-
mation of effect sizes from means and standard deviations even when the original au-
thors do not present the corresponding F ratios. Although it seems that instructors are
moving away from teaching ANOVA calculation in favor of focusing on the interpre-
tation of computer output, I propose that students will learn more about the structure
of ANOVA from using my new method than by avoiding hand calculation entirely
(using only statistical software), or by performing calculations with the traditional
method.

Keywords: analysis of variance, computational formula,
hand-held calculator, teaching statistics

Requests for reprints should be sent to Barry H. Cohen, Department of Psychology, New York Uni-
versity, 6 Washington Place, New York, NY 10003.



192 COHEN

In the field of psychology, all of the popular introductory (e.g., Gravetter &
Wallnau, 2000; Pagano, 2001) and most of the graduate-level (e.g., Howell, 1997;
Keppel, 1991) statistics texts I have seen emphasize the calculation of analysis of
variance (ANOVA) by means of the raw-score or computational formula for the
sum of squared deviations (SS) from the mean. To eliminate the need for double
summation signs, the formula for the between-groups SS'in a one-way ANOVA, for
instance, is often expressed in the following fashion:

2
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where T is the sum of the scores in the ith group, #; is the number of scores in the ith
group, £X is the sum of all scores, and N is the total number of scores (this notational
system is not standard—many different symbols are used by various text authors).
The widespread use of this formula and its companions is a holdover from the days
when only the simplest four-function calculating machines were available, and
such formulas were needed to reduce calculation effort and assure accuracy. Ori-
ginally, these formulas were taught not because they best reveal the structure of
ANOVA, but rather because students would ultimately need to use them to analyze
their own data. In fact, definitional formulas were, and still are, often used to expli-
cate the concepts of ANOVA; the definitional formula that corresponds to Formula
1 is the following:

SSberween = Zni(}?i - XG )2 s (2)

where X, equals the grand mean. However, in most statistics texts for the behav-
ioral sciences, the definitional formulas are quickly dismissed as not suitable for
calculation purposes, and the raw-score formulas are introduced along with a small
data set to illustrate the calculation of a one-way ANOVA.

My argument is that the use of raw-score formulas for teaching purposes has
several drawbacks, and that its chief advantages have become irrelevant due to the
ready availability of cheap electronic calculators and statistical software. Given
that the disadvantages now outweigh the advantages of the raw-score formula, I
propose that it no longer be taught (except for historical purposes), and be replaced
by an approach that I describe in the next section.

Perhaps, the largest drawback to the raw-score formula is that students cannot
see why a greater spread of group means, for instance, leads to a larger value for
Formula 1, whereas this is fairly easy to see from Formula 2. Another drawback to
teaching ANOV A in terms of raw-score formulas is that an artificial and confusing
discontinuity is created between teaching the t test and teaching ANOVA. The
t-test formula is usually presented in terms of the means and variances of the two



CALCULATING FACTORIAL ANOVA 193

samples. However, when the one-way ANOVA is then presented in terms of
raw-score formulas, it is often not made clear that it is even possible to calculate
the ANOVA if given only the means, variances, and sample sizes of the groups;
this serves to obscure the connection between ANOVA and the ¢ test. A change in
symbols and terminology inadvertently adds to the confusion, so that there appears
to be little relation between the ¢ test and ANOVA (e.g., it is not often shown that
the denominator of the F ratio in an independent-samples, one-way ANOVA is
Jjust a weighted average of the sample variances, which is just a simple extension of
the pooled variance in the ¢ test). The chief advantage of the raw-score approach, a
reduction in computational effort and tedium, is no longer relevant, given the po-
tential use of modern hand-held calculators in conjunction with more instructive
definitional formulas, as shown next.

CALCULATING THE ONE-WAY ANOVA FROM MEANS
AND STANDARD DEVIATIONS

When dealing with a one-way ANOVA in which all of the samples are the same
size, it is easier to calculate the variance estimates (the mean squares) directly than
to deal with the SS components, if you use the definitional formulas. The defini-
tional formula for the between-groups mean square is:

ny (Xi—Xg)?

