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Meta-analysis
— What, why, and how in general?

Overview of IPD methods.
— The Emerging Risk Factors Collaboration (ERFC).

Examples of approaches to meta-analysis of:
— Shape of dose-response relationships and specificity.
— Adjusted main effects with correction for regression dilution.
— Interactions (separating within vs between-study components).
— Potential public health impact.
— Risk prediction measures.

Remarks
— Stata programs made available for IPD meta-analysis.

Background

* Anincreasing number of molecular and genetic markers are being
proposed as important predictors and/or causes of chronic
diseases such as cardiovascular disease (CVD).

« Trend accelerated by the advent of technologies that enable rapid
measurement of large numbers of blood proteins or genes.

* Reliable demonstration that a particular marker is relevant to CVD
may have important implications for prediction and prevention
(e.g. blood cholesterol).

* Meta-analysis i.e. “use of statistical methods to combine results
from individual studies” should help improve statistical power to
detect important associations and other features.

Meta-analysis

Use of meta-analysis has been growing in recent decades.
— Literature-based meta-analysis.
— Individual participant data (IPD) meta-analysis.
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Why IPD meta-analysis?
Enables better standardised and more detailed analysis.
— Standardised definition of outcomes and coding of variables.
Improved power to assess dose-response relationships.
Consistent adjustment for confounding across studies.
Ability to correct estimates for regression dilution bias.

Improved power to consistently assess subgroup effects.

Evaluation of the utility of markers for risk prediction.




The Emerging Risk Factors Collaboration (ERFC)

* A collation of IPD from 2.2 million participants in 143
prospective studies of cardiovascular disease (CVD)
outcomes and cause-specific mortality.

« Aim: To quantify in detail the associations between
established and emerging risk factors with CVD
outcomes and cause-specific mortality, and to assess
improvements in risk prediction.

— Lipids and lipid-related markers (triglycerides, cholesterol,
lipoprotein(a), apolipoproteins). JAMA 2009, JAMA 2012.

— Inflammation markers (C-reactive protein, fibrinogen, leukocyte
count, albumin). JAMA 2005, Lancet 2010, NEJM 2012.

— Glycaemia markers (glucose, HbA1c) Lancet 2010.

— Adiposity (BMI, waist, hip, waist:hip ratio). Lancet 2011.
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Study designs and methods in general

Majority (>90%) are prospective cohort studies; a few clinical trials
(mostly placebo arms); a few nested case-control studies for some
novel markers; and one or two case-cohort studies.

Principal analysis by 2-stage approach, first deriving study-specific
estimates and then pooling by random effect meta-analysis.

— Cox regression stratified by sex for cohort and clinical trials.

— Conditional logistic regression for nested case-control studies.
— Weighted Cox regression for case-cohort studies.

Sensitivity analysis using fixed effect meta-analysis or 1-stage
approach (i.e. stratified Cox model).e.g. for rare outcomes.

Univariate meta-analysis (stage 1)

* In cohort studies, Cox-proportional hazards models fitted
to each study.

log(hg,(t| Ey, X)) =log(hy (1) + BE; + 7, X

for each study s =1,...,S, with strata k =1,...,K|,
and individuals i =1,...,n, with exposure of
interest E,; and other covariates X ;

» For most studies K = 1 or 2, representing sex and in a
few K, > 2 in the presence of trial arm.

Univariate meta-analysis (stage 2)

* ps=log hazard ratio per unit higher exposure in study s,
adjusted for the confounding effects of the covariates X;

b, =B, +¢&,; where ¢, ~N(O,v,)
B. = B+n,; where n, ~N(0,7%)
* p=average log hazard ratio, combining the within-study
associations, while allowing for heterogeneity between
studies (i.e. 2>0).

— DerSimonian & Laird moment estimator of 7 is used, and the
impact of heterogeneity is quantified using |2 statistic.

» Stata program --metan-- for univariate meta-analysis.

Multivariate meta-analysis

» Attimes interest is on meta-analysis of multiple correlated
parameters, such as contrasts for categorical exposures,
in which case multivariate meta-analysis is appropriate.

» Where now, B is a vector of log hazard ratios in study s
with known within study covariances Z, adjusted for the
covariates Xj;.

B, =B, +£,; where £, ~MVN(0,,)
B, =B +n,; where n, ~MVN(0,Q)
» Stata program --mvmeta-- for multivariate meta-analysis.

--mvmeta-- White IR The Stata Journal 2009(9)40-56
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Regression dilution bias

Noise in exposures and covariates (e.g. due to measurement
errors or normal within person variability) often leads to regression
dilution bias when using only a single baseline measurement in
regression models.

