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Overview

• Missing data: how arise and why a problem

• Missing data mechanisms

• When is complete-case analysis valid?

• Inverse probability weighting

• Multiple imputation

• Full-likelihood methods

• Doubly-robust methods

• Two special interests
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Missing Data and How They Arise

Missing data common in epidemiological research

• Subjects miss scheduled visits

• Drop out of study

• Decline to answer questions

• Refuse to participate

• Biological samples lost or tests fail

Digression: a broader concept is coarsened data

X is coarsened if we observe A such that X ∈ A

• censored data: X ∈ [c,∞)

• discretised data: X ∈ [a, b]

Missing data complicate the analysis

Good advice is not to have any! But not practical
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Why Missing Data are a Problem

Example 1: Bias

Estimate average weight in population

Take sample and measure weights

Scales only go up to 120Kg

Nurse enters ‘NA’ if maximum weight exceeded

Example 2: Inefficiency

Estimate parameters of model for relation between blood glucose and

smoking, BMI, social class,...

Blood glucose observed for everyone

98% of covariate values observed

But 50% of subjects have at least one covariate missing
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Missing Data Mechanisms (MDMs)

MDM is assumption about what missingness can depend on

• Missing completely at random (MCAR)

• Missing at random (MAR)

• Missing not at random (MNAR)

Let X be a vector of variables measured on each individual

Let R denote missingness pattern of X

X = (1, 3, 5, NA) R = (1, 1, 1, 0)

X = (NA, NA, 4.2, 1.9) R = (0, 0, 1, 1)

Write X = (Xobs, Xmis)

MCAR : P (R = r | X) = P (R = r)

MAR : P (R = r | X) = P (R = r | Xobs)

MNAR : not MAR
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Monotone missing data

Suppose X = (X1, X2, X3) and Xj is observed only if Xj−1 is observed

Only possible values of R are

R = (1, 1, 1) R = (1, 1, 0)

R = (1, 0, 0) R = (0, 0, 0)

Monotone missingness in longitudinal studies if missingness all due to dropout

P [R = (1, 1, 1) | X] = P (R1 = 1 | X) × P (R2 = 1 | R1 = 1, X)

×P (R3 = 1 | R2 = 1, X)

P [R = (1, 1, 0) | X] = P (R1 = 1 | X) × P (R2 = 1 | R1 = 1, X)

×P (R3 = 0 | R2 = 1, X)

MCAR: P (Rj = 1 | Rj−1 = 1, X) = P (Rj = 1 | Rj−1 = 1)

MAR : P (Rj = 1 | Rj−1 = 1, X) = P (Rj = 1 | Rj−1 = 1, X1, . . . , Xj−1)
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Missing data mechanism depends on the set of variables

What does “X is MAR” mean?

• If X = blood pressure

MAR :

whether blood pressure is observed is independent of blood pressure

• If X = blood pressure and fully-observed variables social class, sex, age, ...

MAR:

whether blood pressure is observed is independent of blood pressure given

social class, sex, age, ...

Including additional variables can make MAR assumption more plausible
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When is Complete-Case Analysis Valid?

CC analysis is valid if complete cases are representative of whole sample

More specifically, same relation between variables described by analysis model
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Inverse Probability Weighting (IPW)

let H be set of variables that predict whether a complete case

Let π(H) = P (CC | H)

Weight each complete case by 1/π(H)

IPW gives valid inference if P (CC | H, X) = P (CC | H), where X are

variables in the analysis model

π(H) usually unknown, so model specified and estimated using observed data

Also used for estimating treatment effects in non-randomised studies

9



x

y

x

y

10



Multiple Imputation (MI)

X1 X2 X3

1 1 10 20.1

2 1 8 15.2

3 0 ? 4.7

4 0 2 3.9

5 1 ? ?

6 0 -1 ?