MSbetween = k—1 s

3)
where n is the common sample size, and k is the number of groups. Without the
n, the above formula is the unbiased variance of the group means (it is unbiased
because the denominator is not the number of groups, but the number of groups
minus one). Thus, Formula 3 can be rewritten as » times the unbiased variance
of the sample means. This is where the modern hand-held calculator makes the
difference. After entering the sample means into a calculator, the standard devia-
tion (SD) of these means can be obtained with the press of another key or two.
In this case, it is the unbiased SD that we want. (On many calculators, the biased
SD is designated by the symbol ¢ with 7 as a subscript to indicate that » is being
used in the denominator of the formula. The unbiased SD may be indicated by
either ¢ or s, but with n — 1 as a subscript, to indicate that n — 1 is being used as
the denominator. If you are not sure which key is which on your calculator, enter
the following three numbers: 3, 5, 9. The biased SD of these numbers is 2.494,
and the unbiased SD is 3.055.) Squaring this value and then multiplying by n
yields MSpetween, the numerator of the F ratio. The denominator of the F ratio is
the simple arithmetic mean of the (unbiased) sample variances, each of which is
easily obtained by entering the data for that group and squaring the unbiased SD.
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The procedure just described can be summarized in terms of the following for-
mula for the one-way ANOVA with equal-sized groups.

=
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where n is the common sample size, s )27 is the unbiased variance of the sample

means (i.e., Formula 3 without the n), Zs? is the sum of the sample variances, and k
is the number of groups.

Calculators that have a key for the standard deviation are now the low end of the
calculator market, and are usually called scientific calculators, and only occasion-
ally, statistical calculators. These calculators currently cost about $10 to $15, so it
is quite reasonable to require that each student purchase one (in fact, most students
will already have one because they are so readily available).

It can be argued that the raw-score formulas are more efficient in that they do
not require first calculating the means and variances of the samples. However, it is
hard to imagine a case in which you would not want to have these descriptive sta-
tistics, anyway. It can also be argued that the raw-score formulas generally lead to
greater accuracy because it is likely that too few digits beyond the decimal point
will be retained when the means and variances are used as intermediate steps. This
is true, but extreme accuracy is not required for pedagogical purposes, and re-
searchers almost always use statistical software to compute statistics they intend to
report. Unless it is expected that students will not have access to statistical soft-
ware for data analysis, and therefore will need the increased accuracy of the
raw-score formulas in their future work, there is simply no need to present these
formulas—they reveal nothing comprehensible (at least to the beginning student)
about the structure of ANOVA.

A more compelling argument against the teaching of ANOVA in terms of For-
mula 4 is that it cannot be used when the sample sizes are not equal, unless the un-
weighted-means method is used, and this method is almost never taught in the case
of one-way ANOVA (if the unweighted-means solution is desired, » in Formula 4
is replaced by the harmonic mean of the sample sizes). According to the
weighted-means solution, the usual method for a one-way ANOVA with unequal
sample sizes, the numerator of the F ratio is found by dividing Formula 2 by its
number of degrees of freedom. This approach requires that the grand mean be sub-
tracted from each sample mean and the difference squared before being added. 1
still believe that this procedure is no more tedious than using the raw-score for-
mula, and far more instructive (students can see that the more a sample mean var-
ies from the grand mean, the more it contributes to the numerator of the F ratio, and



CALCULATING FACTORIAL ANOVA 195

they can see that a larger n for a given sample also increases the size of the result),
but the means and variances approach, coupled with the modern calculator, does
not make a truly dramatic difference in the calculation of ANOV As until you reach
the complexity of a factorial ANOVA.