X =Z+U; whereZis true value, U ~ N(O,o-f)

Regression dilution bias demo
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Correction for regression dilution Regression dilution ratios (RDRs)
* Repeat measurements of exposure and other covariates allow for * Repeat measures are regressed on baseline measures to
correction for impact of regression dilution bias simultaneously. estimate regression dilution ratios (RDRs) over time.
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* Repeat measures are regressed on baseline measures to » Linear mixed modelling used to fit a joint regression calibration
estimate regression dilution ratios (RDRs) over time. model to data from all cohorts allowing for random effects across
studies and individuals.
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RDRs and long-term “usual” levels Shape of dose-response relationships
+ RDRs of log CRP over time in 14 cohorts. « Categorise exposure into deciles (or appropriate bins)
14 cohorts, 22124 particpants, 24222 repeats and calculate study-specific RR estimates vs. an
1.0 Overall RDR (95% Cl) adjusted for age and sex = 0.58 (0.52, 0.63) . .
5 appropriate reference group, adjusted for confounders
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£ » Pool the study-specific log RRs by multivariate random
£ o effects meta-analysis (--mvmeta--, White IR) and plot
" ool against pooled mean exposure values within deciles.
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UASABLEADER | NESK I MOGERAUGH | ROTT M TARFS = ULsa + Sensitivity analysis by meta-analysis of continuous
+ Long-term average (“usual’) levels of exposures predicted from shape of association based on fractional polynomial
the linear mixed regression calibration models and used as new models (--metacurve--, Royston P).
exposures/covariates in the regression models for association with
disease outcomes.
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Shape of dose-response relationships (Lipids)
Associations with CHD (68 studies, 302430 participants, 12785 CHD)

Log Triglycerides (mmol/l) HDL-C (mmol/l) Non-HDL-C (mmol/l)
4.09 4.04 4.0
3.0 ; 3.0 3.0 E
2.0 i 2.0 I 2.0

it { %%
% it %%Eg
NESEELIETE B g o

Risk ratio (95% Cl)

i
L
g?ﬁ

i

0.2 02 06 1.0 08 1.2 16 20 30 4.0 50 6.0
Mean usual level

—=— Age and sex adjusted —*— Fully adjusted

ERFC JAMA 2009(302)1993-2000 19

Shape of dose-response relationships (CRP)

@ for dstudy (i riskfactors  (c) Plus fibrinogen
48 studies 10341 31 studies 5373 20 studies 3062
30 30 30
25 L] 25 25
20 “{»‘ 20 4 20
15 " 15 ! ““i 15 +
+ i !
LR e 1014 L L 10 +,+ ***{*i *****
5
2
s L :
£ 05 10 20 40 80 05 10 20 40 80 05 10 20 40 80
& 3 3 3
30/  3Bstudies369 30| 26studies 4599 3] 18studies3472
25 25 25
20 ) 20 L] 20
15 ) 15 * 15 +
#t ! 1l
101 +”—H """"" [ R R AR RS —{—HH, [
05 10 20 40 80 05 10 20 40 80 05 10 20 40 80

Geometric mean usual CRP level (mg/))

ERFC Lancet 2010(375)132-140

Continuous shape of dose-response relationships (CRP)
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Adjusted for sex, age --metacurve-- Royston P Stat Med 2011(30)3341-60

Specificity of associations (CRP)

Studies N Outcomes Risk ratio (95% Cl)
Allvascular deaths 37 136912 3430 —— 1.82(1.66,2.00)
Al nonvascular deaths 38 138063 8369 - 1.55(1.46. 1.66)
Cancer deaths
Respiratoryintrathorasiccancer 24 61356 666 = 232(1.96,274)
Breast cancer 8 18276 130 1.88(1.39,2.55)
Blood related cancer 14 45806 220 I — 157 (1.24,1.99)
Digestive cancer 25 64508 906 — 1.44(1.23,1.70)
Genitourinary related cancer 17 4ges6 502 e — 1.45(1.18,1.78)
Non-cancer non-vascular deaths
Respiratory disease 22 73342 915 — 1.67 (1.44,1.92)
Digestive system (exceptiiver) 13 32043 173 —_— 1.72(1.24,2.39)
Endocrine, nutritional and metabolic 8 24505 180 1.64(0.97,2.77)
Nervous system disorder 1 amaer sk 0.90(0.64,1.28)
External causes (violence/suicide) 19 74631 356 e a— 1.26(1.05,1.52)
Unclassified deaths 9 30455 786 — 157(1.37,1.81)
T T T T
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Regression dilution and confounding (CRP)

ModelAdusiments RR 5% C))
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pls body mass index —— 124(118,129
Pls log tighcardes —— 123,117,128
pls ota choesterl — 128(118, 129
Pls non-HDL cholestarol — 123118, 128
plus HOL cholesteral —— 122 (147,127
P kool consumption —— 1220147, 127

Usualexposure, baseine confoundefs

Conort sex age —_— 163 (151,178
s sysiolc bood prssure — 158 (146,170
Pls smoking satus [ —— 151 (140, 163
pls histry of diabetes —_— 148,136,160
Pls body mass ndex —_— 148 (137,161
pls log tighcerdes — 1.44(133, 157
Pls otal choesterl JE—— 145134, 159
pls non-HL cholesterol —— 144 (134,159
Pl HOL cholsteral —_— 1420132, 154
P kol consumption JR—— 1420131, 154

Usualaxposur, usual confounders

Cohort sex age —— 163151178
s sysolc bood prssure [ —— 155 (1.44, 167
pls smoking siatus — 148(1.38,159
Pls history of diabetes J 143132, 159
pls body mass ndex —— 145(1:34,159
Pls log tighcardes —— 140(125, 152
Ps ota choesterl JE—— 1410130, 159
pls non-HL cholesterol JR—— 140 (130,151
P HOL cholsteral JR———— 139128, 149
s akohl consumption J———— 137 (127, 148
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RR (95% CI) per 1-SD higher log CRP
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Confounding and between-study heterogeneity

RR for CHD per 1-SD higher usual log CRP adjusted for usual levels of
confounders (31 lies, 91990 particig 5373 CHD)