1 10 20.1 1 10 20.1

1 8 15.2 1 8 15.2

0 2.3 4.7 0 1.9 4.7

0 2 3.9 0 2 3.9

1 9.3 16.9 1 10.5 19.3

0 -1 -2.3 0 -1 -1.7
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• Specify model for joint distribution of X

• Fit model to observed data

• For each individual, sample Xmis using fitted model and Xobs

• Generate multiple complete datasets

• Analyse each complete dataset

• Combine estimates (usually Rubin’s Rules)

MI is valid under MAR, because

MAR implies p(Xmis | Xobs, R) = p(Xmis | Xobs)

So, can

• impute Xmis using p(Xmis | Xobs), and

• estimate p(Xmis | Xobs) from the observed data
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IPW versus MI

• IPW assumes model for probability of being a complete case

• MI assumes model for joint distribution of data

• MI more efficient if some incomplete cases have some data

• IPW may be preferred if incomplete cases provide little information
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Full-Likelihood Methods

Similar to MI

Specify model for joint distribution of X, of which analysis model is part

E.g. analysis model is linear regression

Yi = β0 + β1Zi + ǫi

If specify distribution for Z, then have joint distribution for (Z, Y )

Fit this model to (Z, Y )

Extract estimates of parameters of analysis model

Like MI, valid if data are MAR

MI often easier to do in practice, especially if want to include auxiliary

variables
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Doubly Robust Methods (DR)

IPW requires model for probability of being complete case

MI requires model for joint distribution of data

DR uses both models and is valid if either is correct

If both models correct, DR is

• more efficient than IPW, but

• less efficient than MI

Limited utility so far
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Combining IPW and MI
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MI ? IPW ? IPW/MI ?
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IPW/MI also for surveys with unequal sampling fractions and missing data

IPW/MI has been used (e.g. Priebe et al., 2004; Stansfeld et al., 2008)
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Application to 1958 British Birth Cohort

• 17638 individuals born in UK during one week in 1958

16334 still alive at age 45

9014 (55%) participated in biomedical survey

• Thomas et al. (2007) regressed blood glucose (high/normal) at age 45 on

BMI and waist size at age 45 and variables measured at birth

7518 had observed glucose, BMI and waist size

Thomas et al. imputed missing birth variables using MICE

• But are 7518 representative of 16334?

We used IPW/MI

• Need model for P (glucose, BMI & waist size complete)

Used predictors measured at birth, age 7 and 11 (e.g. birth weight, class)

Disadvantaged less likely to be complete for glucose, BMI & waist size
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Missing Predictors of Missingness in IPW

IPW requires

• Set of variables H that predict whether a complete case

• Model for π(H) = P (CC | H)

Easy to fit this model and estimate π(H) if H is fully observed

But what if H can be partially missing?

• Crude methods, e.g. replace missing H by mean

• Only use fully-observed H

• Assume P (CC) depends only on observed H (D’Agostino & Rubin, 2000)

• Multiply impute missing H (Qu & Lipkovich, 2009)
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Summary

• Missing data

• IPW, MI, full-likelihood and DR

• Combining IPW and MI

• IPW with missing predictors of missingness
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Predictor of Thomas IPW/MI All MI

High Glucose log OR SE log OR SE log OR SE

short gestation 0.45 0.22 0.46 0.23 0.44 0.20

pre-eclampsia 0.47 0.26 0.55 0.27 0.47 0.25

smoke in pregncy 0.02 0.14 0.04 0.14 0.04 0.14

mother overwt 0.28 0.15 0.35 0.15 0.18 0.12

manual at birth 0.37 0.17 0.44 0.18 0.39 0.17

low birth weight −0.30 0.09 −0.30 0.09 −0.32 0.09

BMI age 45 0.04 0.02 0.02 0.02 0.03 0.02

waist (cm) age 45 0.07 0.01 0.07 0.01 0.07 0.01

Stronger relation between glucose and pre-eclampsia/mother overwt in

disadvantaged than in advantaged

When use All MI, relation similar in individuals with imputed glucose

Ordinary IPW uses only 5673 (75% of 7518) with complete birth data
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