A NEW SYSTEM FOR CALCULATING FACTORIAL
ANOVAS

Calculating a Balanced Two-Way ANOVA

Although Formula 3 provides the most instructive and least tedious (if you use a
calculator to find the variance of the sample means) way to calculate the numerator
for an equal-n, one-way ANOVA, this approach does not translate simply to the
two-way ANOVA. Formula 3 does work for the main effects when applied to the
marginal means for each factor (k becomes the number of levels for the factor and n
the number of subjects included at each level of the factor), but to obtain the numer-
ator for the interaction it is more convenient to work with the §S components, which
are additive. That brings us back to a choice between Formulas 1 and 2, both of
which are tedious, and neither of which capitalize on the ease with which standard
deviations and variances can be found with modern calculators. The new computa-
tional system I present below extends the simplicity of Formula 4, and the power of
the modern calculator, to the calculation of the two-way and higher order factorial
ANOVAs.

The computational system I propose for factorial ANOVA is based chiefly on
one simple formula that can be applied repeatedly with minor variations. In the
case of the one-way ANOVA with equal-sized samples, this formula can be writ-
ten as follows:

Ssbelween = ch(means), (5)

where N represents the total number of observations, and the term 62 (means)
represents the biased variance of the sample means (i.e., the variance of sample
means that has &, the number of means, in its denominator, rather than k — 1.
This term could be written more compactly as 62, but my use of parentheses
makes it easier to modify the formula for the different components of the
two-way ANOVA.

Numerators of the F ratios. To calculate a balanced two-way ANOVA
with Formula 5, first create a matrix of cell means, and then average across and
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down to find the marginal (i.e., row and column) means. Then, apply Formula 5
to the cell means as follows: SSp.neen-cens = NG2 (cell means). Next, apply the for-
mula to both the row and column means: §S,,., = N62 (row means); S omms =
No? (column means). Finally, the SS for interaction is found by subtraction, as
usual: $8i.er = SShenveen-cetts — SSrows = SSeotumn. TheN, SSiwer, SSrows, ADA SScorumns are
divided by their respective degrees of freedom to form the numerators of the
three F ratios.

Denominators of the F ratios. The denominator (or error term) of all three
F ratios is the same, and can be found by simply averaging all of the cell variances.
First, the unbiased variance is calculated separately for each cell; then, if the design
is balanced (all of the cells have the same number of observations), the mean of the
cell variances is found. Averaging the cell variances is clearly the most instructive
way to find the ANOVA error term, but if you have the raw scores, and reducing
computational effort is your goal, you can avoid having to calculate the variance of
each cell by employing one additional application of the formula to find the total
SS: 8S. = N2 (scores), where 62 (scores) refers to the biased variance of all of the
observations. Then SS,imincar; can be found by subtracting SSpeneen-cens (already
found) from SS,.... Finally SS.imn-cos is divided by the appropriate degrees of free-
dom to form the denominator of the three F ratios.

Advantages of the new system. What makes this system instructive is
that it can be readily seen that the size of the numerator for the main effect for rows,
for instance, depends on the variance of the row means muitiplied by the total N,
and is therefore increased by a greater spread of the row means; also, a given spread
of means leads to a larger numerator when multiplied by a larger number of sub-
jects. It is easy to lose sight of how the formulas relate to your data when dealing
with cell, row, and column sums as required by the usual raw-score formulas. The
sums are not meaningful quantities as they depend on cell sizes, but the means of
cells, rows, and columns are easy to interpret. What makes this system so much less
tedious than the use of raw-score formulas, is the fact that the calculator does most
of the work. In terms of calculator functions, here are the steps of my system for
computing a balanced two-way ANOVA.

Calculator steps.  First, enter the observations separately for each cell of the
design and press the appropriate keys to find the mean and unbiased standard devia-
tion for each cell (it is useful to obtain the SDs for descriptive purposes). Average
the cell means across rows and down columns to find the marginal means. Then, en-
ter all of the cell means, press the key for the biased standard deviation, square the
result, and multiply by the total N to find SSsenween-cens. Also, press the key for the
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mean; this gives the grand mean, which will be useful for checking other calcula-
tions. Repeat the procedure contained in the previous two sentences for both the
row and column means. The (grand) mean found after entering the row or column
means should be the same as the (grand) mean found for the cell means, and serves
as a check that the data have been entered correctly into the calculator. Finally, this
procedure can be repeated one more time by entering all of the observations to find
88, (again finding the same grand mean as a check), to find SS,mn_c.us by subtrac-
tion, or MS,imin-ceus can be found directly by averaging the unbiased cell variances. A
complete step-by-step numerical example will be presented in a later section of this
article; additional worked-out examples (including ANOV As with repeated mea-
sures) can be found in Cohen (2000).