RR (95% CI) Wald 17, 12(95% Cl)

Adjusted for age, sex, and study 1.63(1.51, 1.76) 149 51 (26, 68)
plus systolic blood pressure 1.55 (1.44,1.67) 134 42(12,62)
plus smoking 1.48(1.38, 1.59) 123 30 (0, 55)
plus history of diabetes 1.43(1.32, 1.55) 78 42(10, 62)
plus BMI 1.45(1.34, 1.56) 85 31(0, 56)
plus log, triglycerides 1.40(1.29, 1.52) 64 35(0, 58)
plus total cholesterol 1.41(1.30, 1.53) 69 33(0, 57)
plus non-HDL cholesterol® 1.40(1.30, 1.51) 74 26 (0, 53)
plus cholesterol$ 1.39(1.28, 1.49) 71 25(0, 52)
plus alcoholt 1.37(1.27,1.48) 65 26 (0, 53)

ERFC Lancet 2010(375)132-140 24




Forest plot

CHD %WT
Study  cases Risk ratio (95%Cl) (RE)
QUEBEC 043(0.14,1.33) 044
STHER 2.36(1.04,534)  0.84
NHANESII 450(1.57, 1 .51
WHHS 1.12(0.60,2 40
CAPS 130 1.40
FINRISKS7 173 187
RUN 17 204
S 1.08 174
FRAMOFF 65 1.26 071
GLOSTRUP 73 1.40 062
SA 095 1.98
HISAYAMA 77 134 344
FLETCHER 92 254 085
FINRISKS2 97 1.28 233
AFTCAPS 102 330
ULSAM 1.60 314
RIME 131 315
WHITEI 173 402
RANCHO 1.58 3.60
NHS 099 209
WHS 096 446
COPEN 137 566
MRFIT 119 1.80
ARIC 1.38 404
PROSPER 1.30 583
SHS 279 149 530
WOSCOPS 335 128 605
Ki 381 143 559
EPICNOR 424 157 569
BRHS 439 | —m-— 189 587
CHS 633 - 127 10.23
Overall (Random effect pooled) 137 100.00
Overall (Fixed effect pooled) @ 136
L
T T T T

0.2 05 1o 20 40 80
Risk ratio (95% Cl) per 1-SD higher usual log CRP.
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Joint effects (1)

When effect modifiers are variables measured on
individuals, e.g. age, BMI, etc interactions are most
effectively assessed using within-study information.

log(hy (| Eg, X)) =10g(hog (1)) + BE + 7. Xy + 6,E Xy

Some potential effect modifiers are assessed only at
the study level, e.g. assay methods, in which case
assessment of interactions relies entirely on between-
study comparisons (random-effects meta-regression).

B. = B, +&,; where g ~N(0,s?)
ﬂs = ﬂ+5BXs + 15 where s~ N(O’Tz)
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Joint effects (2) Between-study meta-regression
» A few variables, notably sex and ethnic group, have
potential interactions for which both within- and
between- study information may be important. " .
1
» Studies of both sexes provide within-study information s
on sex interactions, while studies comprising one sex g,
alone can only be used to assess interactions across B
studies. o
- T T T T T T
., 0o 02 Prcunémcn of VE?nEalss o8 o
* In ERFC we elther' o Study-specific log RR Meta-regression fit
— Estimate both within- and between- study interactions and
calculate inverse-variance weighted average.
— Directly use multivariate meta-analysis to borrow information.
27 ERFC Lancet 2010(375)132-140 28
Meta-analysis of between and within study Presentation of interactions
interaction terms
o . T + For simple graphical representation of interactions of
o conors i exposure and continuous effect modifiers, categorise
BETW 91087 4934 -0.22(-0.43,-0.00) 16.24 . . . .
St (et~ %57) ® 02205, 000 feat the latter into tertiles and use multivariate meta-
s o1 o002 analysis to calculate the subgroup-specific estimates.
e o 50000 042
ral oonronae 195
oot 20 ceairom e aor
N 2 s o + Butthen ...
Sa0200 105
Py T
Coren i oosib vy voe « Base significance testing on the p-value of the pooled
Proseer s1a g;j‘i;;g:;’j';gz continuous interaction, which should be more powerful
e o :”g:’:oi s and less susceptible to artefacts from categorisation of
017030009 10000 the effect modifier.
-0.20(-0.33, -0.07) 100.00 . . sy o .
‘ ‘ ‘ ‘ — Adopt more stringent p-values for significance of interactions.
* Log RR :
29 30




Joint effects with individual-level covariates

Variablel/  Mean CHD Interaction
Subgroup  value  cases p-value
Sex
Male 3742 —-— 0015
Female 1163 —_—
‘Smoking history
Other 3500 —— 0710
Current 1873 —_—
Diabetes history

ther 4663 —- 0.137
Yes 710 —+—
Age atsurvey (yrs)
40-59 52 2457 —— 0022
60-69 64 1396 ——
70+ 74 1215 —=
Systolic BP (mmHg)
Bottomthird 117 1345 -— 0453
Middlethird 136 1789 ——
Top third 159 2239 —.
BMI (kg/m2)
Botomthird 23 1554 — 0.969
Middlethird 26 1813 ——
Top third 31 2006 —_—

.
08 10 14 20 28
Risk ratio (95% Cl) per 1-SD higher usual log CRP
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Joint effects with study-level covariates

Variablel No.of CHD Interaction
Subgroup Studies cases p-value
Study design
Cohort study 21 3061 - 0.197
Case-control 7 614 ——
Clinical trial 3 6w [
Geographical region
WestemEurope 17 2931 - 0.088
North America 12 2273 -—
Other 2 169 E—
Sample type

16 2360 = 0.029
Piasma 15 3013 -
Storage temperature
201070 1373 —— 0422
“T0or less 23 3898 -
Assay source
Commercial 27 4053 il 0.575
In-house 4 1320 -
Assay standard
WHO 6 1815 — 0.864
Manufacturer 15 1767 -
Other 5 1003 -

08 1. 0 28
Risk ratio (95%CI) per 1D higher usual log CRP

ERFC Lancet 2010(375)132-140 32

Proportional hazards (PH) assumption

* Akey assumption in the Cox model is that of proportional
hazards (PH), i.e. hazard ratios remain constantin time.

* We evaluate PH assumption in each study separately, by
testing for interaction between the exposure and time.

log(hy,(t| Eg, X)) =10g(hog (1)) + BE + ¥ X + EEt

* The non PH parameters ¢ are pooled across studies by
random effect meta-analysis.

33

PH assumption (alternative methods)

« Alternatively, can sum independent y?, statistics from
standard PH tests based on Schoenfeld residuals within
each of S studies, yielding a ?g statistic testing HO that
PH holds in each study.

» Compare results with a 1-stage approach fitting a single
model stratified by cohort and sex.
IOQ(hski(t | Es/"Xsi )) = IOQ(hOSk(t)) + ﬁsEsi + 7sXsf + gEsit

» where f; are separate fixed effects, and the focus is on
the common estimate of ¢.
— Can also assume that g = A, i.e. common effect across studies.

34

Potential public health impact:
Estimating years of Life Lost (YLL)

35

Background

» Relative risks (RR) provide useful aetiological
information on exposure (E) - disease (D) associations.

_ pD=1|E=1X=x)
p(D=1E=0X=x)

» But alternative measures may be better suited for
conveying the potential public health impact of a risk
factor e.g.

— Population attributable risk.

— Short to medium term absolute risk (e.g. 10-year CVD risk).

— Long term absolute risk (e.qg. lifetime risk, or risk up to age
95y).

— Years of life lost (YLL).

36




Population attributable risk (PAR)

* By how much could population disease burden be
reduced by eliminating a certain risk factor?

1
PAR = 1-—_ |xp(E=1|D=1
[ RR]XP( |D=1)

« Lacks an individual perspective or interpretation.

* Ambiguous interpretation if exposure prevalence or if
RRs importantly vary over time (e.g. by age).

37

Short to medium term absolute risk

What is the probability of disease (or death) occurring
within t-years (e.g. 10-year CVD) given risk factor
profile?

pD=1T <t|E=1X=x)=1-S(f)

_ 1iso(t)exp1/iE-[S‘X)
Has some individual perspective or interpretation.
Interpretation is subject to length of time-horizon.
Importance can be disproportionately weighted towards

older age-groups, where incidence is higher.

38

Long term absolute risk (e.g. lifetime risk)

* Whatis the probability of disease (or death) occurring
over someone’s lifetime conditional on survival to a
certain age and risk factor profile (i.e. cumulative
incidence, CI)?
p(D=1|age = age,

risk?

E=1X=x)=Cl(age,, | E=1X=Xx)

< Individual perspective or interpretation.

» Should ideally take into account competing risks (e.g.
death from non-cardiovascular disease).

» Gives more weight to events occurring at younger

ages.
39

Years of life lost (YLL)

Conditional on survival to a certain age, how many years
of life are lost because someone’s risk factor profile
promotes premature death?

Essentially a difference in area under survival curves for
exposed vs. unexposed from age, t0 age .-

9o 29ax
YLL= [ S(t|E=1X=x){- [ S(t|E=0X=x)t
aGisk age;isk
Gives a more intuitive perspective for the individual since
it is expressed in life-year units rather than probability or
RR scale.
— Also itis calculated over the potential life-course of an individual.

40

YLL estimation: Statistical inputs needed

« Age-at-risk specific hazard ratios (HRs) for exposure
association with all-cause and cause-specific death
(e.g. from ERFC).

» Population cause-specific and overall death rates by
age and sex (e.g. EU 2000 death rates, in 5-year age
groups).

— Preferably for unexposed group (e.g. non-diabetics or non-
smokers), but a work-around is possible if only available for
total population.

« A computer with large memory, since estimating age-
at-risk specific HRs involves expanding the dataset to
obtain a record for each 5-year age-at-risk group.

YLL estimation: Method in general

Estimate sex and age-at-risk specific HRs for association of
exposure with causes of interest (e.g. using ERFC data).

Infer the expected death rates among the exposed (e.g.
diabetics) by multiplying the reference population age-
specific death rates by the estimated age-specific HRs.

Derive the expected population survival curves for the
exposed and unexposed groups, assuming exponential
survival within each 5-year age-at-risk group.

Estimate remaining life-years for each group by integrating
both survival curves from each age g, to age,., (cubic
splines approx) and then calculate YLL as the difference.