Although the calculator does most of the work, the student still gets the experi-
ence of working directly with his or her data. The greatest drawback of the system
Jjust described is the number of digits past the decimal point that must be retained
for intermediate results to preserve accuracy. However, for classroom purposes
this is not a serious concern; considerable error due to rounding off can be toler-
ated. Moreover, the simplicity of the system is a strong advantage. The one basic
formula required is easy to memorize or look up, and the student does not have to
keep track of the number of observations in each row or column (or even the num-
ber of rows and columns, until it is time to divide each §§ component by the appro-
priate degrees of freedom) as is necessary with the usual raw-score formulas.

Calculating an Unbalanced Two-Way ANOVA

The chief disadvantage of the calculation system I am proposing when applied to
the one-way ANOV A is its inability to accommodate the weighted-means analysis
of a design with unequal groups. Fortunately, this drawback does not arise in the
case of an unbalanced factorial ANOVA,; the weighted-means analysis is not usu-
ally considered appropriate in that case. It is the regression approach (called Type 3
sums of squares in SPSS) that is now the most widely used analysis system for un-
balanced ANOV As (assuming the lack of balance is fairly small and random); this
is a calculation process not feasible to perform with hand-held calculators. How-
ever, it can be instructive to teach students the once-popular unweighted-means
analysis for unbalanced two-way ANOVAs because this procedure produces ex-
actly the same results as the regression approach in the common 2 x 2 case. This
analysis is made both less tedious and more educational by employing the computa-
tional system I am proposing. The steps described in the previous section need be
modified only slightly for the unbalanced case.

First, note that the row and column means are found by taking the simple aver-
age of the cell means in a row or column, ignoring any differences in cell sizes. A
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slight modification of Formula 5 is then applied to the cell, row, and column
means. The adjusted formula is as follows:

SShenveen = N4O? (means), (6)

where N, is the harmonic mean of all of the cell sizes multiplied by the number of
cells. The following is a compact formula for Ny:

2
No=—+ ™
D
where ¢ represents the number of cells, and »; is the size of the ith cell. The de-
nominator for all of the F ratios is a weighted average of the unbiased cell vari-
ances, just as in the weighted-means analysis of the one-way ANOVA with

unequal ns (this term is called the pooled-variance estimate when performing a
two-group ¢ test).

CALCULATING A THREE-WAY ANOVA

The system described above for the two-way ANOVA easily generalizes to
higher order factorial designs, and designs with repeated measures, and the ad-
vantages of its simplicity become more obvious (and more welcome) as the de-
sign grows more complex. The raw-score approach to the three-way ANOVA,
for instance, is based mainly on repeated applications of Formula |, whereas my
approach substitutes Formula 5 in each case, leading to the following advan-
tages:

1. My approach is applied to tables of means (collapsed across none, one, or
two factors at a time). An inspection of these means gives a more accurate feeling
for the size of effects that may be occurring at different levels in the design than
does an inspection of tables of sums; the latter are required by the raw-score ap-
proach.

2. The n; term in Formula 1 keeps changing between layers of the analysis
(different numbers of factors being summed across), and sometimes within a layer
(if factors have different numbers of levels), but N in Formula 5 remains a con-
stant.