42




ERFC example 1: YLL lost due to diabetes

43

Data setup for modelling age-at-risk specific HRs ...

| idno sex ages ageout hxdisb duration ep dead agerisk outage agegrps _d  _t0  _t _trisk |
1c000074 1 59.99 703 0 10.3 o 59.99 0 55 0 o o o011 |
1C000074 1 59.99 703 o 10.3 o 60 65 60 o .ou s5.01 51
1C000074 1 59.99 703 0 103 o 65 70 65 0 501 10 5
| co0007a 1 59.99  70.3 o 103 o 0 0.3 0 0 10 103 207 |
| coo0113 1 642 75.86 o 1.7 1 64.2 65 60 o o 8 EX
| co00113 1 642 75.86 o 1.7 1 65 70 65 o .8 538 51
| co00113 1 642 75.86 o 1.7 1 70 75 70 o s 108 51
| co00113 1 642 75.86 o 1.7 1 5 15.86 5 1 1008 117 863 |
1 C000135 1 49.35  61.93 1 12.6 o 4935 50 s 0 o .eas 648 |
1C000135 1 49.35  61.93 1 12.6 o 50 5 0 0 .64 5.65 |
1 C000135 1 49.35  61.93 1 12.6 o 5 0 55 0 s5.65 10.6 51
| C000135 1 49.35  61.93 1 12.6 o 60 6193 6 0 0.6 12.6 1.93|
I co00217 1 ss.es 7116 1 2.5 1 sa.es 60 55 0 o 135 135
1 c000217 1 ss.es 7116 1 125 1 60 65 60 0 1.35 6.35 51
I c000217 1 ss.es 7116 1 2.5 1 65 70 65 0 635 114 51
1 co00217 1 ss.es 7116 1 2.5 1 70 7.6 70 1 1.4 125 1.6

Sex-specific Cox model: s = study, i = individual, t = time in study
log(h, (t)) =log(h(t)) + Bdiab, +pagerisk, + Bagerisk’. + B,diab, x agerisk,, + Bdiab x agerisk’,
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Input 1: Age specific HRs for cause-specific death (ERFC)

HR (95% Cl), diabetics vs. non diabetics

Alvasailar Cancers Nomasailarnon-cancer
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40 50 60 70 80 90 100 110 40 50 60 70 8 90 100 110 40 50 60 70 8 90 100 110
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Py
pu
21
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40 50 60 70 8 9 100 110 40 50 60 70 8 90 100 110
Age-at-risk (yrs)

—*— Mde —=— Female

Graphs by cause

Inference from Cox model with diabetes status interacted with linear

Input 2: Population death rates (EU 2000, 15 countries)

N N
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Martiy rates for year 2000
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and quadratic terms for age-at-risk. 45 46
Input 2: Poisson smoothing/extrapolation of death rates Input 3: Estimated population survival curves (1)
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Input 3: Estimated population survival curves (2)
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YLL Task 1: Survival by diabetes status
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Graphs by sex and cause
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YLL Task 2: Remaining life years by diabetes status ...
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YLL Task 3: Years of life lost with diabetes ...

Mle, Allcauses. Female, All causes
74

. .
. o
2
El
B .
2
£ o
2
§
8
g 2
! .
o ol
G EhEhhhEam kG hEam ek
Age (yrs)

Graphs by sex and use
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Proportioning YLL by cause of death

* Calculation of YLL by cause of death requires
additional constraints on the rates of ‘other causes’ of
death when applying the cause-specific HRs to the
death rates.

— Exposure effect on the cause of interest is calculated while
maintaining the death rates for all ‘other causes’ of death at
their original death rates.

* Ensures that the sum of cause-specific YLLs is close to
the YLLs directly estimated based on the all-cause
mortality endpoint.

» For each age and sex group, denote the death rates as
r_A (all-cause), r_V (vascular), r_C (cancer), r_N (non-
vascular, non-cancer), and r_O (other), and the hazard

ratios as HR_* with the same suffices. 5

Proportioning YLL by cause of death
Theratesaddupsothatr A=r V+r C+r_ N+r O.

For YLLs due to vascular death, compare survival
curves derived from (r_V +r_C + r_N + r_O) to that
derived from (HR_V*r_V+r_C+r_N+r_O).

For YLLs due to cancer death, compare survival curves
derived from (r_V + r_C +r_N + r_O) to that derived
from(r_V+HR_C*r_ C+r_N+r_O).

For YLLs due to non-vascular, non-cancer death,
compare survival curves derived from (r_V +r_C +r_N
+r_0) to that derived from (r_V +r_C + HR_C*r_N +
r_0), etc.
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YLL Task 4: YLL by cause and age-at-risk ...
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YLL Task 5: Proportionate YLL with diabetes
by cause of death
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ERFC example 2: YLL lost due to smoking

57

Inferring death rates for the reference group

The population death rates would rarely be available separately
for the exposure groups of interest e.g. never smokers (0) —
reference group, former smokers (1), and current smokers (2).

To get death rates for never smokers (reference group), assume
the overall population age-specific incidence rate is a weighted
average

IR = pg*IRy + p4*IR; + py*IR,
Given relative risks versus never smokers are

RRy = IRy/IRy and RRy, = IRy/IR,
Can rewrite above equation as

IR =pg*IRy + p1"RR* IR, + p,"RR»* IR,
from which

IRy = IR/(pg + P1*RRyg + P2"RRy)
Hence need age-specific prevalence of never (p,), former (p,), and
current (p,) smoking. Moreover, as smoking prevalence has
declined over the years, period specific prevalence estimates are
appropriate. 58

Sex- and age-specific prevalence of smoking by decade
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Inference from sex-specific multinomial logit model with linear and
quadratic terms for age interacted with decade of survey. 59

Proportionate YLL due to smoking
by cause of death
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Remarks

* The outlined methods for calculation of YLL provide a useful way
of combining overall population mortality rates and exposure
association statistics from population-based studies to express the
public health impact of risk factors.

» Future work would involve fully taking into account the impact of
competing risks (e.g. cumulative incidence calculation) and finer
subdivision by cause of death (e.g. lung v. other cancers for
smoking).

« The results provide credible evidence that diabetes and current
smoking are each associated with significantly shortened life
expectancy. The impact of diabetes is greater in females than
males, and the impact of smoking is greater in males.

61

Risk prediction methods in ERFC

(If time allows)

62

Risk prediction - Background

In addition to summarising the association between a
risk marker and disease, there is interest in knowing the
predictive ability that can be attributed to a marker when
it is included in a model to predict future risk of CVD.

* Need to assess the predictive ability of risk models with
and without inclusion of the marker of interest.

* In ERFC we have assessed:
— Discrimination
— Calibration
— Reclassification

63

The risk prediction model

S/ci(t | Xi,k) = SOk (t)exp(ﬁxi)

« Gives the probability of surviving event free to at least
time t given risk factors x;.

« Interested in assessing the accuracy of the predictions
made for all participants, given risk factors.

* Also interested in assessing the improvements in risk
predictions when a new risk marker is added to some
existing set of predictors.

64

Discrimination

« The ability of a model to discriminate between different
levels of risk.

+ Assessed using:
» Concordance statistics (C-index, AUROC)
* The D measure or R%,

« The improvementin risk prediction upon addition of a
new marker is quantified by assessing the change in
discrimination measures e.g.

C-index for new model — C-index for old model

65

C-index for survival data

« Estimates the probability that the predicted order of
failure is correct for a randomly selected pair of
individuals.

« Calculation of the C-index (within a single study):

Count pairs of participants for which ;and px are
concordant (n,), discordant (n,) and undecided (n,)

n. +0.5n,
n.+ng +n,

C=

Where t; = time in the study for participant i
Jx = prognostic index/risk prediction for participant i

66
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D-statistic

* Measures the spread of observed risk across model
predictions. Expressed as log-hazard ratio equivalent to
comparing risk of outcome in the upper vs. lower half of
the predicted risk distribution.

« Estimation steps
1. Fit prediction model (eg: Cox PH)
2. Transform linear predictor (BX) to scaled N(0,1) statistics (z)
3. Fit outcome model (eg: Cox PH) to the scaled statistics, from
which D is the coefficient of z

Scaled statistics: ~ Mean of . Mean of
ower hatt eupper half

-15 -1 05 g 05 1 15

Risk prediction in ERFC

* Aim: To assess improvements in risk prediction by
meta-analysis of data from observational studies.

* Measures used:
— Discrimination: C-index, D measure, R?,
— Reclassification: NRI, IDI

67 68
ERFC prediction methods schemata ERFC CRP-CHD prediction examples
(37 studies, 165856 participants, 8806 CHD)
Assessment of predictive ability
A A Multivariable adjusted log HR (SE) per 1-SD higher
value or in comparison with reference category* Heterogeneity
2-stage approach: pooling study specific /3, 2-stage approach: pooling study specific 4, Mean (SD)
— orn (%) 1-stage Stratified! 2-stage FES 2-stage RES 12 (95% Cl)
Age at survey (yrs) 64.2(8.6) 0.567 (0.013) 0.565(0.013)  0.529(0.043) 76 (67, 82)
Male sex 81732 (49%) NA NA NA NA
Current smoking* 35577 (21%) 0.516 (0.024) 0.529(0.024)  0.515(0.050) 63 (48, 73)
""" SBP (mmHg) 131(19) 0.202 (0.009) 0.203(0.009)  0.211(0.017)  30(0, 53)
History of diabetes* 10790 (7%) 0.557 (0.038) 0.587 (0.037)  0.600(0.049) 24 (0, 49)
TCHOL (mmol/ly 5.84 (1.06) 0.234 (0.010) 0.235(0.010)  0.216(0.018) 32(0, 54)
T T T HDL-C (mmol/l) 1.27(0.38) -0.247 (0.014) -0.240(0.014) -0.232(0.023) 52(32,67)
1-stage approach: stratified model | 1-stage approach: stratified calculation Log CRP (mg/l) 0.55 (1.09) 0.206 (0.012) 0.207(0.012)  0.201(0.013) 9(0,38)
W; = study-specific weights for meta-analysis
Primary ERFC prediction analyses 60 70
. .. . Meta-analysis of C-index
ERFC methods: Discrimination »
« Discrimination (2-stage): C-index, D, R?j,. - - b
— Stratified (1-stage) Cox model used to derive a
single risk prediction model across studies.
— Discrimination measures calculated within each
study, including their changes therein. o
— Absolute values and changes combined by meta-
analysis, weighting by number of events.
— Sensitivity analyses using 2-stage derivation of the
prediction model and also alternative weights for the
meta-analysis of discrimination measures.
” - - Cr\ndex{a%% o - "
7 72

C-index with conventional CVD risk factors
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Meta-analysis of C-index
Comparison of study weights