3. Inthe raw-score approach many sums have to be squared and kept track of,
but in my system the calculator does nearly all of the computation, which is a con-
siderable savings in even the simplest of three-way ANOV As.
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I suspect that very few of the instructors who cover three-way ANOVAs in
their courses actually discuss the details of its computation by hand (or assign
such exercises), preferring instead to emphasize the use of statistical software,
and the interpretation of the results. Although my system makes it more reason-
able to consider teaching the steps of these complex computations, I would not
argue strongly in favor of teaching computational details for ANOVAs more
complex than the two-way. However, to those instructors who see no value in
teaching computations for ANOVA at any level of complexity, I wish to point
out that there can occur occasions when the original data are not available, but a
table of means and standard deviations is. One may come across a published
journal article that contains such a table, but does not include an analysis of all
of the ANOVA effects that one would like to see. I will illustrate my system
with an example of such a case next. If one does not have access to statistical
software that accepts means and standard deviations for a factorial ANOVA as
input (I suspect that is often the case), my computational system can supply the
missing F ratios easily, and these F ratios can then be used in conjunction with
the sample sizes to estimate the effect sizes of the original study, perhaps to aid
the planning of a future study.

AN EXAMPLE FROM THE PSYCHOLOGICAL
LITERATURE

In their Study 2, Lee and Robbins (1998) published the results of a two-way
ANOVA exploring the effects of group communication during the performance
of a manual task (low cohesion = no communication allowed; high cohesion =
some written communication), and the participant’s degree of social
connectedness (as determined by low or high ratings on a Social Connectedness
Scale) on state anxiety, state self-esteem, and social identity. Some significant
effects were reported for self-esteem and social identity, but for state anxiety it
was stated that “there were no significant main or interaction effects” (p. 343).
However, suppose that your main interest is state anxiety, and you are planning
a similar study with a considerably larger sample (the Lee and Robbins study in-
volved only 44 participants in the four cells combined). Even though the results
for this variable were not significant in the Lee and Robbins study, you may
want to see just how close to significance the results came, and use the F ratios
and cell sizes to estimate the effect sizes that may apply to your replication. For-
tunately for my purposes, Lee and Robbins provided a table of means and stan-
dard deviations for all three dependent variables (cell sizes were included as
well because their factorial design was not balanced). Although the published ta-
ble had arranged the four cells in one row for each dependent variable, I have se-
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lected only the state anxiety variable, and rearranged the data to display the
marginal means in Table 1. Next, I use my new approach to compute a two-way
ANOVA on these data.

Because this design is not balanced, Formula 6 should be used instead of For-
mula 5. The Nj, that must be used in Formula 6 is four (the number of cells) times
the harmonic mean of the four cell sizes. Formula 7 does this for us in one step:

Ny = C21 1.1 421 1
D R R ERNT:
16 16

= 115125+ 077+ 0714 3843 ~ 416

The error term for the three F ratios is the weighted average of the four cell vari-
ances. The SD entries in Table 1 are unbiased, so they just have to be squared to
produce unbiased variances; then, each is multiplied by n; — 1 before being added.
Finally, the total, which is SSw, is divided by dfw. If the design were balanced, we
would be taking a simple average of the variances, instead.

L (9 DI3822 +(8-19.432 + (13- 19.422 + (14 1)9.622
- 40
_ 8(191)+7(88.9)+12(88.7) +13(92.5) _ 4417.2 _
- 40 ~ 40

MS

110.43.

TABLE 1
Level of State Anxiety As a Function of the Imposed Level of Group Cohesion
and the Reported Level of Social Connectedness

Cohesion
Connectedness Low High Row Ms
Low
M 37.13 39.22 38.175
SD 13.82 9.43
n 9 8
High
M 39.31 32.71 36.01
SD 9.42 9.62
n 13 14
Column Ms 38.22 35.965 37.0925

Note. From “The Relationship Between Social Connectedness and Anxiety, Self-esteem, and
Social Identity,” by R. M. Lee and S. B. Robbins, 1998, Journal of Counseling Psychology, 45, p. 343.
Copyright 1998 by the American Psychological Association. Adapted with permission of the authors.
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Next, I apply Formula 6 to the cell, row, and column means:

SShetween-cets = Npo? (cell means) = N,62(37.13,39.22,39.31,32.71)
=41.6 (7.163) =298.0
SSrows = NpG? (row means) = N,62(38.175,36.01)
=41.6 (1.172)=48.76
SScotumns = Ny6? (column means) = N,62(38.22,35.965)
=416 (1.271)=52.87.

The SS for the interaction of the two factors can now be found by subtraction:
SSinter = 298.0 — 48.76 — 52.87 = 196.37. Because the numerator dfs are all equal to
1, each of the SSs just calculated can be divided by the error term to obtain the F ra-
1108 Feonnecredness = 48.76/110.43 = 44; Fohesion = 52.87/110.43 = 48; Finteraction =
196.37/110.43 = 1.78.

If you did not have a calculator with the SD function, you could stili use the pre-
viously mentioned formulas, but the variances would have to be calculated the
long way. For example, using the definitional formula for the biased variance, 62
(37.13, 39.22, 39.31, 32.71) would be calculated the following way: [(37.13 —
37.0925)% + (39.22 - 37.0925)2 + (39.31 — 37.0925)2 + (32.71 — 37.0925)2 )/4 =
(.0014 + 4.5263 + 4.9173 + 19.2063)/4 = 28.6513/4 = 7.163. You can see how
much work the calculator saves even for the smallest (i.e., 2 x 2) factorial
ANOVA.

There is no indication that either of the main effects calculated above would
ever become significant in a larger study, but it can also be seen that if the cell sizes
were made three times larger without changing the apparent effect size for the in-
teraction, this effect could easily attain significance. Of course, in the 2 x 2 case,
the interaction can be readily calculated as a linear contrast of cell means, but my
system easily generalizes to any number of levels and factors.

CONCLUSIONS

Now that computers and statistical programs are so readily available for calculating
complex ANOVAs and are so much faster and more accurate than people using
raw-score formulas and hand-held calculators, many statistics instructors no lon ger
require their students to calculate factorial ANOV As by hand. Other instructors feel
that some calculations are important for solidifying statistical concepts, butare find-
ing itincreasingly difficult to justify the time and tedium involved with the hand cal-
culation of two-, and especially three-way ANOV As. Modern hand-held calcula-
tors, in conjunction with the use of Formula 5 or 6, now offer acompromise between
the extreme tedium of applying raw-score formulas to a factorial ANOVA, and the
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totally “hands free” approach of using statistical software. Calculating factorial
ANOV As with the system I have proposed gives students a feeling for why a greater
spread of means increases the size of the F ratio, as does a greater sample size.

Recently, Lovett and Greenhouse (2000) laid out a series of principles that af-
fect how easily students learn difficult, abstract material, such as found in the usual
statistics course. Several of these principles help to explain the advantages of my
proposed calculation system. Specifically, students can be expected to learn
ANOV A more quickly and retain this learning longer because they are practicing
calculations by themselves (Principle 1), their understanding of ANOVA will be
deeper because it will be anchored by and integrated with what they learned about
the ¢ test (Principle 4), and their learning will be more efficient because the new
formula imposes less of a mental load as it is used (Principle 5). Nonetheless, I do
not strongly recommend my approach for an introductory undergraduate course. 1
teach students at the master’s and doctoral level, and virtually all of these students
have already been introduced to factorial ANOV A (almost always in the context of
the raw-score method of ANOVA), and can better appreciate the new approach
without confusion. It is potentially confusing to start using the biased variance af-
ter students have learned to use the unbiased variance in the context of statistical
inference. However, if students do not use S0 to avoid calculating SSwimin, they
can simply remember to apply the biased variance only to group or cell means, and
never to individual scores when inference is the goal.

Finally, students with this training will know how to analyze ANOVA designs
from published results and be able to find F ratios that were not presented. This can
even be done with designs involving repeated measures, if the error term you need
for an F ratio not presented is shared by an F ratio that is. I require my students to
find tables of means and SDs in the psychological literature (especially tables not
completely analyzed in the article they come from), and then calculate two- or
even three-way ANOV As based on those tables. This helps my students see the
utility of the new approach, and they seem to appreciate the simplicity of and the
reduced effort required by the new formula. Some instructors will still feel that
teaching the hand calculation of ANOVA, even with the system proposed here, is
not a good use of class time, but there is no longer much justification for teaching
raw-score procedures that are wasteful of time and effort, while providing little ed-
ucational value.
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