0.97

AFTCAPS
MOGERAUG3

© #events WT O Informative pairs WT  © IV fixed effect WT  © IV random effect WT

The pooled estimates for the 4 weighting methods respectively are:
0.7080 (p = 0.000), 0.7284 (p = 0.000), 0.7229 (p = 0.000), and 0.7150 (p = 0.000)

C-index with conventional CVD risk factors
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Meta-analysis of D

T T T
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D with conventional CVD risk factors
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Meta-analysis of D
Comparison of study weights
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Meta-analysis of C-index change
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The pooled estimates for the 4 weighting methods respectively are:
0.0051 (p = 0.000), 0.0038 (p = 0.000), 0.0048 (p = 0.000), and 0.0048 (p = 0.000)

C-index change with addition of log CRP

77
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D change (95% CI)

D change with addition of log CRP
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Meta-analysis of D change
Comparison of study weights

0.37

0.2

D change

-0.19
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The pooled estimates for the 4 weighting methods respectively are:
0.0414 (p = 0.000), 0.0331 (p = 0.000), 0.0369 (p = 0.000), and 0.0342 (p = 0.000)

D change with addition of log CRP ™

Good study-level correlation between absolute values
of C-index and D, as well as between changes.

r (95% C) = 0.98 (0.97, 0.99) 7 (95% C) = 0.87 (0.76, 0.93)
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The large between-study heterogeneity in absolute
values of C-index or D is explained by age distribution.
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Size of circle is proportional to 1/variance of estimate

Examination of subgroup effects need necessarily
restrict inferences to studies with all levels observed.

Variable\ No.of No.of  CHD Prvalue for P-value for
Subgroup studies participants cases heterogeneity heterogeneity
Sex
Male 24 53037 4189 L 00001 <0.0001
Female 24 58199 2515 B -
Smoking status
Other 36 128676 5403 0008 0.004
Curent 36 35507 3380 — —
History of diabetes
N 36 144363 7491 - -
0752 0173
Yes 3 10788 1004 —— 1—
Framingham 2008 10-yr CVD risk
0%-<10% 30 62715 92 T B
10%-<20% 30 47161 2527 — ooz — 0147
>=20% 30 47069 4808 — —
Overall 37 165856 8806 - NA - NA
0,005 00.005 0.0100.015 0.020 0.08-0.04 0 0.040.08 0.12
C-indexchange (95% CI) D change (95% CI)

82

Case-control studies are particularly problematic
because of matching on predictive covariates.

Study design\

Base model variables C-statistic (95% C1) C-statistic change (95%Cl) Z  P-value
Cohort (37 studies, 8306 CHD)
Age . 0.6441(0.6383,0.6499) - 0.0224(0.0191,0.0258)  13.2 <0.0001
Above + smoking status . 06614 (0.6558, 0.6671) - 0.0153(0.0126,0.0180) 1.1  <0.0001
Above + systolic BP . 0.6789(0.6733,0.6844) - 0.0103(0.0081,00124) 92 <0.0001
Above + history of diabetes . 0.6863 (0.6807,0.6918) - 0.0087(0.0067,0.0107) 85  <0.0001
Above + total cholesterol " 0.6977(0.6923,0.7030) I3 0.0083(0.0063,0.0102) 8.4  <0.0001
Above + HDL cholesterol " 07080(0.7027,07133)  |*® 0.0051(0.0035,0.0066) 63  <0.0001
1566 CHD)

Age + 0.4997 (0.4823,0.5171) = 00458(0.0358,0.0557) 9.0 _ <0.0001
‘Above + smoking status = 05176(0.5004,0.5347) - 0.0337(0.0257,0.0417) 82  <0.0001
Above + systolic BP - 05430 (0.5261,0.5600) - 0.0246(0.0178,0.0313) 7.4 <0.0001
Above + history of diabetes | 05506 (0.5337,0.5676) - 0.0224(0.0160,0.0289) 68  <0.0001
Above + total cholesterol - 05849 (0.5681,0.6017) - 0.0191(0.0130,0.0252) 6.1 <0.0001
Above + HDL cholesterol - 0.6053 (0.5888, 0.6218) - 00122(0.0070,0.0173) 46  <0.0001

05 06 07 08 0 002 0.04 006

C-statistic (95% CI) C-statistic change (95% Cl). upon adition of log CRP

83

Reclassification

* Methods proposed to give a more clinically relevant
assessment of the improvement in risk prediction given
by a new marker.

» Examine the net movement of participants between
clinically relevant groups of predicted risk (e.g. 10-year
CVD risk groups of 0-10%, 10-20%, and 220%).

* The Net Reclassification Improvement (NRI)
— Retrospective NRI (Pencina et al 2008)

— Prospective NRI
Pencina et al 2010
— Continuous NRI

84
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‘Retrospective’ NRI (Pencina et al 2008)

- Measure of appropriate reclassification (ie: events move up
and non-events move down the risk categories)

NRI = P(uplevent) - P(down|event) + P(down|non-event) - P(up|non-event)

E S —
—
Net proportion of Net proportion of
events non-events
appropriately appropriately
reclassified reclassified

Reclassification table

Reclassification table for addition of CRP to conventional
CVD risk factors (22 studies, 72574 participants):

Model without Model with CRP: 10 yr CVD risk (%)

220%

10-yr CVD risk 0to <10% | 10% to <20%

Observed to have a CVD event within 10 years (n=6848)

0to <10%
10% to <20%

220%

Observed to be event free at 10 years (n=65728)

0to <10%

10% to <20%

85 86
. . f P -y
Summary measures of reclassification Issue with the ‘Retrospective’ NRI
Addi(ion_ of CRP to CVI_) _risk factors N 1"/._») or P-value
‘:2 Studies, 7:5:‘ PT"'“:‘;’\‘/‘;’ - 5‘;;?:‘  Probabilities estimates are regarding the likelihood of
i it ithin . . .
Toyem e eeopea B moving up or down through risk categories among
Appropriately reclassified 375 (5.48%) events and non-events:
Inappropriately reclassified 275 (4.02%)
No change 6196 (90.51%) _
NRI (95% CI), 1.46% (0.73%, 2.19%) <0.0001 NRI = P(up|event) - P(down|event) + P(down|non-event) - P(up|non-event)
Participants event free at 10 years 65728 « Need to know whether each participant has or has not
Appropriately reclassified 1396 (2.12%)
Inappropriately reclassified 1354 (2.06%) had an eVent by 10 yearS.
No change 62978 (95.82%)
NRIE9% €1 0.06% (0.08%. 0.22%) 0428 « Cannot include participants whose records are
Overal censored before 10 years.
NRI (95% Cl) 1.52% (0.78%, 2.27%) <0.0001
IDI (95% Cl) 0.0036 (0.0028, 0.0043) <0.0001 87 88
Prospective NRI (Pencina et al 2010) ERFC methods: Reclassification
+ Pencina et al rearranged the ‘retrospective’ equation, Reclasmfpahon: NRI(0.10, 0-29)’ NRI(>0), IDI.
borrowing from Bayes theorem to give: — 10-year risk calculated from stratified Cox model.
_ P(events | up)xny — P(event | down)xnp — Category NRI(0.10, 0.20) calculated based on reclassification
NRI= nx P(event) tables collgpsed across studies by observed event status at
(1—P(events | down) x nj, — (1— P(event | up)) x n 10-years (i.e. 1-stage). IDI also calculated by 1-stage method.
nx (1= P(event)) — Sensitivity analysis using 2-stage method (i.e. pooling study-
* Now we only need to know whether a person moves up specific NRI(0.10, 0.20) and IDI by meta-analysis).
or down a risk category (this is defined for all participants). — Continuous NRI(>0) calculated within studies based on K-M
estimates of 10-year risk among those reclassified up vs. down
and then pooled across studies by meta-analysis (i.e. 2-stage).
* The quantities P(event | up) and P(event | down) are . - N .
easily estimated using Kaplan-Meier methods, and hence - ’Qg%reotgrr'ﬁ:;gf'gh“”g of the study-specific NRI's remains to
all censored observations can be included. '
89 90
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Meta-analysis of Non-event NRI(0.10, 0.20) Meta-analysis of Event NRI(0.10, 0.20)
‘Retrospective’ category NRI : ‘Retrospective’ category NRI

e
.
: = OO0OMNANA) 000 027 047 000 000 1
o <=
i <
R 1 BT I e T .
Non-event NRI (95% Cl) : * : Event NRI (95% Cl)
NRI with addition of log CRP o1 NRI with addition of log CRP 92
Meta-analysis of Overall NRI(0.10, 0.20) Potential public health impact of (sequential) screening
‘Retrospective’ category NRI Per 100,000 screened
. 7351 92649
—T 10-Year CHD risk stratification according to conventional risk factors
<10% CVD Risk 10-20% CVD Risk 220% CVD Risk
76945 15025 8030
2758 74187 2083 12942 2510 " 5520
R Assume low risk Assume treated
™ Reclassification of 10-Year CVD risk with additional CRP or fibrinogen screening
With CRP screening With fibrinogen screening
<10% CVD Risk <10% CVD Risk
1715 1211
——— 150 1565 107 1104
< o 10-20% CVD Risk 10-20% CVD Risk
<> " 12436 12991
> - Assume: 1728 10708 1788 11203
Treated if risk > 20% " "
. RR reduction = 20% (statins) 320/";"4[’ Risk 220 /"EZVSD Risk
© Overall NRI (95%Ci) " 205 60 188 35
N . Numb: ded t
NRI with addition of log CRP o (NNS) por ovont avorled: 366 400 i
Remarks Stata software for IPD meta-analysis
. X http://www.phpc.cam.ac.uk/ceu/research/erfc/stata/
* IPD meta-analysis provides a powerful means for - .
quantifying improvements in risk prediction, but comes v
with challenges in choice of weighting across studies. el i

* In particular, uncertainties remain in 2-stage methods
for meta-analysis of NRI/IDI because of the separate
calculations in Events and Non-Events.

— What weight is most appropriate for the meta-analysis of the
Event and Non-Event NRI's (possibly N and Events)?

— How should the overall NRI be calculated? Pool the study-
specific overall NRI's? or calculate from pooled Event and
Non-Event NRI's (possibly the former, but what weights?).

— To what extent should we be concerned of sparse data in
small studies?
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Installable from within Stata
. net from http://www.phpc.cam.ac.uk/ceu/research/erfc/stata/
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Remarks

» Large-scale IPD meta-analysis is helping to powerfully
unravel finer details of exposure-disease associations
and assessment of improvement in risk prediction than
possible in individual studies.

* Methods and software developed in ERFC have been
made publicly available.

— Methods paper: Int J Epidemiol 2010(39)1345-59.

— Stata software website:
http://www.phpc.cam.ac.uk/ceu/research/erfc/stata/
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